
M251 – Elementary Linear Algebra, UTK Fall 2003, MWF 1:25-2:15
Introductory Notes by Jochen Denzler

Read these notes first, and then reread them whenever we have accomplished another
chapter in the textbook. And whenever in later courses they want you to remember
some stuff from this course, you may want to have this overview over the course
available, so you know how that stuff in the new course fits in the greater context.

A friend of mine heard the following message at the Courant Institute: You never
know enough linear algebra. When I was a student, linear algebra was the most
boring course I attended. Both observations are NOT in contradiction. The punch-
line is that the linear algebra from the introductory course needs to be related to
experiences outside this course. If it isn’t, forget it: you’re being fed the bones, and
the meat goes to the dog. The importance of the course lies in its interconnections.
You’ll explore some of them later, and I can only hint at them now. The purpose
of these notes is to help you with the big picture, and with these interconnections,
whenever they come up, now or later. Savour and cherish them now, or be bored.

Not everything in these notes will be required exam knowledge. I’ll clarify later how
much is fair game for exams. Everything is fair game for introduction, illustration
and back reference.

A Bird’s Eye View of M251

Your first encounter with Linear Algebra in this course will be an organized way
of solving systems of linear equations, like, e.g., 5x+ 3y− z = 13, −2x+y+ z = −2, Ch. 1
4x + 5z = −6. You have probably done this task already at high school: adding
equations to eliminate variables, or solving for one variable and plugging it back
into the remaining equations. This is in essence what we are going to do here as
well; the difference is that we are doing it in an organized way, not haphazardly.
Nowadays, many problems require the solution of hundreds, thousands or millions
of linear equations in just as many unknowns, and this will be done by computer. In
doing this job, the computer will crunch the coefficients, but will not care about the
names of the variables. The calculation is the same, whether you call the unknowns
x, y, z or u, v, w. So the essential information is contained in a rectangular array of
the numbers showing up in these equations, namely in our example: 5 3 −1 13

−2 1 1 −2
4 0 5 −6

 a 3× 4 matrix

Any rectangular array (of numbers) is called a matrix. (The vertical line is not
part of the matrix, but serves only for our visual convenience in interpreting where
these numbers belong.) Chapter 1 of the book deals with matrices and solution
procedures for linear equations.

Matrices were invented as a concise notation already before the invention of com-
puters, but for more or less the same purpose as outlined above. It turns out that
(subject to certain limitations) matrices can be added, subtracted, multiplied almost
like real numbers. There are however also some important differences, which you will
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need to learn thoroughly. The most important among them is that for the product
AB of two matrices A and B, which we will define (under certain assumptions on
the size of these matrices), it is NOT true in general that AB = BA. This may
sound weird, if you judge on the basis of your experience with the arithmetic of
numbers, but after all, multiplication of matrices is something really new, so it is
entitled to some new properties!

To learn the arithmetic of matrices is not particularly difficult on its own, but it
may leave you with a “so what?” feeling. I do hope it does, because linear algebra
would be pretty useless, if there weren’t a practical down-to-earth meaning hidden
behind these straightforward calculations. Basically, this information is postponed Ch. 8
until Chapter 8 in the textbook, but I will give a brief hint now. For instance, a
3 × 3 matrix can be viewed to represent a linear mapping applied on objects in 3-
dimensional space. If you find this vocabulary daunting, take a chair in your hands
and do the following experiment. (I won’t draw pictures, because that’s an awful
lot of work, and if you do the experiment you don’t need pictures.)

Let’s assume you are holding the chair in such a position that somebody sitting on
it would face you. Now turn the chair 90 degrees about a vertical axis. If someone
were sitting on the chair he would now look sideways (lets assume you turned the
chair so the person would look to the right). There is a certain 3 × 3 matrix that
describes the turning of the chair, and we’ll call it A. Next you turn the chair by
90 degrees, counterclockwise, about a horizontal axis that goes straight away from
you in forward direction. The imagined person on the chair is now lying with his
back on the back of the chair, facing upwards. This operation is also represented
by a matrix, and we call it B. Doing these two operations one after the other is
decribed by the product of both matrices, BA. 1 Now start over with the chair
again facing you and do the same two operations in reverse order: first B, which
will make the person sitting on the chair fall down to your left.2 Then A, which
turns the chair about a vertical axis, and makes the back of the chair hit your left
side. The final position of the chair is different from the first experiment. This is
why, in this example, AB 6= BA.

(This was just one example. Other operations than rotations, like, e.g., stretching
in some direction, can be represented by matrices as well.)

Chapter 2 of the book deals with determinants. Every square matrix (ie., the Ch. 2
rectangluar array has as many columns as rows) gets assigned a certain number,
called its determinant. Determinants absolutely don’t belong at this place in the
course, but they wouldn’t yield their place in the curriculum but to brutal violence,
and so we better deal with them peacefully. The most important thing is of course
postponed until later3: Determinants represent volumes (or volume ratios). So the
matrices A and B in the chair example just rotate the chair, but don’t change its
volume; their determinant is 1. For the moment, you’ll have to trust me on this

1In case you think it should be AB, because you first do A and then B: no, it shouldn’t; it’s
like in calculus, where cos lnx means that you first take the logarithm, and then the cosine.

2Remember that it’s a hypothetical person. If you put a real one on the chair and then have
him sue me, I’m gonna turn you into chop suey, or worse, give you a failing grade;-)

3They don’t want you to understand everything right away, because they have many more
textbooks they want to sell you later;-)
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volume interpretation and just deal with the fancy calculation of these miraculous
determinants that have come totally out of the blue. If I can concoct a way to move
the determinants at a later time in the semester without screwing up other parts of
the course, I’ll do so.

I have insisted above to relate, in the style of a sneak preview, the calculational algebra
vs.
geometry

objects (matrices, determinants) to a geometric meaning. The next chapters will
put substance into these claims. You will learn about vectors in the plane and in
space. The word vector is of Latin origin and its original meaning is something like
“driver”: not primarily the guy in the driver’s seat, but the tool that transports
you. Geometrically, vectors are represented by arrows, beginning at one point P
and pointing to another point Q. The arrow “drives” you from point P to point Q,
hence the name vector. In Chapter 3, you will learn about adding and subtracting Ch. 3
vectors, about multiplying them with numbers, and about a scalar product or
dot product between two vectors, which will be (miraculously?) a number. This
product is useful in physics: in the formula “work = force times distance”, force
is actually a vector, and the ‘distance’ is also a vector, comprising not only the
distance (length) but the full transport information, including the direction. And
the multiplication refers to the scalar product. Another type of product is the cross
product, or vector product, which, at the level of M251, only makes sense for
vectors in space, not for any of the more general vectors we are about to encounter
soon. It is also very important in physics, for instance in electrodynamics (the laws
that govern radiowaves, voltage transformers, power generators). If we manage to
cover the vector product (it’s optional material), you’ll see a hue of a connection
with these obscure determinants from Chapter 2.

In mathematics, we have two ways of viewing vectors: (1) geometrically, as out-
lined above. From this point of view, the scalar product encodes angle and length
measurement. This was the view of Chapter 3. — (2) The abstract view. In a Ch. 5
vast generalization, any kind of objects that permit calculations and rules like the
geometric vectors studied in Chapter 3 will also be called vectors. We just reason: If
it walks like a duck and quacks like a duck, then (no, it may not be a duck, but. . . )
let’s call it a duck! This is the point of view in Chapter 5.4 A vector space will
be the collection of all vectors of a certain kind. Now if you think that’s pretty
abstract, think again: it will seem even more abstract when I give you a concrete
example (what a strange world that is)! Functions can be viewed as vectors (in
the duck sense). And if you have already taken M231 (Introduction to Differential
Equations), you will find that the same fancy vocabulary of linear dependence vs.
linear independence that was used there for solutions of linear ordinary differen-
tial equations shows up in our Chapter 5 again. If in contrast, you will take M231
later, you are in for the same deja-vu from the other side. In either case, I urge you
to either dig out your former M231 notes when we are in Chapter 5, or else return
to our course material from Chapter 5, when you get to linear (in)dependence of
solutions of linear differential equations in M231 later.

4If you still think it’s strange to call functions “vectors”, only because both functions and ge-
ometrical vectors can be added and multiplied similarly, let me remind you that the word ‘bulb’
existed in the English language already before Edison. It was only the rough shape similarity that
made the (light-)bulb borrow its name from the bulbs that become tulips: Abstraction is NOT an
exotic thing!
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Chapter 6 will generalize the scalar product to this abstract setting. In some of Ch. 6
your future endeavors, you may learn about Fourier series. A typical course for this
subject is M435 (Introduction to partial differential equations). When they tell you
about “orthogonality relations for trigonometric functions” and you wonder what
this geometric concept of orthogonality has to do with trig functions, you will want
to reread this very paragraph here, and the Chapter 6 from this course. — If you
are headed towards electrical engeneering and will learn about signal processing,
you are certain to learn about Fourier series. — If you are a math major and will
later focus towards algebra rather than towards the calculus-based subjects, these
abstract vector spaces will be your first encounter with pure algebraic structures,
while you may not have business with M435. Then this chapter, all for its own sake,
is your initiation to the more advanced algebraic courses.

Chapter 4 is meant to bridge the gap between the geometric vectors from before Ch. 4
and the abstract (duck definition) vectors that are to follow. It is about “geometric”
vectors in spaces that may have more than three dimensions. You cannot imagine
(let alone draw) pictures and arrows any more, but the analogy of the calculations
with the ones in Chapter 3 is sufficiently conspicuous. Think of a trained chess
player, who knows that the king may move from square e1 to square f1, because
these squares can be seen to be adjacent from their coordinates, and that the queen
may move from c3 to c8, if the squares in between (namely c4, c5, c6, and c7) are
free. Actually drawing a chessboard is not necessary for this reasoning. This is the
way how we think “geometrically” of, say, four or five dimensional space.

It is in this context that vectors turn out to be equivalent to n × 1 matrices, that
matrices can be multiplied with vectors (as a special case of multiplying matrices),
and that you can see the first time why the operation of whirling a chair around can
be represented by a (3× 3) matrix.

The concept of eigenvectors and eigenvalues is the culmination of the entire Ch. 7
course. You will already have encountered a bit of the subject in Chapter 4. The
word “eigen” is one of the few German words that entered into the English technical
vocabulary. It means “own” or “proper”. (The French and Russians actually trans-
late the word in their technical language.) To a square matrix, there are associated
its eigenvalues (certain numbers), and each eigenvalue comes with a bunch of eigen-
vectors. When the matrix represents a transformation (like turning the chair), the
eigenvectors represent directions that are not changed under the transformation.5 In
the case of a rotation of a chair, eigenvectors of the matrix representing this rotation
would point in the direction of the axis of rotation, because this is the very direction
that remains the same under the rotation.

In our textbook, eigenvalues will be real numbers. When you learn how to calculate
them, you will see, e.g., that to find the eigenvalues of a 2× 2 matrix, you need to
solve a quadratic equation. You know that quadratic equations may not have real
solutions, but that we can always assign them complex numbers as solutions. If you

5Do not read this footnote until later. I am slightly misusing the word ‘direction’ here: north
and east are of course different directions, but in this context, north and south are considered as the
‘same’ direction. What is really the issue are that the lines along the vectors are parallel. When we
come to the detailed discussion, this definition will be natural. I can’t avoid that it sounds strange
in this sneak preview.
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are merely into calculations, you can accept complex numbers as eigenvalues just as
easily as real numbers (provided you aren’t afraid of complex numbers). But the
geometric interpretation for the corresponding eigenvectors breaks down, when you
admit complex eigenvalues. This is why, with regard to time limitations, the book
deals with real eigenvalues only. Be aware that this restriction is not warranted by
the subject itself, only by practical purposes.

This course cannot cover the applications of eigenvalues and eigenvectors: Let me
just mention some for you, with the request that you accept them in good faith
without the details needed for explanations.

• In mechanics, they assign to each solid body (like, e.g., a wheel), a 3 × 3 matrix
called its tensor of inertia. The eigenvectors of this matrix are the directions of those
axes around which the body can rotate without wobbling.

• The mapping that assigns to a body in space its shadow on the floor can also
be viewed as a matrix. The eigenvectors of this matrix are those vectors that are
parallel to the floor (their shadow points in the very same direction as the vectors
itself), and vectors pointing in the direction of the sun rays. Their shadow collapses
to a point, and by a slight abuse of language, a point looks in any direction you
please; in particular the one into which the original vector pointed. Other vectors
pointing upwards, away from the floor, but not right towards the sun, are NOT
eigenvectors, because they do not point in the same direction as their shadow.

When you view functions as abstract vectors in the duck sense of Chapter 6, many
further applications arise; I won’t go into details about who is going to play the role
of the matrices in this setting (that’s beyond M251), but let it be enough to say that
the eigenvectors will be functions and the eigenvalues will still be numbers. In this
setting, many more applications arise:

• In quantum physics, the energy levels of atoms are eigenvalues of some “general-
ized abstract matrix”: when quantum physics was a subject in its early beginnings,
understood by only a few people worldwide, Heisenberg, one of the founders of the
theory, explained his calculations to mathematicians. An anecdote (whose authen-
ticity I do not know, but I learned it from my physics professor) tells that the
mathematicians told Heisenberg that what he was doing here was actually calcu-
lating with infinite dimensional matrices! Which left Heisenberg very impressed,
because he said he hadn’t even known how to calculate with finite dimensional
matrices! (Strange, because he would certainly have known the tensor of inertia.)
The eigenvector, actually a function, tells you where the electron is most likely to
be encountered. — Quantum physics was a big boost for eigenvalue questions in
mathematics.

• When you let a string on a guitar or violin vibrate, its frequency is an eigenvalue
of “a generalized abstract matrix”. I have lied a little bit here: The eigenvalue is
minus the square of the frequency. — Same thing with a vibrating membrane (like
the head of a drum). The eigenvectors (actually eigenfunctions) then tell the shape
of the vibrating membrane. The places where the eigenfunction takes the value zero
are those where the membrane is at rest. Those where the eigenfunction has the
largest values are the ones where the membrane oscillates with the largest amplitude.
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