
TOPOLOGY PRELIM REVIEW 2021: LIST FOUR

Topic 1: Countable compactness and sequential compactness.

Definitions. X is countably compact if any countable open cover admits a
finite subcover.

Thus any compact space is countably compact, and on a Lindelöf space the
concepts are equivalent (for example on any 2nd countable space.)

X is sequentially compact if any sequence on X admits a convergent subse-
quence.

A point z ∈ X is an accumulation point of a sequence (xn) in X if any
neighborhood of z contains infinitely many points of the sequence.

1. (i) X is compact iff any family {Cλ}λ∈A of closed subsets of X with the
finite intersection property has non-empty intersection:

(
⋂
λ∈F

Cλ 6= ∅ ∀F ⊂ A finite )⇒
⋂
λ∈A

Cλ 6= ∅.

(ii) K1 ⊃ K2 ⊃ . . ., Kn compact Hausdorff and nonempty ⇒
⋂
n≥1Kn 6= ∅.

2. If X is first-countable, z ∈ X is an accumulation point of (xn) iff some
subsequence of (xn) converges to z.

3. If X is countably compact, any sequence in X has an accumulation point.
As a consequence, if X is countably compact (in particular, if X is compact)
and first-countable, X is sequentially compact.

4. If X is sequentially compact, X is countably compact. (Hence for first-
countable spaces, these concepts are equivalent.)

5. The space X of all functions from [0, 1] to itself (with the topology
of pointwise convergence) is compact (by Tychonoff’s theorem), but not first-
countable. And indeed it is not sequentially compact: exhibit a sequence fn ∈ X
with no convergent subsequence.

6. If X is second countable and sequentially compact, X is compact.

Summary: 1st countable + compact ⇒ sequentially compact;
2nd countable + sequentially compact ⇒ compact.

7. (i) Compact Hausdorff spaces are normal.
(ii) Second countable, regular (includes Hausdorff) spaces are normal.
Remark: It follows from Urysohn metrization that compact, second count-

able Hausdorff spaces are metrizable.

Topic 2: Compactness in metric spaces.

8. (X, d) compact metric is sequentially compact; in particular, X is com-
plete.

Def. (X, d) is totally bounded: for each R > 0, finitely many balls of radius
R cover X. (Thus: compact metric spaces are totally bounded.)
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9. (i) In a totally bounded metric space, any sequence has a Cauchy subse-
quence (nested balls argument.)

(ii) If (X, d) is totally bounded and complete, X is sequentially compact.

10. A totally bounded metric space is separable (hence second-countable.)

11. If (X, d) is a sequentially compact metric space, X is complete and
totally bounded.

So far we see that a compact metric space is sequentially compact; and that
a metric space is sequentially compact iff it is complete and totally bounded.
To close the circle, we need:

Lebesgue number lemma. Any open cover F of a sequentially compact metric
space has a Lebesgue number: L > 0 so that any subset C ⊂ X with diameter
less than or equal to L is contained in a set U of the cover.

Proof. If false, there exists a cover C = {Uλ} and for each n ≥ 1 a set
Sn ⊂ X with diameter at most 1/n, but not contained in any Uλ. Let xn ∈ Sn;
passing to a subseq. (if needed) we have xn → x, and may choose λ0 and ε > 0
so that B(x, ε) ⊂ Uλ0

. Let N ≥ 1 be large enough that, for n ≥ N , 1
n <

ε
2 and

d(xn, x) < ε
2 . Then if y ∈ Sn:

d(y, x) ≤ d(y, xn) + d(xn, x) <
1

n
+
ε

2
< ε,

so Sn ⊂ B(x, ε) ⊂ Uλ0 , contradiction.

12. Any sequentially compact metric space (X, d) is compact.

CONCLUSION: For a metric space, ‘compact’, ‘sequentially compact’, ‘count-
ably compact’ and ‘complete and totally bounded’ are all equivalent. Compact
metric spaces are separable and second countable; and any open cover admits a
Lebesgue number.

13*. A metric space X is separable if and only if it is homeomorphic to a
subset of a compact metric space. (Hint: Embedding in the Hilbert cube.)

Topic 3: Locally compact spaces.

Recall from review list two:
Def. X is locally compact if for all x ∈ X, and all open Ux, there exists Vx

open with compact closure V x ⊂ Ux. (In particular, locally compact Hausdorff
spaces are regular.)

(Problem 1 on list two). X is locally compact ⇔ for all C ⊂ X compact,
and all open U ⊃ C, there exists V open with compact closure, so that: C ⊂
V ⊂ V ⊂ U .

Def. A metric space (X, d) is locally separable if for each x ∈ X there exists
an open ball B(x, rx) containing a countable dense subset.

Proposition 1. If (X, d) is connected and locally separable, then X is sepa-
rable. (Proved in M561.)
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14. If (X, d) (metric) is connected and locally compact, then X is separable
(and second countable.)

A natural question is: which subsets of locally compact Hausdorff spaces are
locally compact? The following propositions were proved in M561:

Def. S ⊂ X is locally closed if any x ∈ S has a neighborhood Ux ⊂ X (open),
so that Ux ∩ S is closed in Ux (that is, Ux ∩ S = Ux ∩ Fx, for some Fx closed in
X).

Proposition 2. S is loc. closed ⇔ S = U ∩ F , where U is open in X, F is
closed in X. (So this could be taken as the definition of ‘locally closed’.)

Proposition 3. X loc. compact Hausdorff, S ⊂ X loc. closed ⇒ S is loc.
compact. And conversely: locally compact subsets of X are locally closed.

Cor. Closed sets, as well as open sets, of locally compact Hausdorff spaces
are locally compact (for the induced topology).

15.* (i) X loc. compact Hausdorff, S ⊂ X dense in X and locally compact
⇒ S is open in X. (In particular, any locally compact metric space is open in
its completion.)

(ii) Any locally compact metric space is homeomorphic to a complete metric
space (that is, its topology is given by an equivalent, complete metric.)

Topic 4: Alexandrov compactification/proper maps and perfect maps

A locally compact Hausdorff space X admits an Alexandrov compactification
X∗, meaning a compact Hausdorff space X∗ and an embedding ϕ : X → X∗

with X∗ \ ϕ(X) = {ω}, the ‘point at infinity’. Neighborhoods of ω in X∗ have
the form {ω}tU (disjoint union), where U ⊂ X is the complement of a compact
subset of X. [Proof given in lecture.]

Such a compactification is unique: if ψ : X → X̃ is a second one, X̃ =
X t {ω̃}, one may find a homeomorphism h : X∗ → X̃, h(ω) = ω̃, so that
ϕ = ψ ◦ h|X .

16. Use the existence of the Alexandrov compactification to prove that
locally compact Hausdorff spaces are completely regular.

The Alexandrov compactification of a loc. cpt Hausdorff spaceX is countable
at infinity if the point at infinity has a countable basis of neighborhoods.

17. This happens iff X is σ-compact: X =
⋃
i≥1Ki, Ki ⊂ X compact,

which may be assumed to be increasing, Ki ⊂ int(Ki+1).

18*. Let X be locally compact metric. The following are equivalent:
(i) X has a countable basis (in particular, Lindelöf.);
(ii) X is σ-compact;
(iii) X∗ is metrizable.

Def. Let X,Y be both locally compact Hausdorff. A continuous map f :
X → Y is proper if the preimage of any compact set is compact.
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19. f extends to a continuous map F : X∗ → Y ∗ of the Alexandrov com-
pactifications (with F (ωX) = ωY ) iff f is proper.

Remark on problem 19. A related concept is that of perfect map [Munkres,
p.199]: A continuous surjective map f : X → Y is perfect if it is closed and all
level sets (or ‘fibers’) f−1(y) are compact.

This implies the properties (i) Hausdorff; (ii) regular; (iii) locally compact;
(iv) second countable are inherited by Y , if satisfied by X.

20. Prove (i) and (ii) of this claim.

21. Let f : X → Y be continuous, surjective and closed.
(i) For each y ∈ Y and any U ⊂ X open neighborhood of the preimage (level

set) f−1(y), there exists V ⊂ Y open neighborhood of y so that f−1(V ) ⊂ U .
(In fact this ‘continuity of level sets’ characterizes closed maps.)

(ii) Let y ∈ Y , let U ⊂ X be an open neighborhood of f−1(y). Then f(U)
contains an open neighborhood V ⊂ Y of y.

22. Perfect maps are proper. Hint: Problem 21(i).

Remark. The converse is true, under the hypothesis the topologies of X and
Y are compactly generated ([Munkres p. 283]): a subset A ⊂ X is open in X if
A∩C is open in C, for each C ⊂ X compact subspace. As proved in [Munkres,
p.283]: locally compact spaces and first countable spaces (in particular, metric
spaces) are compactly generated.

5. Supplementary problems.
23. (i) If Y1, Y2, . . . are sequentially compact, then Y = Πn≥1Yn is sequen-

tially compact.
(ii) If N is countable and Y is sequentially compact, Fp(N,Y ) (pointwise

convergence) is sequentially compact.

24. (Application of 23–‘Helly’s theorem’). LetX ⊂ R be arbitrary, fn : X →
[a, b] a sequence of monotone functions (say nondecreasing.) Then (fn) has a
convergent subsequence (pointwise in X). Hint: Show fn has a subsequence
converging pointwise in a countable dense subset of X, then use monotonicity.

25. Let Y be compact Hausdorff, X arbitrary. Then π : X × Y → X is a
closed map. (Hint: tube lemma). This is false if Y is not compact.

26. Let f : X → Y be a map (X a space, Y compact Hausdorff). (i) If
the graph Γf ⊂ X × Y is closed, f is continuous. (Hint: if V ⊂ Y is a nbd of
f(x0), C = Γf ∩ (X × V c) is closed; consider its image under π, the standard
projection from X × Y to X.) This is false if Y is not compact.

(ii) If f is continuous, Γf is closed (Y compact not needed, just Hausdorff.)

27. Prove the weak Tychonoff theorem: If Mi are compact metric spaces,
then the product Πi≥1Mi is a compact metric space.

28. A continuous map f : M → N of metric spaces M,N is proper iff the
image (f(xn)) of a sequence (xn) on M without convergent subsequences has
the same property.
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HINTS
3: If (xn) is a sequence without any accumulation points, each xn has a

neighborhood Un with no other points of the sequence. Let A = {x1, x2, . . .}, a
closed subset of X (why?). Adding Ac to the Un gives an open covering of X,
which has no finite subcover.

4: Let {Un}n≥1 be a countable open cover of X. If it has no finite subcover,
we may define a sequence (xn) in X taking:

x1 ∈ X \ U1, x2 ∈ X \ (U1 ∪ U2), . . . , xn ∈ X \ (

n⋃
i=1

Ui).

Note xn 6∈ Ui if n ≥ i: each Ui has only finitely many sequence elements. But
if z ∈ X, z is in some Un0

.

5: Let fn be the function (with image in {0, 1}) that assigns to each x ∈ [0, 1]
the nth. digit in its base 2 expansion (terminating in 0s if x is a dyadic rational).
For any increasing sequence (nk)k≥1, Let x0 ∈ [0, 1] have the binary expansion
0.a1a2.a3...: ak = 0 if k is even, ak = 1 if k is odd. Then fnk

(x0) does not
converge.

6. X is first countable (hence countably compact) and Lindelöf.
7. Given A,B ⊂ X closed disjoint, use regularity and the Lindelöf property

to find countable open covers (Ui), (Vj) of A,B with Ui∩Vi = ∅. Then ‘correct’
the Ui, Vi (by successively removing appropriate unions) so as to obtain new
countable open families Wi, Zi, containing A,B (resp.) and with disjoint unions.

8. This follows from the fact X is first countable (and countably compact).
For a direct proof, if a sequence with not convergent subsequence exists, then
for each x ∈ X there is an open ball B(x, rx) including only finitely many
sequence elements; taking a finite subcover leads to a contradiction. (This uses
first countability too.)

11. If not, one may find R > 0 and x1 ∈ X,x2 6∈ B(x1, R), . . . xn 6
inB(x1, R)∪ . . . B(xn−1, R), so d(xn+1, xi) ≥ R for i = 1, . . . , xn: this sequence
has no convergent subsequence.

12. If not, we may find a sequence of closed sets Cn with diameter less than
1/n, not contained in any open set in F , and xn ∈ Cn. Then a subsequence
xni → z ∈ U , U ∈ F open. But also B(z, ε) ⊂ U for some ε > 0, and for i large,
Cni
⊂ U (show this). Contradiction.

12. Use the fact X is totally bounded: given an arbitrary open cover,
consider its Lebesgue number L, and cover X by finitely many balls of radius
L/3.

15. S is loc. closed in X. So S = F ∩ U with F closed in X, U open in X.
But then S is dense in U (since U is open in X) and closed in U ; so S = U .
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