TOPOLOGY PRELIM REVIEW 2021: LIST FOUR
Topic 1: Countable compactness and sequential compactness.

Definitions. X is countably compact if any countable open cover admits a
finite subcover.

Thus any compact space is countably compact, and on a Lindelof space the
concepts are equivalent (for example on any 2nd countable space.)

X is sequentially compact if any sequence on X admits a convergent subse-
quence.

A point z € X is an accumulation point of a sequence (x,) in X if any
neighborhood of z contains infinitely many points of the sequence.

1. (i) X is compact iff any family {Cy}aca of closed subsets of X with the
finite intersection property has non-empty intersection:

([ Cx#0 VF C Afinite ) = (] Cx # 0.
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(ii) K1 D K2 D ..., K,, compact Hausdorff and nonempty = ﬂnZl K, #0.

2. If X is first-countable, z € X is an accumulation point of (z,) iff some
subsequence of (z,,) converges to z.

3. If X is countably compact, any sequence in X has an accumulation point.
As a consequence, if X is countably compact (in particular, if X is compact)
and first-countable, X is sequentially compact.

4. If X is sequentially compact, X is countably compact. (Hence for first-
countable spaces, these concepts are equivalent.)

5. The space X of all functions from [0,1] to itself (with the topology
of pointwise convergence) is compact (by Tychonoff’s theorem), but not first-
countable. And indeed it is not sequentially compact: exhibit a sequence f,, € X
with no convergent subsequence.

6. If X is second countable and sequentially compact, X is compact.

Summary: 1st countable + compact = sequentially compact;
2nd countable 4+ sequentially compact = compact.

7. (i) Compact Hausdorff spaces are normal.

(ii) Second countable, regular (includes Hausdorff) spaces are normal.

Remark: Tt follows from Urysohn metrization that compact, second count-
able Hausdorff spaces are metrizable.

Topic 2: Compactness in metric spaces.

8. (X, d) compact metric is sequentially compact; in particular, X is com-
plete.

Def. (X,d) is totally bounded: for each R > 0, finitely many balls of radius
R cover X. (Thus: compact metric spaces are totally bounded.)



9. (i) In a totally bounded metric space, any sequence has a Cauchy subse-
quence (nested balls argument.)
(ii) If (X, d) is totally bounded and complete, X is sequentially compact.

10. A totally bounded metric space is separable (hence second-countable.)

11. If (X,d) is a sequentially compact metric space, X is complete and
totally bounded.

So far we see that a compact metric space is sequentially compact; and that
a metric space is sequentially compact iff it is complete and totally bounded.
To close the circle, we need:

Lebesgue number lemma. Any open cover F of a sequentially compact metric
space has a Lebesgue number: L > 0 so that any subset C C X with diameter
less than or equal to L is contained in a set U of the cover.

Proof. If false, there exists a cover C = {U,} and for each n > 1 a set
Sp C X with diameter at most 1/n, but not contained in any Uy. Let x, € Sp;
passing to a subseq. (if needed) we have x,, — x, and may choose A\ and € > 0
so that B(z,€) C Uy,. Let N > 1 be large enough that, for n > N, % < 5 and
d(zn,r) < 5. Then if y € Sy:

1
Ay, 7) < dly,va) + dn,7) <+ 5 <,

so S, C B(z,€) C Uy,, contradiction.
12. Any sequentially compact metric space (X, d) is compact.

CONCLUSION: For a metric space, ‘compact’, ‘sequentially compact’, ‘count-
ably compact’ and ‘complete and totally bounded’ are all equivalent. Compact
metric spaces are separable and second countable; and any open cover admits a
Lebesgue number.

13*. A metric space X is separable if and only if it is homeomorphic to a
subset of a compact metric space. (Hint: Embedding in the Hilbert cube.)

Topic 3: Locally compact spaces.

Recall from review list two:

Def. X is locally compact if for all z € X, and all open U,, there exists V,,
open with compact closure V, C U,. (In particular, locally compact Hausdorff
spaces are regular.)

(Problem 1 on list two). X is locally compact < for all C C X compact,
and all open U D C, there exists V' open with compact closure, so that: C' C
VcvcU.

Def. A metric space (X, d) is locally separable if for each x € X there exists
an open ball B(z,r,) containing a countable dense subset.

Proposition 1. If (X,d) is connected and locally separable, then X is sepa-
rable. (Proved in M561.)



14. If (X, d) (metric) is connected and locally compact, then X is separable
(and second countable.)

A natural question is: which subsets of locally compact Hausdorff spaces are
locally compact? The following propositions were proved in M561:

Def. S C X is locally closed if any x € S has a neighborhood U,, C X (open),
so that U, NS is closed in U, (that is, U, NS = U, N F,, for some F, closed in
X).

Proposition 2. S is loc. closed < S = U N F, where U is open in X, F' is
closed in X. (So this could be taken as the definition of ‘locally closed’.)

Proposition 8. X loc. compact Hausdorff, S € X loc. closed = S is loc.
compact. And conversely: locally compact subsets of X are locally closed.

Cor. Closed sets, as well as open sets, of locally compact Hausdorff spaces
are locally compact (for the induced topology).

15.* (i) X loc. compact Hausdorff, S C X dense in X and locally compact
= S is open in X. (In particular, any locally compact metric space is open in
its completion.)

(ii) Any locally compact metric space is homeomorphic to a complete metric
space (that is, its topology is given by an equivalent, complete metric.)

Topic 4: Alezandrov compactification/proper maps and perfect maps

A locally compact Hausdorff space X admits an Alexandrov compactification
X*, meaning a compact Hausdorff space X* and an embedding ¢ : X — X*
with X* \ p(X) = {w}, the ‘point at infinity’. Neighborhoods of w in X* have
the form {w}UU (disjoint union), where U C X is the complement of a compact
subset of X. [Proof given in lecture.]

Such a compactification is unique: if ¥ : X — X is a second one, X =
X U {®}, one may find a homeomorphism h : X* — X, h(w) = @, so that
p=1vohx.

16. Use the existence of the Alexandrov compactification to prove that
locally compact Hausdorff spaces are completely regular.

The Alexandrov compactification of a loc. c¢pt Hausdorff space X is countable
at infinity if the point at infinity has a countable basis of neighborhoods.

17. This happens iff X is o-compact: X = |J,~, K;, K; C X compact,
which may be assumed to be increasing, K; C int(K;11).

18*. Let X be locally compact metric. The following are equivalent:
(i) X has a countable basis (in particular, Lindeldf.);

(ii) X is o-compact;

(iii) X* is metrizable.

Def. Let X,Y be both locally compact Hausdorff. A continuous map f :
X — Y is proper if the preimage of any compact set is compact.



19. f extends to a continuous map F : X* — Y™ of the Alexandrov com-
pactifications (with F(wx) = wy) iff f is proper.

Remark on problem 19. A related concept is that of perfect map [Munkres,
p-199]: A continuous surjective map f : X — Y is perfect if it is closed and all
level sets (or ‘fibers’) f~!(y) are compact.

This implies the properties (i) Hausdorff; (ii) regular; (iii) locally compact;
(iv) second countable are inherited by Y, if satisfied by X.

20. Prove (i) and (ii) of this claim.

21. Let f: X — Y be continuous, surjective and closed.

(i) For each y € Y and any U C X open neighborhood of the preimage (level
set) f~1(y), there exists V C Y open neighborhood of y so that f~(V) C U.
(In fact this ‘continuity of level sets’ characterizes closed maps.)

(ii) Let y € Y, let U C X be an open neighborhood of f~1(y). Then f(U)
contains an open neighborhood V' C Y of y.

22. Perfect maps are proper. Hint: Problem 21(i).

Remark. The converse is true, under the hypothesis the topologies of X and
Y are compactly generated ([Munkres p. 283]): a subset A C X is open in X if
ANC is open in C, for each C' C X compact subspace. As proved in [Munkres,
p-283]: locally compact spaces and first countable spaces (in particular, metric
spaces) are compactly generated.

5. Supplementary problems.

23. (i) If Y1,Y5,... are sequentially compact, then Y = II,,>1Y,, is sequen-
tially compact.

(ii) If N is countable and Y is sequentially compact, F,(N,Y) (pointwise
convergence) is sequentially compact.

24. (Application of 23— Helly’s theorem’). Let X C R be arbitrary, f, : X —
[a,b] a sequence of monotone functions (say nondecreasing.) Then (f,) has a
convergent subsequence (pointwise in X). Hint: Show f, has a subsequence
converging pointwise in a countable dense subset of X, then use monotonicity.

25. Let Y be compact Hausdorff, X arbitrary. Then 7 : X xY — X is a
closed map. (Hint: tube lemma). This is false if ¥ is not compact.

26. Let f : X — Y be a map (X a space, Y compact Hausdorff). (i) If
the graph I'y C X x Y is closed, f is continuous. (Hint: if V' C Y is a nbd of
f(zo), C =T N (X x V°) is closed; consider its image under 7, the standard
projection from X x Y to X.) This is false if Y is not compact.

(ii) If f is continuous, I'y is closed (Y compact not needed, just Hausdorft.)

27. Prove the weak Tychonoff theorem: If M; are compact metric spaces,
then the product II;>;M; is a compact metric space.

28. A continuous map f : M — N of metric spaces M, N is proper iff the
image (f(x,)) of a sequence (z,,) on M without convergent subsequences has
the same property.



HINTS

3: If (z,) is a sequence without any accumulation points, each z, has a
neighborhood U,, with no other points of the sequence. Let A = {z1,22,...}, a
closed subset of X (why?). Adding A€ to the U, gives an open covering of X
which has no finite subcover.

4: Let {U, }n>1 be a countable open cover of X. If it has no finite subcover,
we may define a sequence (z,) in X taking:

n

IlEX\Ul,QTQGX\(UlUUQ),..., InGX\(UUz)

=1

Note x,, € U; if n > i: each U; has only finitely many sequence elements. But
if z € X, z is in some U,,.

5: Let f,, be the function (with image in {0, 1}) that assigns to each = € [0, 1]
the nth. digit in its base 2 expansion (terminating in Os if z is a dyadic rational).
For any increasing sequence (ny)i>1, Let 2o € [0, 1] have the binary expansion
0.a1az2.a3...: ar = 0 if k is even, ar = 1 if k is odd. Then f,, (o) does not
converge.

6. X is first countable (hence countably compact) and Lindeldf.

7. Given A, B C X closed disjoint, use regularity and the Lindelof property
to find countable open covers (U;), (V;) of A, B with U; NV, = (. Then ‘correct’
the U;, V; (by successively removing appropriate unions) so as to obtain new
countable open families W;, Z;, containing A, B (resp.) and with disjoint unions.

8. This follows from the fact X is first countable (and countably compact).
For a direct proof, if a sequence with not convergent subsequence exists, then
for each x € X there is an open ball B(z,r;) including only finitely many
sequence elements; taking a finite subcover leads to a contradiction. (This uses
first countability too.)

11. If not, one may find R > 0 and =1 € X,zo & B(x1,R),...x, /
inB(z1,R)U...B(zp—1,R), so d(xp41,2;) > Rfor i =1,...,x,: this sequence
has no convergent subsequence.

12. If not, we may find a sequence of closed sets C,, with diameter less than
1/n, not contained in any open set in F, and z, € C,. Then a subsequence
Zn, — 2 € U, U € F open. But also B(z,¢) C U for some ¢ > 0, and for 7 large,
Cp,; C U (show this). Contradiction.

12. Use the fact X is totally bounded: given an arbitrary open cover,
consider its Lebesgue number L, and cover X by finitely many balls of radius
L/3.

15. S is loc. closed in X. So S = FNU with F closed in X, U open in X.
But then S is dense in U (since U is open in X) and closed in U; so S = U.



