PROBLEM SET 4-SUMMER 2023-MANIFOLDS

1. Show that a continuous proper map $f: M \to N$ (differentiable manifolds) is a closed map; use this to prove that an injective proper immersion $f: M \to N$ is an embedding.

2. Let $f: M \to N$ be a smooth map, $q \in N$ a regular value of $f, S = f^{-1}(q)$ (assumed non-empty), $x \in S$. Prove that for the tangent space we have:

$$T_x S = Ker(df(x)).$$

Hint: prove it for smooth maps of euclidean space first.

3. Let $f: M \to N$ be a C^k map, transversal to a submanifold $S \subset N$. Let $V \subset M$ be the submanifold $V = f^{-1}(S)$, assumed non-empty. Then if $p \in V$, prove the tangent space T_pV is:

$$T_p V = (df(p))^{-1} [T_{f(p)}S],$$

the preimage under the differential of f.

4. let X and Z be transversal submanifolds of the manifold Y. (Recall this means the inclusion map $i: X \to Y$ is transversal to Z.) Prove that $X \cap Z$ is a submanifold of Y (of what dimension?), and that if $x \in X \cap Z$:

$$T_x(X \cap Z) = T_x X \cap T_x Z.$$

5. Prove: The space of rank one 2×2 matrices (that is, nonzero matrices with determinant zero) is a 3-dimensional submanifold of $M_2 = \mathbb{R}^4$. Find its tangent space at

$$A = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} \tag{1}$$

6. Let M_n, S_n be the vector spaces of $n \times n$ matrices (resp. $n \times n$ symmetric matrices), and let $f: M_n \to S_n$ be the smooth map $f(A) = AA^t$ (the superscript t means 'transpose'.)

(i) Compute the differential of f at an arbitrary matrix A.

(ii) Show that the identity matrix I_n is a regular value of f, and therefore the orthogonal group O(n) is a manifold (compute its dimension).

(iii) Compute the tangent spaces $T_{I_n}O(n)$ and $T_AO(n)$ for $A \in O(n)$.

(iv) Show that O(n) is compact.

7. (a) Let V be a finite-dimensional real vector space, $\Delta \subset V \times V$ the diagonal. For a linear map $A \in \mathcal{L}(V)$, show that the graph $W = \{(v, Av); v \in V\} \subset V \times V$ is transversal to the diagonal if and only if 1 is not an eigenvalue of A.

(b) Def. A smooth map $f: X \to X$ is a Lefschetz map if at any fixed point x of f (that is, f(x) = x), 1 is not an eigenvalue of the differential $df(x) \in \mathcal{L}(T_xX)$.

Prove that a Lefschetz map of a compact manifold has only finitely many fixed points.

8. (i) Consider the open cover $\{U, V\}$ of the real line, where $U = (-\infty, 1), V = (0, +\infty)$. Show there does not exist a partition of unity with compact supports, strictly subordinate to this cover.

(ii) Let M be a connected smooth manifold. Prove that given $p, q \in M$, there exists a piecewise C^1 path from p to q.

9. Differentiable Urysohn lemma. Let M be a smooth manifold, $A, B \subset M$ disjoint closed subsets. Show there exists a smooth (function. $f : M \to [0, 1]$ so that $f \equiv 0$ on $A, f \equiv 0$ on B. Hint: smooth partition of unity strictly subordinate to $\{A^c, B^c\}$.

10. On any smooth manifold X there exists a smooth proper function $f: X \to \mathbb{R}$.

Hint: Let $\{U_{\alpha}\}$ be the family of all precompact open subsets of X, $(\phi_i)_{i\geq 1}$ a subordinate smooth partition of unity. Consider:

$$f(x) = \sum_{i=1}^{\infty} i\phi_i(x).$$

Show that f is well-defined, smooth and proper.

11. Let $f: X \to \mathbb{R}^N$ be an injective immersion, where X is a k-dimensional manifold and N > 2k + 1. Define the maps:

$$\begin{split} h: X \times X \times R \to R^N, \quad h(x,y,t) &= t(f(x) - f(y)). \\ g: TX \to R^N, \quad g(x,v) &= df(x)[v]. \end{split}$$

(i) Show there exists $a \in \mathbb{R}^N$ nonzero which is neither in the image of h nor in the image of g. (*Hint:* Sard's theorem.)

(ii) Show that for such a, if $H \subset \mathbb{R}^N$ is the orthogonal complement of the one-dimensional subspace spanned by a and $\pi : \mathbb{R}^N \to H$ the orthogonal projection, then $\pi \circ f : X \to H$ is injective.

(iii) Show that $\pi \circ f$ is an immersion.

Conclusion: If the manifold X is compact, X can be embedded into R^{2k+1} .

12. Show that if X is a k-dimensional compact smooth manifold, there exists an immersion $f: X \to R^{2k}$.

13. Prove that if $f: M \to \mathbb{R}^n$ is a smooth injective immersion and $\phi: M \to \mathbb{R}_+$ is a smooth proper function, then $g(x) = (f(x), \phi(x))$ defines a smooth injective immersion from M to \mathbb{R}^{n+1} , which in addition is a proper map.

14. (i) Define 'set of measure 0' in \mathbb{R}^n .

(ii) Show that if $A \subset \mathbb{R}^n$ has measure zero and $f : \mathbb{R}^n \to \mathbb{R}^m$ is a locally Lipschitz map (where $m \ge n$), then f(A) has measure zero in \mathbb{R}^m .

(iii) Explain why the notion 'set of measure 0' makes sense on differentiable manifolds.

15. (i) Let $f : \mathbb{R} \to \mathbb{R}^2$ be a Lipschitz map (for the euclidean norms.) Prove that $f(\mathbb{R})$ is a null set in \mathbb{R}^2 . (*Hint:* Do the case of a Lipschitz map $f : [a, b] \to \mathbb{R}^2$ first.)

(ii) Let $Q = \{r_1, r_2, \ldots\}$ be an enumeration of the rational numbers, and let A_{ij} be the open interval with center r_i and length $1/2^{i+j}$, for each $i, j \ge 1$. Show that the set:

$$A = \bigcap_{j \ge 1} \bigcup_{i \ge 1} A_{ij}$$

is a residual subset of the real line, and also a null set.

16. (i) Show that if k < l, \mathbb{R}^k has measure zero in \mathbb{R}^l .

(ii) Suppose $Z \subset X$ is a submanifold with dim(Z) < dim(X). Prove that Z is a set of measure 0 in X.

17. If dim(X) < dim(Y), the image of any C^1 map $f: X \to is$ a set of measure zero in Y. (Prove this without using Sard's theorem.)

18. Let X be a compact smooth manifold. Every continuous map $f: X \to S^n \subset \mathbb{R}^{n+1}$ may be approximated by a smooth map, homotopic to f.

Hint. Assume $X \subset \mathbb{R}^N$ (embedded), and use the Stone-Weierstrass theorem for each of the n+1 components of f to approximate f by a smooth map $g: X \to \mathbb{R}^{n+1}$. Then normalize g, observing that $||g(x)|| > 1 - \epsilon$ if $||f(x) - g(x)|| < \epsilon$.

19. Let $f: M \to R^s$ be a C^1 map, $N \subset R^s$ a submanifold of codimension strictly greater than dim(M), Then for almost every $v \in R^s$ the translated image f(M) + v has empty intersection with N. (That is, the set of $v \in R^s$ for which the intersection is *not* empty has measure zero in R^s .)

20. If dim(M) < p, M compact, any C^1 map $f: M \to S^p$ is nullhomotopic.