SOME SOLUTIONS-TOPOLOGY REVIEW, SUMMER 2023.

4 (Problem set 5). The equivalence relation defining X / A is $x \sim x^{\prime}$ if $x=x^{\prime}$ or $x, x^{\prime} \in A$. Let $\bar{x}=p(x) \in X / A$ denote the equivalence class of $x \in X$, where $p: X \rightarrow X / A$ is the quotient map. X / A is given the quotient topology: $U \subset X / A$ is open iff $V=p^{-1}(U)$ is open in X. Since $p^{-1}(U)$ is invariant under \sim, we see that V is either disjoint from the closed set A, or an open neighborhood of A. Thus the topology in X / A is generated by the images under p of these two types of open sets in X.
(i) If A is contractible, there exists $a_{0} \in A$ and a homotopy in A from $i d_{A}$ to the constant map from A to a_{0}. By Borsuk's homotopy extension theorem (which applies since $X \subset R^{n}$ is a closed ENR), we find $f_{t}: X \rightarrow X$, $t \in I$, extending that homotopy, with $f_{0}=i d_{X}$. Thus $f_{t}(A) \subset A$ for all $t \in I$ and f_{1} maps A to a_{0}.
(ii) The homotopy $\left(f_{t}\right)$ in (i) induces $h_{t}: X / A \rightarrow X / A$ via $h_{t}(\bar{x})=$ $p\left(f_{t}(x)\right)$. To see this is well-defined, it suffices to note that:

$$
x \sim x^{\prime}, x \neq x^{\prime} \Rightarrow x, x^{\prime} \in A \Rightarrow f_{t}(x), f_{t}\left(x^{\prime}\right) \in A \Rightarrow f_{t}(x) \sim f_{t}\left(x^{\prime}\right), \forall t \in I .
$$

Since $h_{t} \circ p=p \circ f_{t}$ (continuous), h_{t} is continuous as well. For $t=1$ we have more :

$$
x \sim x^{\prime}, x \neq x^{\prime} \Rightarrow x, x^{\prime} \in A \Rightarrow f_{1}(x)=f_{1}\left(x^{\prime}\right)=a_{0} .
$$

Thus the $\operatorname{map} q: X / A \rightarrow X, q(\bar{x})=f_{1}(x)$, is well-defined and continuous.
By definition, $q \circ p=f_{1}$, which via f_{t} is homotopic in X to $i d_{X}$.
We claim that also $p \circ q \simeq i d_{X / A}$. Letting $k=p \circ q: X / A \rightarrow X / A$, note:

$$
k(\bar{x})=(p \circ q)(\bar{x})=\left(p \circ f_{1}\right)(x),
$$

while $\left(p \circ f_{0}\right)(x)=p(x)=\bar{x}$. So letting $h_{t}(\bar{x})=\left(p \circ f_{t}\right)(x)$ we have (as noted above) a well-defined homotopy $h_{t}: X / A \rightarrow X / A, t \in I$, from $h_{0}=i d_{X / A}$ to $k=h_{1}=p \circ q$.

Thus X and X / A are homotopy equivalent spaces.
9. (Problem set 5). (i) Define a family $\left(h_{t}\right)_{t \in I}$ of homeomorphisms of h equal to the identity on ∂B, setting:

$$
\text { for } 0 \leq t<1: h_{t}(x)=x, 1-t \leq\|x\| \leq 1 ; \quad h_{t}(x)=(1-t) h\left(\frac{x}{1-t}\right), 0 \leq\|x\| \leq 1-t .
$$

Since h is the identity on ∂B, it follows the two expressions coincide when $\|x\|=1-t$:

$$
(1-t) h\left(\frac{x}{1-t}\right)=\|x\| h\left(\frac{x}{\|x\|}\right)=\|x\| \frac{x}{\|x\|}=x .
$$

For $t=1$, we set $h_{1}(x)=x, x \in B$. Clearly all the h_{t} are homeomorphisms of the closed ball.

We have to check continuity at $t=1$, but since a possible issue only occurs when $\|x\|<1-t$, it is enough to check continuity at $x=0, t=1$, where $h_{1}(0)=0$. But if $\|x\|<1-t$, we have:

$$
\left\|h_{t}(x)\right\|=(1-t)\left\|h\left(\frac{x}{1-t}\right)\right\| \leq(1-t) M
$$

where $M=\max \{\|h(x)\| ; x \in B\} \leq 1$, so $\left\|h_{t}(x)\right\|$ is small when t is near 1 . (If $\|x\| \geq 1-t$ with $\|x\|$ small, recall $h_{t}(x)=x$.)

Part (ii) of the problem follows easily from part (i), by composition. (Check this explicitly.)

1(iii) (Problem set 6). Let $p: \mathbb{C} \rightarrow \mathbb{C}^{*}$ be the exponential cover, $p(z)=e^{z}$ (with deckgroup \mathbb{Z}, generated by $z \mapsto z+2 \pi i$.) Note p maps the open left halfplane $H=\{z ; \operatorname{Re}(z)<0\}$ onto the punctured open unit disk $D^{*} \subset \mathbb{C}^{*}$.

To see this covering map p is not a closed map, consider the curve $\Gamma \subset H$ parametrized over \mathbb{R} by:

$$
t \mapsto-e^{t}+i t \in \mathbb{C}, t \in \mathbb{R} .
$$

Note Γ is contained in H and properly embedded in \mathbb{C}, and hence is a closed subset of \mathbb{C}. The image of Γ under p is the curve in D^{*} parametrized by:

$$
t \mapsto e^{-e^{t}} \cdot e^{i t}, t \in \mathbb{R}
$$

This (injectively immersed) curve $p(\Gamma)$ spirals towards $0 \in \mathbb{C}$ as $t \rightarrow+\infty$, and towards $S^{1}=\partial D^{*} \backslash\{0\}$ as $t \rightarrow-\infty$, and hence is not a closed subset of \mathbb{C}^{*}. Thus p is not a closed map.

6 (problem set 6). We claim that X is homotopy equivalent to $S^{2} \vee S^{1}$, hence by S-vK $\pi_{1}(X)$ is isomorphic to \mathbb{Z}.

Consider a closed square region Q, with boundary defined by the vertices a, b, c, d (counterclockwise). Let e be the midpoint of the edge $a d$, and $T \subset Q$ the closed triangular region with vertices b, c, e. Attach Q to S^{2} by mapping the edge ad homeomorphically onto an arc of meridian on S^{2} (so this arc equals the intersection of Q and S^{2}, in the attachment space Y). Note the following:
(i) X is homeomorphic to the subspace X_{1} of Y consisting of S^{2} and the edges $[a b],[b c],[c d]$ of Q, attached to S^{2} at a and d;
(ii) $S^{2} \vee S^{1}$ is homeomorphic to the subspace X_{2} of Y consisting of S^{2} and the edges $[e b],[b c],[c e]$ of T, attached to S^{2} at e;
(iii) Fix a point q_{0} in the interior of T. Then X_{1} is a deformation retract of $Y \backslash\left\{q_{0}\right\}$ (via 'radial map from q_{0} '). Likewise, X_{2} is a deformation retract of $Y \backslash\left\{q_{0}\right\}$. Thus X_{1} and X_{2} are homotopy equivalent, and X and $S^{2} \vee S^{1}$ are also homotopy equivalent.

6(iii), Problem set 7. Let $f: B \rightarrow B$ be continuous. Proceeding by contradiction, suppose f has no fixed points in B. Then $\|f(x)-x\| \geq c>0$ for some $c>0$ and all $x \in B$. Let $\epsilon>0$ be arbitrary. By Stone-Weierstrass, we may find $g: B \rightarrow R^{n}$ smooth, so that $\|g(x)-f(x)\|<\epsilon$ for all $x \in B$. In particular, $\|g(x)\|<1+\epsilon$ in B, so defining $\hat{g}(x)=\frac{g(x)}{1+\epsilon}$, we have $\hat{g}: B \rightarrow B$ smooth, as well as:

$$
\|f(x)-\hat{g}(x)\|<\epsilon+\|g(x)\|\left(1-\frac{1}{1+\epsilon}\right) \leq 2 \epsilon .
$$

So $\|\hat{g}(x)-x\| \geq\|f(x)-x\|-2 \epsilon \geq c-2 \epsilon \quad \forall x \in B$, contradicting the existence of fixed points in the smooth case, if $\epsilon<c / 2$.

6 (iv) Note Σ is homeomorphic to the $(n-1)$-closed ball, and that A preserves the 'closed positive cone' K of $R^{n}, K=\left\{v \in R^{n} ; v_{i} \geq 0 \forall i\right\}$. For $v \in K$, let $\sigma(v) \geq 0$ be the sum of the coordinates. Then:

$$
f(x)=\frac{A x}{\sigma(A x)}
$$

defines a continuous map from Σ to itself (note $\sigma(A x) \neq 0$ for $x \in \Sigma$, since A has positive entries). Letting $x_{0} \in \Sigma$ be a fixed point of f, we have:

$$
A x_{0}=\sigma\left(A x_{0}\right) x_{0}, \quad x_{0} \neq 0,
$$

so x_{0} is an eigenvector of A, with positive eigenvalue $\sigma\left(A x_{0}\right)$.
12, Problem set 7. (i) Let $p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{i t}$, be the standard exponential covering. Since \mathbb{R} is contractible, by the fundamental lifting criterion the map $f \circ p: \mathbb{R} \rightarrow S^{1}$ lifts over p, so there exists $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous, satisfying $p \circ g=f \circ p$. We have:

$$
e^{i g(t+2 \pi)}=f\left(e^{i(t+2 \pi)}\right)=f\left(e^{i t}\right)=e^{i g(t)} \quad \forall t,
$$

so there exists $q \in \mathbb{Z}$ so that $g(t+2 \pi)=g(t)+2 \pi q$, for all $t \in \mathbb{R}$.
(ii) Fix the $q \in \mathbb{Z}$ obtained for f in part (i) and consider the basic example, the map of S^{1} given by $f_{0}(z)=z^{q}$, or $f_{0}\left(e^{i t}\right)=e^{i q t}$. Clearly
$g_{0}(t)=q t$ in this case. Composing f with a rotation (which doesn't change its $\bmod 2$ degree) we may assume $f(1)=1$ and $g(0)=0, g(2 \pi)=2 \pi q=$ $g_{0}(2 \pi)$.

We see that g is homotopic to g_{0} on $[0,2 \pi]$ with fixed endpoints, via $g_{s}(t)=s g(t)+(1-s) g_{0}(t), s \in[0,1]$, and also on \mathbb{R}, extending g_{s} via $g_{s}(t+2 \pi)=g_{s}(t)+2 \pi q$. This periodicity shows $g_{s}: \mathbb{R} \rightarrow \mathbb{R}$ induces a homotopy $f_{s}: S^{1} \rightarrow S^{1}$ from f_{0} to f (via $\left.f_{s}\left(e^{i t}\right)=e^{i g_{s}(t)}\right)$. By homotopy invariance of the degree, $\operatorname{deg}_{2}(f)=\operatorname{deg}_{2}\left(f_{0}\right)$, and the latter is seen to equal $q \bmod 2$, by counting preimages of an arbitrary point on S^{1}.

17, Problem set 7. In general, let X be any smooth manifold, $f: X \rightarrow$ $R^{k+1} \backslash\{0\}$ a smooth map, $\hat{f}: X \rightarrow S^{k}$ the normalization of f. For $a \in S^{k}$, denote by $r_{a} \subset R^{k+1} \backslash\{0\}$ and l_{a} the open ray and the one-dimensional subspace of R^{k+1} defined by a. By definition, $a \in S^{k}$ is a regular value for \hat{f} iff:

$$
\begin{equation*}
d \hat{f}_{x}: T_{x} X \rightarrow T_{a} S^{k}=l_{a}^{\perp} \text { is onto, } \forall x \in \hat{f}^{-1}(a) ; \tag{1}
\end{equation*}
$$

while $f \pitchfork r_{a}$ iff:

$$
\begin{equation*}
d f_{x}: T_{x} X \rightarrow R^{k+1} \text { satisfies } d f_{x}\left[T_{x} X\right]+l_{a}=R^{k+1}, \text { if } f(x) \in r_{a} . \tag{2}
\end{equation*}
$$

It is clear that $f(x) \in r_{a}$ iff $\hat{f}(x)=a$. To show equivalence of the two statements, recall the 'Calculus fact': for $x \in X, v \in T_{x} X$ and $a=\hat{f}(x)$:
$d \hat{f}_{x}[v]=\frac{1}{\|f(x)\|}\left(d f_{x}[v]-\left\langle d f_{x}[v], a\right\rangle a\right)=\frac{1}{\|f(x)\|} \operatorname{proj}_{l_{\frac{1}{a}}}\left(d f_{x}[v]\right) \in T_{a} S^{k}$,
where $\operatorname{proj}_{l_{\frac{1}{a}}}$ denotes the orthogonal projection from R^{k+1} onto the orthogonal complement of l_{a} (with respect to the standard inner product in R^{k+1}).

Assuming (1), we prove (2). Let $w \in R^{k+1}$, write $w=w_{1}+w_{2}$, with $w_{1} \in l_{a}, w_{2} \in l_{a}^{\perp}$. From (1), $w_{2}=d \hat{f}_{x}[v]$, for some $v \in T_{x} X$. And then (3) shows $d f_{x}\left[v_{1}\right]=d \hat{f}_{x}[v]+w_{3}$, with $w_{3} \in l_{a}$ and $v_{1}=\|f(x)\|^{-1} v \in T_{x} X$. Thus $w=d f_{x}\left[v_{1}\right]+\left(w_{1}-w_{3}\right)$, proving (2).

Conversely, assuming (2), we prove (1). Let $w \in l_{a}^{\perp}=T_{a} S^{k}$. From (2), $w=d f_{x}[v]$ for some $v \in T_{x} S^{k}$ (where $\hat{f}(x)=a$; clearly w has no component in l_{a}.) But then (3), combined with the fact $d f_{x}[v] \in l_{a}^{\perp}$, imply $d \hat{f}_{x}[\|f(x)\| v]=d f_{x}[v]=w$, proving (1).

21, problem set 8. This is a direct consequence of the fact that any manifold X admits an oriented double cover $p: \tilde{X} \rightarrow X$, unique up to automorphisms (Proposition 8.7 in [Lima, p. 196]); and that this cover \tilde{X}
is disconnected if and only if X is orientable (Proposition 8.5). (You should review those results, Ch. 8 of [Lima].)

When X is simply connected, any covering space of X (with more than one sheet) is disconnected, and the covering map is trivial; thus in this case X is orientable.

22, problem set 8. If $\varphi: U \rightarrow U_{0} \subset R^{n}$ is a chart for M, the corresponding chart for $T M_{\mid U}$ is:

$$
\tilde{\varphi}: T M_{\mid U} \rightarrow U_{0} \times R^{n}, \quad \tilde{\varphi}(x, v)=(\varphi(x), d \varphi(x)[v]) .
$$

Let $\psi: V \rightarrow V_{0} \subset R^{n}$ be another chart, with overlapping domain $(U \cap V \neq$ Ø.) The change of coordinates map is the diffeomorphism:

$$
F=\psi \circ \varphi^{-1}: U_{1} \rightarrow V_{1}, \quad U_{1} \subset U_{0}, V_{1} \subset V_{0}
$$

and the associated change of coordinates for $T M$ is:

$$
\tilde{F}: U_{1} \times R^{n} \rightarrow V_{1} \times R^{n}, \quad \tilde{F}(x, v)=\left(F(x), d F_{x}[v]\right) .
$$

Its differential at a point (x, v) is given by:

$$
\begin{gathered}
d \tilde{F}_{(x, v)}: R^{n} \times R^{n} \rightarrow R^{n} \times R^{n}, \\
d \tilde{F}_{(x, v)}\left[\left(w_{1}, w_{2}\right)\right]=\left(d F_{x}\left[w_{1}\right], d^{2} F_{x}\left[w_{1}, v\right]+d F_{x}\left[w_{2}\right]\right),
\end{gathered}
$$

where $d^{2} F_{x}$ denotes the second differential of F at x. (Note that for fixed x, $\tilde{F}(x, \cdot)=\left(F(x), d F_{x}[\cdot]\right)$, where $d F_{x} \in \mathcal{L}\left(R^{n}\right)$, so the partial differential of \tilde{F} with respect to its second argument at (x, v) is simply $d_{2} \tilde{F}_{(x, v)}=\left(0, d F_{x}\right)$, independent of v.)

This implies (for example, via matrix expressions for $d \tilde{F}_{(x, v)} \in \mathcal{L}\left(R^{n} \times\right.$ R^{n}) in 'block form'):

$$
\operatorname{det} d \tilde{F}_{(x, v)}=\operatorname{det}\left(d F_{x}\right)^{2}=\left(\operatorname{det} d F_{x}\right)^{2}>0
$$

so the atlas for $T M$ associated to any atlas of M is automatically orientationpreserving.

24, problem set 8 . It is enough to show that, given any $p \in X$, we may find in some neighborhood U of p a set of $n=\operatorname{dim}(X)=\operatorname{dim}(Y)$ linearly independent vector fields v_{1}, \ldots, v_{n} (in this order), so that if two of these neighborhoods U_{1}, U_{2} (of $p_{1}, p_{2} \in M$) intersect, at any point $p \in$ $U_{1} \cap U_{2}$ the transition map from the basis $\left\{v_{1}(p), \ldots, v_{n}(p)\right\}$ to the basis
$\left\{w_{1}(p), \ldots w_{n}(p)\right\}$ of $T_{p} M$ (where the w_{i} are defined in U_{2}) has positive determinant over $U_{1} \cap U_{2}$.

Given $p \in M$, let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a positive set of lin. indep smooth vector fields (with respect to the orientation of Y), defined in some neighborhood $W \subset Y$ of $f(p)$; let $U \subset X$ be a neighborhood of p so that $f(U) \subset W$ and set $v_{i}(p)=d f_{p}^{-1}\left[e_{i}(f(p))\right]$. Clearly this defines a family of smooth lin.indep. vector fields on U.

To verify the consistency condition, if $p \in U_{1} \cap U_{2}$, let $q=f(p) \in Y$. We have positive frames $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{f_{1}, \ldots, f_{n}\right\}$ in $W_{1} \supset f\left(U_{1}\right), W_{2} \supset$ $f\left(U_{2}\right)$ (resp.), $q \in W_{1} \cap W_{2}$, and the transition map $A(q)$ from the $e_{i}(q)$ to the $\left.f_{i}(q)\right)$ has positive determinant:

$$
f_{i}(q)=\sum_{j} a_{i j}(q) e_{j}(q), \quad \operatorname{det}\left(a_{i j}\right)(q)>0 .
$$

Since the transition map from the $v_{i}(p)=\left(d f_{p}\right)^{-1}\left[e_{i}(q)\right]$) (in U_{1}) to the $w_{i}(p)=\left(d f_{p}\right)^{-1}\left[f_{i}(q)\right]$ (in U_{2}) is also given (at $p \in U_{1} \cap U_{2}$) by $A(q), q=f(p)$, it has positive determinant as well:

$$
w_{i}(p)=\left(d f_{p}\right)^{-1}\left[f_{i}(q)\right]=\sum_{j} a_{i j}(q)\left(d f_{p}\right)^{-1}\left[e_{j}(q)\right]=\sum_{j} a_{i j}(q) v_{j}(p) .
$$

Remark: The orientation induced on X by the local diffeomorphism f and an orientation of Y is known as 'pullback orientation'. Note this does not work in the other direction, that is, an orientation on X does not induce one on Y. A simple example is the standard covering map from S^{2} to $\mathbb{R} P^{2}$, a non-orientable manifold (it contains a Möbius strip as an open set.). 'Orientations pull back, but do not push forward'.

