SOME SOLUTIONS-TOPOLOGY REVIEW, SUMMER 2023.

4 (Problem set 5). The equivalence relation defining X/A is x ~ 2/
if x =2’ or x,2’ € A. Let T = p(x) € X/A denote the equivalence class of
x € X, where p: X — X/A is the quotient map. X/A is given the quotient
topology: U C X/A is open iff V = p~!(U) is open in X. Since p~!(U) is
invariant under ~, we see that V is either disjoint from the closed set A, or
an open neighborhood of A. Thus the topology in X/A is generated by the
images under p of these two types of open sets in X.

(i) If A is contractible, there exists ag € A and a homotopy in A from
ida to the constant map from A to ag. By Borsuk’s homotopy extension
theorem (which applies since X C R" is a closed ENR), we find f; : X — X,
t € 1, extending that homotopy, with fo = idx. Thus f;(A) C Aforallt € T
and f; maps A to ag.

(ii) The homotopy (f¢) in (i) induces h; : X/A — X/A via h(z) =
p(fi(x)). To see this is well-defined, it suffices to note that:

r~x x> a,2d € A= fi(x), fi(2)) € A= fi(x) ~ fi(2)),Vt € I

Since hyop = po f; (continuous), hy is continuous as well. For t = 1 we have
more :
r~d x££ = x0 € A= fi(x) = fi(2) = ao.
Thus the map ¢ : X/A — X, q(z) = fi(x), is well-defined and continuous.
By definition, ¢ o p = f;, which via f; is homotopic in X to idx.

We claim that also po g >~ idx 4. Letting k = pogq: X/A — X/A, note:

k(z) = (poq)(®) = (po fi)(x),

while (po fo)(x) = p(x) = Z. So letting h(Z) = (po f;)(z) we have (as noted
above) a well-defined homotopy h; : X/A — X/A,t € I, from hg = idx/4 to
k=hy=pogq.

Thus X and X/A are homotopy equivalent spaces.

9. (Problem set 5). (i) Define a family (h:)ier of homeomorphisms of
h equal to the identity on 0B, setting:

for 0<t<1:h(a)=a,1-t<|z]|<1; he(e)= (1—t)h(li_t),o <||z|| < 1—¢.

Since h is the identity on 0B, it follows the two expressions coincide when
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For ¢t =1, we set hi(z) = x,x € B. Clearly all the h; are homeomorphisms
of the closed ball.

We have to check continuity at ¢ = 1, but since a possible issue only
occurs when ||z|| < 1 —¢, it is enough to check continuity at = 0,¢t = 1,
where h1(0) = 0. But if ||z|| < 1 — ¢, we have:

x
1he(2)l] = (A = OlIh(7—I = A =)M,
where M = maz{||h(z)|;x € B} <1, so ||h«(x)|| is small when ¢ is near 1.
(If [|z|| > 1 — t with ||z|| small, recall h(z) = x.)

Part (ii) of the problem follows easily from part (i), by composition.
(Check this explicitly.)

1(iii) (Problem set 6). Let p : C — C* be the exponential cover,
p(z) = €* (with deckgroup Z, generated by z +— z + 2mi.) Note p maps the
open left halfplane H = {z; Re(z) < 0} onto the punctured open unit disk
D* c C*.

To see this covering map p is not a closed map, consider the curve I' C H
parametrized over R by:

t— —e'+iteC,teR.

Note I' is contained in H and properly embedded in C, and hence is a closed
subset of C. The image of I' under p is the curve in D* parametrized by:

.
tse @ et eR.

This (injectively immersed) curve p(I') spirals towards 0 € C as t — 400,
and towards S = 9D* \ {0} as t — —oo, and hence is not a closed subset
of C*. Thus p is not a closed map.

6 (problem set 6). We claim that X is homotopy equivalent to S?V S!,
hence by S-vK m1(X) is isomorphic to Z.

Consider a closed square region (), with boundary defined by the vertices
a, b, ¢, d (counterclockwise). Let e be the midpoint of the edge ad, and T' C @
the closed triangular region with vertices b, ¢, e. Attach Q to S? by mapping
the edge ad homeomorphically onto an arc of meridian on S? (so this arc
equals the intersection of @ and S?, in the attachment space Y). Note the
following:

(i) X is homeomorphic to the subspace X of Y consisting of S? and the
edges [ab], [bc], [ed] of Q, attached to S? at a and d;



(ii) S? v St is homeomorphic to the subspace X of Y consisting of S?
and the edges [eb], [bc], [ce] of T, attached to S? at e;

(iii) Fix a point qg in the interior of 7. Then X; is a deformation retract
of Y\ {qo} (via ‘radial map from ¢p’). Likewise, X5 is a deformation retract
of Y\ {qo}. Thus X; and X5 are homotopy equivalent, and X and S? Vv S*
are also homotopy equivalent.

6(iii), Problem set 7. Let f : B — B be continuous. Proceeding by
contradiction, suppose f has no fixed points in B. Then ||f(z) —z|| > ¢ >0
for some ¢ > 0 and all x € B. Let € > 0 be arbitrary. By Stone-Weierstrass,
we may find g : B — R" smooth, so that ||g(z) — f(x)|| < e for all z € B. In

particular, ||g(x)|| < 1+ € in B, so defining g(x) = %(er)v we have g: B — B
smooth, as well as:
N 1
1/ (@) = 9@l < e+ llg@NA - ) < 2e.
€

So ||g(z) — z|| > ||f(x) — z|| — 2¢ > ¢ — 2¢ Vx € B, contradicting the
existence of fixed points in the smooth case, if € < ¢/2.
6(iv) Note X is homeomorphic to the (n — 1)-closed ball, and that A

preserves the ‘closed positive cone’ K of R", K = {v € R";v; > 0Vi}. For
v € K, let o(v) > 0 be the sum of the coordinates. Then:

Ax

defines a continuous map from ¥ to itself (note o(Azx) # 0 for € ¥, since
A has positive entries). Letting g € ¥ be a fixed point of f, we have:

Az = o(Azo)zo, 0 # 0,
so z is an eigenvector of A, with positive eigenvalue o(Axy).

12, Problem set 7. (i) Let p : R — S, p(t) = €', be the standard
exponential covering. Since R is contractible, by the fundamental lifting
criterion the map fop : R — S! lifts over p, so there exists g : R — R
continuous, satisfying po g = f o p. We have:

62‘g(1§+27r) — f(ei(t+27r)) — f(eit) — eig(t) Vt,

so there exists g € Z so that g(t + 27) = g(t) + 2mq, for all t € R.
(ii) Fix the ¢ € Z obtained for f in part (i) and consider the basic

example, the map of S! given by fo(z) = 29, or fo(e) = €. Clearly



go(t) = gt in this case. Composing f with a rotation (which doesn’t change
its mod 2 degree) we may assume f(1) = 1 and g(0) = 0,¢(27) = 27q =
go(27).

We see that g is homotopic to gy on [0,27] with fixed endpoints, via
gs(t) = sg(t) + (1 — s)go(t),s € [0,1], and also on R, extending g via
gs(t + 2m) = gs(t) + 2mq. This periodicity shows gs : R — R induces a
homotopy fs : S — S from fy to f (via f(e) = €9+(")). By homotopy
invariance of the degree, dega(f) = dega(fo), and the latter is seen to equal
g mod 2, by counting preimages of an arbitrary point on S!.

17, Problem set 7. In general, let X be any smooth manifold, f : X —
REH1\ {0} a smooth map, f : X — S* the normalization of f. For a € S*,
denote by r, C RFt1\ {0} and [, the open ray and the one-dimensional
subspace of R*¥*1 defined by a. By definition, a € S* is a regular value for
fiff:

dfy : T, X — T,8% = I is onto, V2 € f~(a); (1)

while f i r, iff:
dfy : ToX — R satisfies df, [T, X] 4 lo = R*L, if f(z) €re. (2)

It is clear that f(x) € rq iff f(#) = a. To show equivalence of the two

~

statements, recall the ‘Calculus fact’: for z € X, v € T, X and a = f(x):

1 1
~IF @) ~If @)l

where proj;1 denotes the orthogonal projection from RF! onto the orthog-

dfa:[v] (dfz[v]—(dfs[v], a)a) projiL (dfz[v]) € T,5", (3)

onal complement of [, (with respect to the standard inner product in Rk“).

Assuming (1), we prove (2). Let w € RFF! write w = wy + wo, with
wy € lg,wy € I, From (1), wy = df,[v], for some v € T, X. And then (3)
shows df[v1] = dfy[v] +ws, with wz € [, and v; = ||f(z)||"'v € T, X. Thus
w = dfsfon] + (wy — ws), proving (2).

Conversely, assuming (2), we prove (1). Let w € I} = T,S*. From
(2), w = dfy[v] for some v € T,S* (where f(z) = a; clearly w has no
component in l,.) But then (3), combined with the fact df;[v] € 1=, imply
AL (@)lle] = dfalo] = w, proving (1),

21, problem set 8. This is a direct consequence of the fact that any
manifold X admits an oriented double cover p : X — X, unique up to
automorphisms (Proposition 8.7 in [Lima, p. 196]); and that this cover X



is disconnected if and only if X is orientable (Proposition 8.5). (You should
review those results, Ch. 8 of [Limal.)

When X is simply connected, any covering space of X (with more than
one sheet) is disconnected, and the covering map is trivial; thus in this case
X is orientable.

22, problem set 8. If o : U — Uy C R" is a chart for M, the
corresponding chart for T'M)y; is:

¢:TMjy = Up x R",  &(x,v) = (p(x), dp(x)[v]).

Let ¢ : V — V) C R™ be another chart, with overlapping domain (U NV #
().) The change of coordinates map is the diffeomorphism:

F=top t:U =V, U CUyViCV,

and the associated change of coordinates for T'M is:

F:U xR" = Vi xR", F(z,v) = (F(z),dF,[v)).
Its differential at a point (x,v) is given by:
dF(, ) : R" x R" — R" x R",

dF () [(w1,w2)] = (dFy[wn], d* Fy[wy, o] + dFy[w]),

where d2F, denotes the second differential of F' at x. (Note that for fixed z,
F(x,-) = (F(z),dF,[]), where dF, € L(R"), so the partial differential of F
with respect to its second argument at (z,v) is simply dgﬁ(%v) = (0,dFy),
independent of v.)

This implies (for example, via matrix expressions for dﬁ'(m,) € L(R™ x
R™) in ‘block form’):

det dFy, ) = det(dFy)? = (det dFy)? > 0,

so the atlas for T'M associated to any atlas of M is automatically orientation-
preserving.

24, problem set 8. It is enough to show that, given any p € X, we
may find in some neighborhood U of p a set of n = dim(X) = dim(Y)
linearly independent vector fields vy, ..., v, (in this order), so that if two
of these neighborhoods Uy, Us; (of p1,p2 € M) intersect, at any point p €
Ui N Uy the transition map from the basis {vi(p),...,vn(p)} to the basis



{wi(p),...wn(p)} of T,M (where the w; are defined in Us) has positive
determinant over Uy N Us.

Givenp € M, let {ey,...,e,} be a positive set of lin. indep smooth vector
fields (with respect to the orientation of V), defined in some neighborhood
W CY of f(p); let U C X be a neighborhood of p so that f(U) C W and
set vi(p) = df, '[ei(f(p))]. Clearly this defines a family of smooth lin.indep.
vector fields on U.

To verify the consistency condition, if p € Uy N Us, let ¢ = f(p) € Y.
We have positive frames {e1,...,e,} and {f1,..., fn} in Wi D f(U1), W2 D
f(Us) (resp.), ¢ € W1 N Wa, and the transition map A(q) from the ¢;(q) to
the fi(q)) has positive determinant:

i(q) = Zaij(Q)ej(Q)> det(a;j)(q) > 0.

Since the transition map from the v;(p) = (df,) *[ei(q)]) (in Uy) to the

(i
wi(p) = (df,)71[fi(¢)] (in Uz) is also given (at p € UyNU2) by A(q),q = f(p),
it has positive determinant as well:

wy ( ) (dfp fl Z aw dfp Z CLZ] 7)]

Remark: The orientation induced on X by the local diffeomorphism f
and an orientation of Y is known as ‘pullback orientation’. Note this does
not work in the other direction, that is, an orientation on X does not induce
one on Y. A simple example is the standard covering map from S? to
RP?, a non-orientable manifold (it contains a Mobius strip as an open set.).
‘Orientations pull back, but do not push forward’.



