
SOME SOLUTIONS–TOPOLOGY REVIEW, SUMMER 2023.

4 (Problem set 5). The equivalence relation defining X/A is x ∼ x′

if x = x′ or x, x′ ∈ A. Let x̄ = p(x) ∈ X/A denote the equivalence class of
x ∈ X, where p : X → X/A is the quotient map. X/A is given the quotient
topology: U ⊂ X/A is open iff V = p−1(U) is open in X. Since p−1(U) is
invariant under ∼, we see that V is either disjoint from the closed set A, or
an open neighborhood of A. Thus the topology in X/A is generated by the
images under p of these two types of open sets in X.

(i) If A is contractible, there exists a0 ∈ A and a homotopy in A from
idA to the constant map from A to a0. By Borsuk’s homotopy extension
theorem (which applies since X ⊂ Rn is a closed ENR), we find ft : X → X,
t ∈ I, extending that homotopy, with f0 = idX . Thus ft(A) ⊂ A for all t ∈ I
and f1 maps A to a0.

(ii) The homotopy (ft) in (i) induces ht : X/A → X/A via ht(x̄) =
p(ft(x)). To see this is well-defined, it suffices to note that:

x ∼ x′, x 6= x′ ⇒ x, x′ ∈ A⇒ ft(x), ft(x
′) ∈ A⇒ ft(x) ∼ ft(x′),∀t ∈ I.

Since ht ◦p = p◦ft (continuous), ht is continuous as well. For t = 1 we have
more :

x ∼ x′, x 6= x′ ⇒ x, x′ ∈ A⇒ f1(x) = f1(x
′) = a0.

Thus the map q : X/A→ X, q(x̄) = f1(x), is well-defined and continuous.
By definition, q ◦ p = f1, which via ft is homotopic in X to idX .

We claim that also p ◦ q ' idX/A. Letting k = p ◦ q : X/A→ X/A, note:

k(x̄) = (p ◦ q)(x̄) = (p ◦ f1)(x),

while (p◦f0)(x) = p(x) = x̄. So letting ht(x̄) = (p◦ft)(x) we have (as noted
above) a well-defined homotopy ht : X/A→ X/A, t ∈ I, from h0 = idX/A to
k = h1 = p ◦ q.

Thus X and X/A are homotopy equivalent spaces.

9. (Problem set 5). (i) Define a family (ht)t∈I of homeomorphisms of
h equal to the identity on ∂B, setting:

for 0 ≤ t < 1 : ht(x) = x, 1−t ≤ ||x|| ≤ 1; ht(x) = (1−t)h(
x

1− t
), 0 ≤ ||x|| ≤ 1−t.

Since h is the identity on ∂B, it follows the two expressions coincide when
||x|| = 1− t:

(1− t)h(
x

1− t
) = ||x||h(

x

||x||
) = ||x|| x

||x||
= x.
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For t = 1, we set h1(x) = x, x ∈ B. Clearly all the ht are homeomorphisms
of the closed ball.

We have to check continuity at t = 1, but since a possible issue only
occurs when ||x|| < 1 − t, it is enough to check continuity at x = 0, t = 1,
where h1(0) = 0. But if ||x|| < 1− t, we have:

||ht(x)|| = (1− t)||h(
x

1− t
)|| ≤ (1− t)M,

where M = max{||h(x)||;x ∈ B} ≤ 1, so ||ht(x)|| is small when t is near 1.
(If ||x|| ≥ 1− t with ||x|| small, recall ht(x) = x.)

Part (ii) of the problem follows easily from part (i), by composition.
(Check this explicitly.)

1(iii) (Problem set 6). Let p : C → C∗ be the exponential cover,
p(z) = ez (with deckgroup Z, generated by z 7→ z + 2πi.) Note p maps the
open left halfplane H = {z;Re(z) < 0} onto the punctured open unit disk
D∗ ⊂ C∗.

To see this covering map p is not a closed map, consider the curve Γ ⊂ H
parametrized over R by:

t 7→ −et + it ∈ C, t ∈ R.

Note Γ is contained in H and properly embedded in C, and hence is a closed
subset of C. The image of Γ under p is the curve in D∗ parametrized by:

t 7→ e−e
t · eit, t ∈ R.

This (injectively immersed) curve p(Γ) spirals towards 0 ∈ C as t → +∞,
and towards S1 = ∂D∗ \ {0} as t → −∞, and hence is not a closed subset
of C∗. Thus p is not a closed map.

6 (problem set 6). We claim that X is homotopy equivalent to S2∨S1,
hence by S-vK π1(X) is isomorphic to Z.

Consider a closed square region Q, with boundary defined by the vertices
a, b, c, d (counterclockwise). Let e be the midpoint of the edge ad, and T ⊂ Q
the closed triangular region with vertices b, c, e. Attach Q to S2 by mapping
the edge ad homeomorphically onto an arc of meridian on S2 (so this arc
equals the intersection of Q and S2, in the attachment space Y ). Note the
following:

(i) X is homeomorphic to the subspace X1 of Y consisting of S2 and the
edges [ab], [bc], [cd] of Q, attached to S2 at a and d;
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(ii) S2 ∨ S1 is homeomorphic to the subspace X2 of Y consisting of S2

and the edges [eb], [bc], [ce] of T , attached to S2 at e;

(iii) Fix a point q0 in the interior of T . Then X1 is a deformation retract
of Y \ {q0} (via ‘radial map from q0’). Likewise, X2 is a deformation retract
of Y \ {q0}. Thus X1 and X2 are homotopy equivalent, and X and S2 ∨ S1

are also homotopy equivalent.

6(iii), Problem set 7. Let f : B → B be continuous. Proceeding by
contradiction, suppose f has no fixed points in B. Then ||f(x)−x|| ≥ c > 0
for some c > 0 and all x ∈ B. Let ε > 0 be arbitrary. By Stone-Weierstrass,
we may find g : B → Rn smooth, so that ||g(x)−f(x)|| < ε for all x ∈ B. In

particular, ||g(x)|| < 1 + ε in B, so defining ĝ(x) = g(x)
1+ε , we have ĝ : B → B

smooth, as well as:

||f(x)− ĝ(x)|| < ε+ ||g(x)||(1− 1

1 + ε
) ≤ 2ε.

So ||ĝ(x) − x|| ≥ ||f(x) − x|| − 2ε ≥ c − 2ε ∀x ∈ B, contradicting the
existence of fixed points in the smooth case, if ε < c/2.

6(iv) Note Σ is homeomorphic to the (n − 1)-closed ball, and that A
preserves the ‘closed positive cone’ K of Rn, K = {v ∈ Rn; vi ≥ 0∀i}. For
v ∈ K, let σ(v) ≥ 0 be the sum of the coordinates. Then:

f(x) =
Ax

σ(Ax)

defines a continuous map from Σ to itself (note σ(Ax) 6= 0 for x ∈ Σ, since
A has positive entries). Letting x0 ∈ Σ be a fixed point of f , we have:

Ax0 = σ(Ax0)x0, x0 6= 0,

so x0 is an eigenvector of A, with positive eigenvalue σ(Ax0).

12, Problem set 7. (i) Let p : R → S1, p(t) = eit, be the standard
exponential covering. Since R is contractible, by the fundamental lifting
criterion the map f ◦ p : R → S1 lifts over p, so there exists g : R → R
continuous, satisfying p ◦ g = f ◦ p. We have:

eig(t+2π) = f(ei(t+2π)) = f(eit) = eig(t) ∀t,

so there exists q ∈ Z so that g(t+ 2π) = g(t) + 2πq, for all t ∈ R.
(ii) Fix the q ∈ Z obtained for f in part (i) and consider the basic

example, the map of S1 given by f0(z) = zq, or f0(e
it) = eiqt. Clearly
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g0(t) = qt in this case. Composing f with a rotation (which doesn’t change
its mod 2 degree) we may assume f(1) = 1 and g(0) = 0, g(2π) = 2πq =
g0(2π).

We see that g is homotopic to g0 on [0, 2π] with fixed endpoints, via
gs(t) = sg(t) + (1 − s)g0(t), s ∈ [0, 1], and also on R, extending gs via
gs(t + 2π) = gs(t) + 2πq. This periodicity shows gs : R → R induces a
homotopy fs : S1 → S1 from f0 to f (via fs(e

it) = eigs(t)). By homotopy
invariance of the degree, deg2(f) = deg2(f0), and the latter is seen to equal
q mod 2, by counting preimages of an arbitrary point on S1.

17, Problem set 7. In general, let X be any smooth manifold, f : X →
Rk+1 \ {0} a smooth map, f̂ : X → Sk the normalization of f . For a ∈ Sk,
denote by ra ⊂ Rk+1 \ {0} and la the open ray and the one-dimensional
subspace of Rk+1 defined by a. By definition, a ∈ Sk is a regular value for
f̂ iff:

df̂x : TxX → TaS
k = l⊥a is onto, ∀x ∈ f̂−1(a); (1)

while f t ra iff:

dfx : TxX → Rk+1 satisfies dfx[TxX] + la = Rk+1, if f(x) ∈ ra. (2)

It is clear that f(x) ∈ ra iff f̂(x) = a. To show equivalence of the two
statements, recall the ‘Calculus fact’: for x ∈ X, v ∈ TxX and a = f̂(x):

df̂x[v] =
1

||f(x)||
(dfx[v]−〈dfx[v], a〉a) =

1

||f(x)||
projl⊥a (dfx[v]) ∈ TaSk, (3)

where projl⊥a denotes the orthogonal projection from Rk+1 onto the orthog-

onal complement of la (with respect to the standard inner product in Rk+1).

Assuming (1), we prove (2). Let w ∈ Rk+1, write w = w1 + w2, with
w1 ∈ la, w2 ∈ l⊥a . From (1), w2 = df̂x[v], for some v ∈ TxX. And then (3)
shows dfx[v1] = df̂x[v] +w3, with w3 ∈ la and v1 = ||f(x)||−1v ∈ TxX. Thus
w = dfx[v1] + (w1 − w3), proving (2).

Conversely, assuming (2), we prove (1). Let w ∈ l⊥a = TaS
k. From

(2), w = dfx[v] for some v ∈ TxS
k (where f̂(x) = a; clearly w has no

component in la.) But then (3), combined with the fact dfx[v] ∈ l⊥a , imply
df̂x[||f(x)||v] = dfx[v] = w, proving (1).

21, problem set 8. This is a direct consequence of the fact that any
manifold X admits an oriented double cover p : X̃ → X, unique up to
automorphisms (Proposition 8.7 in [Lima, p. 196]); and that this cover X̃
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is disconnected if and only if X is orientable (Proposition 8.5). (You should
review those results, Ch. 8 of [Lima].)

When X is simply connected, any covering space of X (with more than
one sheet) is disconnected, and the covering map is trivial; thus in this case
X is orientable.

22, problem set 8. If ϕ : U → U0 ⊂ Rn is a chart for M , the
corresponding chart for TM|U is:

ϕ̃ : TM|U → U0 ×Rn, ϕ̃(x, v) = (ϕ(x), dϕ(x)[v]).

Let ψ : V → V0 ⊂ Rn be another chart, with overlapping domain (U ∩ V 6=
∅.) The change of coordinates map is the diffeomorphism:

F = ψ ◦ ϕ−1 : U1 → V1, U1 ⊂ U0, V1 ⊂ V0,

and the associated change of coordinates for TM is:

F̃ : U1 ×Rn → V1 ×Rn, F̃ (x, v) = (F (x), dFx[v]).

Its differential at a point (x, v) is given by:

dF̃(x,v) : Rn ×Rn → Rn ×Rn,

dF̃(x,v)[(w1, w2)] = (dFx[w1], d
2Fx[w1, v] + dFx[w2]),

where d2Fx denotes the second differential of F at x. (Note that for fixed x,
F̃ (x, ·) = (F (x), dFx[·]), where dFx ∈ L(Rn), so the partial differential of F̃
with respect to its second argument at (x, v) is simply d2F̃(x,v) = (0, dFx),
independent of v.)

This implies (for example, via matrix expressions for dF̃(x,v) ∈ L(Rn ×
Rn) in ‘block form’):

det dF̃(x,v) = det(dFx)2 = (det dFx)2 > 0,

so the atlas for TM associated to any atlas ofM is automatically orientation-
preserving.

24, problem set 8. It is enough to show that, given any p ∈ X, we
may find in some neighborhood U of p a set of n = dim(X) = dim(Y )
linearly independent vector fields v1, . . . , vn (in this order), so that if two
of these neighborhoods U1, U2 (of p1, p2 ∈ M) intersect, at any point p ∈
U1 ∩ U2 the transition map from the basis {v1(p), . . . , vn(p)} to the basis
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{w1(p), . . . wn(p)} of TpM (where the wi are defined in U2) has positive
determinant over U1 ∩ U2.

Given p ∈M , let {e1, . . . , en} be a positive set of lin. indep smooth vector
fields (with respect to the orientation of Y ), defined in some neighborhood
W ⊂ Y of f(p); let U ⊂ X be a neighborhood of p so that f(U) ⊂ W and
set vi(p) = df−1p [ei(f(p))]. Clearly this defines a family of smooth lin.indep.
vector fields on U .

To verify the consistency condition, if p ∈ U1 ∩ U2, let q = f(p) ∈ Y .
We have positive frames {e1, . . . , en} and {f1, . . . , fn} in W1 ⊃ f(U1), W2 ⊃
f(U2) (resp.), q ∈ W1 ∩W2, and the transition map A(q) from the ei(q) to
the fi(q)) has positive determinant:

fi(q) =
∑
j

aij(q)ej(q), det(aij)(q) > 0.

Since the transition map from the vi(p) = (dfp)
−1[ei(q)]) (in U1) to the

wi(p) = (dfp)
−1[fi(q)] (in U2) is also given (at p ∈ U1∩U2) by A(q), q = f(p),

it has positive determinant as well:

wi(p) = (dfp)
−1[fi(q)] =

∑
j

aij(q)(dfp)
−1[ej(q)] =

∑
j

aij(q)vj(p).

Remark: The orientation induced on X by the local diffeomorphism f
and an orientation of Y is known as ‘pullback orientation’. Note this does
not work in the other direction, that is, an orientation on X does not induce
one on Y . A simple example is the standard covering map from S2 to
RP 2, a non-orientable manifold (it contains a Möbius strip as an open set.).
‘Orientations pull back, but do not push forward’.
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