TOPOLOGY REVIEW, JUNE 2023: PROBLEM SET 5

1. $f, g: S^{n} \rightarrow S^{n}$ continuous.
(i) $f(x) \neq-g(x) \forall x \in S^{n} \Rightarrow f \simeq g$.
(ii) If S^{n} admits a nonvanishing tangent vector field, then the antipodal map is homotopic to the identity.
2. (i) Define what it means for a closed subset $Y \subset R^{n}$ to be a 'euclidean neighborhood retract' (ENR).
(ii) Explain why smooth submanifolds of R^{n} are ENRs.
(iii) Let $Y \subset R^{n}$ (closed) be an ENR, X a metric space, $A \subset X$ closed. Show that any $f: A \rightarrow Y$ continuous extends to a continuous map to Y, defined in an open neighborhood of A in X.
3. (i) $Y \subset R^{n}$ compact ENR, X metric. Prove there exists $\epsilon>0$ so that for any $f, g: X \rightarrow Y$ continuous, if $|f(x)-g(x)|<\epsilon$ for all $x \in X$, then $f \simeq g$.
(ii) M, N compact smooth manifolds, $f: M \rightarrow N$ continuous. Then f is homotopic to a smooth map from M to N.
4. $X \subset R^{n}$ closed ENR, $A \subset X$ closed, X / A the quotient space obtained by 'crushing A to a point'.
(i) Suppose A is contractible; prove there exists $f: X \rightarrow X$ continuous, $f \simeq i d_{X}$, so that $f(A)$ is a point. (Hint: Borsuk's homotopy extension theorem.)
(ii) Under the same hypothesis as (i), prove that X and X / A have the same homotopy type.
5. Give an example of a space X and a subspace $A \subset X$ that is a retract, but not a deformation retract of X.
6. Let X be the complement of a point in the two-dimensional torus T^{2}. Find a subspace $A \subset X$ homeomorphic to the figure-eight space, so that A is a deformation retract of X (and explain why that is the case.)
7. Let $F: B^{2} \rightarrow B^{2}$ be continuous (two-dimensional closed unit ball), so that $F\left(S^{1}\right) \subset S^{1}$. Denote by $f: S^{1} \rightarrow S^{1}$ the restriction of F. Prove that either F is onto, or $f \simeq$ const. (possibly both.)
8. Prove that the Möbius strip has the homotopy type of the cylinder $S^{1} \times I$, but is not homeomorphic to it.
9. Let $h: B \rightarrow B$ (closed unit ball in R^{n+1}) be a homeomorphism, and restrict to $i d_{S^{n}}$ on $\partial B=S^{n}$. (i) Prove that h is isotopic to $i d_{B}$ (that is, homotopic, and the intermediate maps f_{t} are homeomorphisms.)
(ii) Prove that if $f, g: B \rightarrow B$ (homeomorphisms) map $\partial B=S^{n}$ to itself and their restrictions to S^{n} are isotopic on S^{n}, then f is isotopic to g in B.
