## MATH 231, FALL 2022-PRACTICE FINAL

1. Solve the initial value problem, including the interval where the solution is defined.

$$
x y^{\prime}-y=x^{2} e^{x}, \quad y=y(x), \quad y(1)=e-1 .
$$

2.Solve the initial value problem:

$$
\left(1+e^{x} y+x e^{x} y\right) d x+\left(x e^{x}+2\right) d y=0, \quad y=y(x), \quad y(0)=1 .
$$

3. Consider the autonomous first-order equation:

$$
y^{\prime}=-3 y(y-1)(y-2), \quad y=y(t) .
$$

(i) Find and classify the equilibria (as stable or unstable), and sketch the phase-line diagram.
(ii) Sketch the $y$ vs. $t$ graph of solutions (include two solution curves in each range defined by the equilibria.) Indicate the vertical asymptotes ("finite-time blowup") where they occur.
4. Transform the Bernouili-type equation given below to a linear equation (you don't need to solve the transformed equation).

$$
y^{\prime}-5 y=-5 x y^{3}, y=y(x) .
$$

5. Find the general solution of the Cauchy-Euler equation:

$$
(t-2)^{2} y^{\prime \prime}(t)-7(y-2) y^{\prime}(t)+7 y(t)=0, \quad t>2 .
$$

6. Solve the initial-value problem. (You may use Laplace transforms):

$$
y^{\prime \prime}+6 y^{\prime}+9 y=t, \quad y=y(t), \quad y(0)=0, y^{\prime}(0)=1 .
$$

7. Find a formula for the solution of the initial-value problem, for any given function $g(t)$ :

$$
y^{\prime \prime}+2 y^{\prime}+5 y=g(t), \quad y=y(t), \quad y(0)=2, y^{\prime}(0)=-2 .
$$

8. Find the first three non-zero terms in a power series expansion of the solution to the first-order initial-value problem:

$$
x^{\prime}+(\sin t) x=0, \quad x=x(t), \quad x(0)=1 .
$$

Given: $\sin t=t-\frac{t^{3}}{31}+\frac{t^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$
9. Find power series expansions about $x_{0}=0$ for two linearly independent solutions; include three nonzero terms for each solution:

$$
y^{\prime \prime}-x^{2} y^{\prime}-x y=0, \quad y=y(x) .
$$

