
NOTES ON BAIRE’S THEOREM

Example. A complete metric space (X, d) without isolated points is
uncountable.

Suppose by contradiction X = {x1, x2, . . .}. Let y1 6= x1 and 0 < r1 < 1
be such that x1 6∈ B̄r1(y1). Then choose y2 ∈ Br1(y1) and r2 > 0 so that
y2 6= x2 and B̄r2(y2) ⊂ Br1(y1), with 0 < r2 < 1/2. We can do this since X
has no isolated points.

Proceeding in this fashion we get a descending chain of closed balls:

B̄r1(x1) ⊃ B̄r2(y2) ⊃ . . . rn <
1

n
,

so (yn) is Cauchy, and by completeness yn → y. But y 6= xn for all n,
contradiction.

Baire’s Theorem. Let (Gn) be a countable family of open dense sets
in a complete metric space X. Then

⋂
n≥1Gn is dense in X (in particular

non-empty.)

Informally, a property defined by an open set (within a class X of math-
ematical objects) is thought of as ‘stable’; a property defined by a dense
subset of X can be thought of as ‘generic’ (any object in X may be approx-
imated by a sequence of objects with the property).

Example. There exists a function f ∈ C[0, 1] which is not monotone on
any interval. In fact the set of such functions is dense in C[0, 1] (endowed
with the sup norm.)

Idea. To see this, let (In)n≥1 be an enumeration of the set of subintervals
of [0, 1] with endpoints in Q. Let En be the set of f ∈ C[0, 1] which are not
monotone on In. The idea is to show that En is open and dense, and apply
Baire’s theorem.

En is open: if f ∈ En, we may find x < y < z in En so that f(x) < f(y)
and f(z) < f(y) (the other case, f dropping between x and z, is similar.)
Then if ||f − g|| < 1

2 min{f(y)− f(x), f(y)− f(z)}, it is easy to see that g
also fails to be monotone, in the same way as f .

En is dense: let f ∈ C[0, 1], and say f is monotone increasing on In.
Pick x ∈ In. Given ε > 0, we may find x− < x < x+ very close to x, so that
f(x+) and f(x−) are ε-close to f(x). Then we can change f slightly in the
interval (x−, x+) (and nowhere else), to find g continuous and ε-close to f
in sup norm, so that g is not monotone on this interval (say g(x−) > g(x)
and g(x+) > g(x)), hence not on In.
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Example. Uniform Boundedness Theorem. Let E,F be Banach spaces,
and consider a family of linear maps Tα ∈ L(E,F ), α ∈ Λ. If the family
is equibounded at each x ∈ E (||Tα(x)|| < M(x) for all α ∈ Λ), then it is
uniformly equicontinuous on E:

sup
α∈Λ
||Tα|| <∞.

Definition. A Hausdorff topological space X is a Baire space if countable
intersections of open dense subsets of X are dense.

Theorem. Locally compact Hausdorff topological spaces X are Baire
spaces.

Proof. Let G1, G2, . . . be open dense sets. Let U ⊂ X be open. Then
U ∩G1 6= ∅, and ∃B1 open, with compact closure, so that B̄1 ⊂ U ∩G1. In
the same way, we successively find open sets Bn with compact closure, so
that B̄n ⊂ Bn−1 ∩Gn.

The B̄n are closed in the compact B̄1 and nested, so
⋂
n≥1 B̄n 6= ∅,

and this intersection is contained in U ∩
⋂
n≥1Gn (since B̄n ⊂ Gn∀n, and

B̄1 ⊂ U ∩G1. Thus (
⋂
n≥1Gn) ∩ U 6= ∅, as we wished to show.

Definition. A subset of a topological space is a Gδ set if it is a countable
intersection of open sets.

Example. In a metric space (X, d), any closed set A is a Gδ, since

A =
⋂
n≥1

Gn, Gn = {x ∈ X; d(x,A) <
1

n
}.

Example. The set of rational numbers Q ⊂ R is not a Gδ set. If it were,
we’d have:

Q =
⋂
n≥1

Gn,

with each Gn open and also dense. (Any open subset of R intersects Q,
hence would intersect each Gn.) But then we can add to the countable
family (Gn) of open dense sets the countable family {rn}cn≥1 (complement
of the one-point sets {rn}, where the rn are an enumeration of Q.) Since
each of these sets is open and dense in R, taken together these families
would necessarily have nonempty intersection (by Baire’s theorem). But
clearly the intersection is empty.

What this argument shows is that no countable dense set without isolated
points can be a Gδ (in a complete metric space, or a locally compact space.)
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Example. Let X be a topological space, Y a complete metric space,
f : X → Y any map. Then the set of continuity Cf of f is a Gδ (which may
be empty!)

Indeed, f is continuous at p ∈ X iff ∀n ≥ 1 ∃U nbd of p so that
d(f(x), f(y)) < 1/n ∀x, y ∈ U . Set:

An = {p; ∃U nbd of p; d(f(x), f(y)) <
1

n
∀x, y ∈ U}.

Considering the family of open sets of X:

Λn = {U open ; d(f(x), f(y)) <
1

n
∀x, y ∈ U}

we have that An is the union of this family, an open subset of X:

An =
⋃
{U ;U ∈ Λn}

and clearly:

Cf =
⋂
n≥1

An,

and hence Cf is a Gδ.

Example. In particular, Q cannot be the set of continuity of a function
from R to R. But the irrationals I can be. For example, Thomae’s function:

f(x) =
1

q
, x =

p

q
∈ Q, with p ∈ Z, q ∈ N coprime; f(x) = 0, x ∈ I

is continuous exactly at points of I.

Example. Let fn : X → Y be continuous (X topological, Y metric.)
Suppose fn → f pointwise on X. Then each level set {x ∈ X; f(x) = L} of
f is a Gδ subset of X. (See the notes for Hw set 10.)
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