METRIC COMPLETION VIA DISTANCE FUNCTIONS

1. Metrics in spaces of maps.. Let (X, d), (Y, ρ) be metric spaces. The space F(X, Y) of all maps $f : X \to Y$ can be endowed with a metric D, with convergence in D corresponding to uniform convergence over X. Namely, we let:

$$D_1(f,g) = \sup_x \min\{\rho(f(x),g(x)),1\}.$$

The verification of the triangle inequality follows from the following fact:

Lemma 1. (i) Let a, b, c be positive real numbers satisfying the triangle inequality (in any order). Let $f : R_+ \to R_+$ be an increasing $(f(x) \le f(y)$ if x < y), subadditive function $(f(x + y) \le f(x) + f(y))$. Then f(a), f(b), f(c) also satisfy the triangle inequality (in any order.)

Proof. Note that we may assume $a \le b \le c$ when proving this, and then the non-trivial triangle inequality is $c \le a + b$; since f is increasing, we also have $f(a) \le f(b) \le f(c)$, and just have to show $f(c) \le f(a) + f(b)$. This follows from monotonicity and subadditivity:

$$f(c) \le f(a+b) \le f(a) + f(b).$$

It is easy to check that $f(t) = \min\{t, 1\}, t \ge 0$, satisfies these conditions. (Given two positive reals $x \le y$, consider the cases $1 \le x, x \le 1 \le y, y \le 1$.)

All the same, the *min* in the definition of D_1 can be an annoyance, and it is not needed in the space of bounded maps from X to Y:

$$B(X,Y) = \{f: X \to Y | (\exists y_0 \in Y, M > 0) (\forall x \in X) \rho(f(x), y_0) \le M\}.$$
$$D(f,g) = \sup_x \rho(f(x), g(x)).$$

(The sup is well-defined, since both f and g have bounded image). Convergence in the metric D is equivalent to uniform convergence over X.

We have the following important *fact*: (B(X, Y), D) is a complete metric space if and only if (Y, ρ) is complete.

2. Construction of an isometric embedding. In particular, denoting by B(X) the space of bounded functions from X to R, the completeness of R implies B(X) is complete (i.e. a Banach space).

We're going to embed the metric space (M, d) into (B(M), D), and the idea is to map a point x to its distance function $d_x \in C(M)$. That's continuous (i.e. in C(M)), but unfortunately not bounded. To get around this

problem we fix a point $x_0 \in M$ and define, for $x \in M$:

$$f_x = d_x - d_{x_0}$$

The metric in B(M) corresponding to uniform convergence is:

$$D(f,g) = \sup_{z \in M} |f(z) - g(z)|.$$

Problem 1. (i) Show that $f_x \in B(M)$, for each $x \in M$. (That is, for each fixed $x \in M$ we may find a constant C(x) > 0 so that $|f_x(y)| \leq C(x)$, for all $y \in M$.)

(ii) Show that, for all $x, y \in M$:

$$D(f_x, f_y) \le d(x, y).$$

(iii) Show that, for all $x, y \in M$:

$$D(f_x, f_y) \ge d(x, y).$$

(*Hint*: Definition of sup: set z = y).

We conclude the assignment $x \mapsto f_x$ defines an *isometric embedding* Φ from (M, d) to the complete metric space (B(M), D); indeed Φ maps M to the subspace CB(M) of continuous bounded functions on M (which, being closed in B(M) under uniform convergence, is also complete for the same metric D, i.e. a Banach space.)

The image $\Phi(M)$ will almost never be dense in CB(M), so the last step is to define:

$$\hat{M} = \overline{\Phi(M)}$$

(closure in CB(M), with respect to the metric D.) We now have a pair (Φ, \hat{M}) satisfying all the conditions for the completion: (\hat{M}, D) is complete (as a closed subset of a complete metric space), $\Phi : (M.d) \to (\hat{M}, D)$ is an isometric embedding, and $\Phi(M)$ is dense in \hat{M} .

3. Uniqueness of Metric Completion.

Definition. A metric completion of a metric space (M, d) is a pair (f, \hat{M}) , where (\hat{M}, D) is a complete metric space and $f : M \to \hat{M}$ is an isometric embedding (in particular, injective), with f(M) dense in \hat{M} .

Having shown metric completions exist, we proceed to uniqueness. They can't be strictly unique, since $(g \circ f, \tilde{M})$ will also be a metric completion

of (M, d), if $g : \hat{M} \to \tilde{M}$ is an isometry to a second complete metric space (\tilde{M}, \tilde{D}) . But this is the only indeterminacy.

Theorem. Let (f, \tilde{M}) and (f, M) be metric completions of a metric space (M, d), with metrics D, \tilde{D} (resp.) Then there exists an isometry (in fact a unique one) $g: \tilde{M} \to \tilde{M}$ so that:

$$\tilde{f} = g \circ f.$$

Proof. First define g on $f(M) \subset \hat{M}$ via:

$$g(y) = f(x)$$
, where $f(x) = y$

(there is a unique such x, since $y \in f(M)$ and f is injective.) Clearly $g \circ f = \tilde{f}$ holds on M. Note that g is isometric on f(M), since:

$$\tilde{D}(g(y), g(y')) = \tilde{D}(\tilde{f}(x), \tilde{f}(x')) = d(x, x') = D(y, y')$$
 with $f(x) = y, f(x') = y'$.

In particular, g is uniformly continuous on f(M), and thus (since \hat{M} is complete) extends continuously to the closure of f(M), which is all of \hat{M} . And it is easy to see that the extension (still denoted by g, now defined on \hat{M}) is an isometric embedding from \hat{M} to \tilde{M} (in particular injective.)

Problem 2. Show that g is surjective, that is: $g(\hat{M}) = \hat{M}$.

Hint. Let $z \in \tilde{M}$, and consider a sequence $x_n \in M$ so that $\tilde{f}(x_n) \to z$ (which exists since $\tilde{f}(M)$ is dense in \tilde{M}). Show that the limit $\lim f(x_n) = y$ exists, and that g(y) = z.

Problem 3. Let (M, d) be the real line with the metric:

$$d(s,t) = \frac{|s-t|}{\sqrt{1+s^2}\sqrt{1+t^2}}.$$

(i) Show that (M, d) is not complete;

(ii) Identify the completion of (M, d). Hint: Consider the map $h: M \to R^2$:

$$h(s) = (\frac{s}{1+s^2}, \frac{s^2}{1+s^2}).$$

Show that h is an isometric embedding from (M, d) to \mathbb{R}^2 (with the euclidean metric), with image the circle:

$$x^{2} + (y - \frac{1}{2})^{2} = \frac{1}{4},$$

except for the point (0, 1).

4. Completion of normed linear spaces. Let $(E, || \cdot ||)$ be a normed linear space. A *completion* of E is a pair (L, F), where (F, p) is a complete normed linear space (i.e. a *Banach space*) and $L : E \to F$ is a linear isometric embedding:

$$p(Lv) = ||v||, \text{ for all } v \in E$$

with dense image: L(E) is dense in F (with respect to the norm p.)

Existence of the completion can be shown just as for metric spaces: introduce in the set C(E) of Cauchy sequences on E the equivalence relation:

$$(x_n) \equiv (y_n)$$
 if $||x_n - y_n|| \to 0$.

Then define F as the set of equivalence classes. It is easy to introduce a vector space structure on F, via:

$$V + W = [(z_n)], \quad z_n = x_n + y_n, \quad V = [(x_n)], \quad W = [(y_n)].$$

 $\lambda V = [\lambda x_n], \quad \lambda \in R, \quad V = [(x_n)].$

(It is easily shown this is independent of the choices of Cauchy sequences representing V, W.) Then define a norm on F via:

$$p(V) = \lim ||x_n||$$
 if $V = [(x_n)].$

It is straightforward to show the limit exists, p(V) is well-defined (independent of the sequence chosen to represent V) and defines a norm on F, and that this norm is complete (Cauchy sequences converge.) The embedding L of E into F via equivalence classes of constant sequences is evidently a linear isometric embedding.

Problem 4. Show that L(E) is dense in F (with respect to the norm p.)

Uniqueness of the norm completion is the statement: if $T : E \to H$ is a linear isometric embedding into a second Banach space (H, q) with dense image, then there exists an isometry:

$$U: F \to H$$
, $q(UV) = p(V)$ for all $V \in F$, U a linear isomorphism,

satisfying: $U \circ L = T$. This is proved just as for metric spaces.