
METRIC COMPLETION VIA DISTANCE FUNCTIONS

1. Metrics in spaces of maps.. Let (X, d), (Y, ρ) be metric spaces.
The space F (X,Y ) of all maps f : X → Y can be endowed with a metric
D, with convergence in D corresponding to uniform convergence over X.
Namely, we let:

D1(f, g) = sup
x

min{ρ(f(x), g(x)), 1}.

The verification of the triangle inequality follows from the following fact:

Lemma 1. (i) Let a, b, c be positive real numbers satisfying the triangle
inequality (in any order). Let f : R+ → R+ be an increasing (f(x) ≤
f(y) if x < y), subadditive function (f(x + y) ≤ f(x) + f(y)). Then
f(a), f(b), f(c) also satisfy the triangle inequality (in any order.)

Proof. Note that we may assume a ≤ b ≤ c when proving this, and then
the non-trivial triangle inequality is c ≤ a+ b; since f is increasing, we also
have f(a) ≤ f(b) ≤ f(c), and just have to show f(c) ≤ f(a) + f(b). This
follows from monotonicity and subadditivity:

f(c) ≤ f(a+ b) ≤ f(a) + f(b).

It is easy to check that f(t) = min{t, 1}, t ≥ 0, satisfies these conditions.
(Given two positive reals x ≤ y, consider the cases 1 ≤ x, x ≤ 1 ≤ y, y ≤ 1.)

All the same, the min in the definition of D1 can be an annoyance, and
it is not needed in the space of bounded maps from X to Y :

B(X,Y ) = {f : X → Y |(∃y0 ∈ Y,M > 0)(∀x ∈ X)ρ(f(x), y0) ≤M}.

D(f, g) = sup
x
ρ(f(x), g(x)).

(The sup is well-defined, since both f and g have bounded image). Conver-
gence in the metric D is equivalent to uniform convergence over X.

We have the following important fact: (B(X,Y ), D) is a complete metric
space if and only if (Y, ρ) is complete.

2. Construction of an isometric embedding. In particular, denot-
ing by B(X) the space of bounded functions from X to R, the completeness
of R implies B(X) is complete (i.e. a Banach space).

We’re going to embed the metric space (M,d) into (B(M), D), and the
idea is to map a point x to its distance function dx ∈ C(M). That’s con-
tinuous (i.e. in C(M)), but unfortunately not bounded. To get around this
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problem we fix a point x0 ∈M and define, for x ∈M :

fx = dx − dx0 .

The metric in B(M) corresponding to uniform convergence is:

D(f, g) = sup
z∈M
|f(z)− g(z)|.

Problem 1. (i) Show that fx ∈ B(M), for each x ∈ M . (That is, for each
fixed x ∈ M we may find a constant C(x) > 0 so that |fx(y)| ≤ C(x), for
all y ∈M .)

(ii) Show that, for all x, y ∈M :

D(fx, fy) ≤ d(x, y).

(iii) Show that, for all x, y ∈M :

D(fx, fy) ≥ d(x, y).

(Hint: Definition of sup: set z = y).

We conclude the assignment x 7→ fx defines an isometric embedding Φ
from (M,d) to the complete metric space (B(M), D); indeed Φ maps M to
the subspace CB(M) of continuous bounded functions on M (which, being
closed in B(M) under uniform convergence, is also complete for the same
metric D, i.e. a Banach space.)

The image Φ(M) will almost never be dense in CB(M), so the last step
is to define:

M̂ = Φ(M)

(closure in CB(M), with respect to the metric D.) We now have a pair
(Φ, M̂) satisfying all the conditions for the completion: (M̂,D) is complete
(as a closed subset of a complete metric space), Φ : (M.d) → (M̂,D) is an
isometric embedding, and Φ(M) is dense in M̂ .

3. Uniqueness of Metric Completion.
Definition. A metric completion of a metric space (M,d) is a pair (f, M̂),

where (M̂,D) is a complete metric space and f : M → M̂ is an isometric
embedding (in particular, injective), with f(M) dense in M̂ .

Having shown metric completions exist, we proceed to uniqueness. They
can’t be strictly unique, since (g ◦ f, M̃) will also be a metric completion
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of (M,d), if g : M̂ → M̃ is an isometry to a second complete metric space
(M̃, D̃). But this is the only indeterminacy.

Theorem. Let (f, M̂) and (f̃ , M̃) be metric completions of a metric
space (M,d), with metrics D, D̃ (resp.) Then there exists an isometry (in
fact a unique one) g : M̂ → M̃ so that:

f̃ = g ◦ f.

Proof. First define g on f(M) ⊂ M̂ via:

g(y) = f̃(x), where f(x) = y

(there is a unique such x, since y ∈ f(M) and f is injective.) Clearly
g ◦ f = f̃ holds on M . Note that g is isometric on f(M), since:

D̃(g(y), g(y′)) = D̃(f̃(x), f̃(x′)) = d(x, x′) = D(y, y′) with f(x) = y, f(x′) = y′.

In particular, g is uniformly continuous on f(M), and thus (since M̂ is
complete) extends continuously to the closure of f(M), which is all of M̂ .
And it is easy to see that the extension (still denoted by g, now defined on
M̂) is an isometric embedding from M̂ to M̃ (in particular injective.)

Problem 2. Show that g is surjective, that is: g(M̂) = M̃ .
Hint. Let z ∈ M̃ , and consider a sequence xn ∈ M so that f̃(xn) → z

(which exists since f̃(M) is dense in M̃). Show that the limit lim f(xn) = y
exists, and that g(y) = z.

Problem 3. Let (M,d) be the real line with the metric:

d(s, t) =
|s− t|√

1 + s2
√

1 + t2
.

(i) Show that (M,d) is not complete;
(ii) Identify the completion of (M,d).

Hint: Consider the map h : M → R2:

h(s) = (
s

1 + s2
,

s2

1 + s2
).

Show that h is an isometric embedding from (M,d) to R2 (with the euclidean
metric), with image the circle:

x2 + (y − 1

2
)2 =

1

4
,
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except for the point (0, 1).

4. Completion of normed linear spaces. Let (E, || · ||) be a normed
linear space. A completion of E is a pair (L,F ), where (F, p) is a complete
normed linear space (i.e. a Banach space) and L : E → F is a linear
isometric embedding:

p(Lv) = ||v||, for all v ∈ E

with dense image: L(E) is dense in F (with respect to the norm p.)
Existence of the completion can be shown just as for metric spaces: in-

troduce in the set C(E) of Cauchy sequences on E the equivalence relation:

(xn) ≡ (yn) if ||xn − yn|| → 0.

Then define F as the set of equivalence classes. It is easy to introduce a
vector space structure on F , via:

V +W = [(zn)], zn = xn + yn, V = [(xn)], W = [(yn)].

λV = [λxn], λ ∈ R, V = [(xn)].

(It is easily shown this is independent of the choices of Cauchy sequences
representing V,W .) Then define a norm on F via:

p(V ) = lim ||xn|| if V = [(xn)].

It is straightforward to show the limit exists, p(V ) is well-defined (indepen-
dent of the sequence chosen to represent V ) and defines a norm on F , and
that this norm is complete (Cauchy sequences converge.) The embedding
L of E into F via equivalence classes of constant sequences is evidently a
linear isometric embedding.

Problem 4. Show that L(E) is dense in F (with respect to the norm
p.)

Uniqueness of the norm completion is the statement: if T : E → H is
a linear isometric embedding into a second Banach space (H, q) with dense
image, then there exists an isometry:

U : F → H, q(UV ) = p(V ) for all V ∈ F, U a linear isomorphism,

satisfying: U ◦ L = T . This is proved just as for metric spaces.
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