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Weierstrass Approximation Theorem

Theorem: Every continuous, non-differentiable, real-valued function on a closed interval [a,b] C R can be
approximated by a sequence of polynomials. i.e.:

VfeCO([a,b], R) (pn) € P([a,b],R) : Ve > 0INeN:Vn > N || f — pn|| < e.
Where P is the set of polynomials and || - ||is the supremum norm for functions. This is equivalent to the set of
polynomials being dense in C°([a, b], R).

Before beginning the proof, it is necessary to intoduce a definition and a few related formulas.

Definition: Let feC°([0, 1], R). The Bernstein Polynomials of f are the polynomials which construct the
sequence (p,) C P([a,b], R) such that

k=0

We then define the functions 7, : [a,b] — R :

& () = <Z> 2 (1 — z)" k. )

From this definition, we can obtain two useful formulas, namely

n

Zrk(x) =1, (3)

k=0

and

n
Taking the sum of 7, as an n'" degree binomial expression, we can set > r(x) = (x + y)", where

k=0
y = 1 — x. This naturally implies (3). If we temporarily fix y and instead differentiate the binomial
equation twice in terms of z, we obtain



and

nin—1)(z+y)" 2% = k(k — 1)ak=2yn—F, (6)
k=0

Setting y = 1 — x again, multiplying (5) by x, and multiplying (6) by 2 yields
g g plymg y plymg y Iy

S kre() = na, )
k=0
and
Zk — Drp(z) = n(n — 1)z2 (8)
k=0
From (7) and (8), we obtain
Zsz k(z) =n(n —1)z? —i—Zkrk ) =n(n— 1)z + na. 9)

Using (3), (7), and (9), we construct

n

Z —nzx) ):ZkZTk(x)—anZkrk(a:) QZrk =nz(l —x),
k=0 k=0

k=0

which is the expected result in (4).

Proof of Weierstrass Approximation Thoerem:

Firstly, instead of considering an arbitrary closed interval [a, b] C R, we need only consider the closed
interval [0, 1], since any closed interval is homeomorphic to [0, 1]. Our goal is to show that the sequence of
Bernstein polynomials converges uniformly to feC([0, 1], R). Using the definition of 7 and (3), we can
rewrite f and its n™ Bernstein polynomial as

D=3 f@na) A pa0) =3 1(%) o)
k=0



By doing this, the difference between the two functions can be written as

£ )

Since [0, 1] is compact in R and f is continuous, f is uniformly continuous on [0,1]. This means, given
some € > 0, we can find a § > 0 such that

Va,yel0, 1)< [ — o] < 8 [f(2) - ()| < 5. (1)

Using (11), we can group the indices from (10) into two groups, namely, for an arbitrary x¢[0, 1],

k
Klz{ke{O,...,n}:|ﬁ—x|<5}/\K2:{O,...,n}\K1.

With this grouping of indices, it becomes possible to arrange (10) so that

vaclo, 1] ) ~ ) = 3 17( %) = s@lneo) + 3 1£(%) = r@lreto)

keK, keKo

Applying (3) and (11), we obtain

i) = f@) < 5+ S 17(2) - s@into) (12)

k‘EKQ

All that is left is to show the second sum is also less than % We begin by noting that, by (4),

n

nz(l—z) = Z(k’ — nx)’ry(z) > Z (k —nx)?ry(x).

k=0 k?EKz

Since keK» implies |[£ — 2| > 6, we obtain

nz(l —z) > Z (k —nx)?ry(z) > Z (nd)?ry(z). (13)

kEKz keKz

With this, and the fact that max(z(1 — )) = 7, we can rewrite (13) as

43

Z re(z) < nz(l —z) < 1 . (14)

o (nd)? 4nd?

Since |f(£) — f(z)| < 2M, M = || f||, we can combine (12) and (14) to obtain

M
Pae) = f(@)| < 5 + 57 <

for sufficiently large n. This implies (p,,) — f uniformly on [0,1], completing the proof. (J



Stone-Weierstrass Theorem

Before introducing the theorem itself, it is necessary to include several definitions which are used in the
proof. Let X be an arbitrary topological space.

Definition: A C CO(X ;R) is a function algrebra iff it is closed under addition, scalar multiplication, and
function multiplication. i.e.:

Vf1, f2, 91, g2 AN o, @z, 1, B2€eR (o fi + Brg1)(ca fa + Bag2)eA.

Definition: A function algrebra A C CY(X;R) vanishes at a point peX iff VfeA f(p) = 0.

Definition: A function algrebra A C C°(X;R) separates points iff every pair of distinct points have
distinct values for some function in the algebra. i.e.:

Vp1,p2eX :p1 # p2 3feA: f(p1) # f(p2)-

Along with these definitions, two lemmas will be required for the proof.

Lemma I: (2-Point Interpolation) If a function algebra A C C°(X; R) vanishes nowhere and separates
points then there exists an fe A with specified values at any pair of distinct points. i.e.:

Ve, c2eR 3fe AN Ipr, preX :p1 #p2 A f(p1) = c1 A f(p2) = ca.

Proof of Lemma I:

Let ¢1, c2eR and py, poeX. Since A vanishes nowhere, there exist g1, gaeA such that g1 (p1) # 0 # g2(p2).
This means that there exists a ge.A such that g = g% + g3 and g(p1) # 0 # g(p2) by contruction.

Additionally, since A separates points, we can find an heA such that h(p;) # h(p2). We then construct the
matrix

- [91)  g(p)h(p)

Since g(p1), g(p2) # 0 and h(p1) # h(p2),
detH = g(p1)g(p2)h(p2) — g(p1)g(p2)h(p1) = g(p1)g(p2)(h(p2) — h(p1)) # 0.

This implies that the columns of H are linearly independent and there is a solution (f1, f2)eA x A such
that

f19+ fagh = feAN f(p1) = c1 A f(p2) = ¢,



completing the proof. [J
Lemma ILi: The closure of a function algebra A C C°(X;R) is a function algebra.

Proof of Lemma IL.i:

The conclusion is easily obtained via the definition of a function algebra.
Lemma ILii: If A C C°(X;R) is a function algebra and feA then | f|eA.

Proof of Lemma ILii:

Let feA and € > 0. Using the Weierstrass Approximation Theorem, we can find a polynomial
peP([=II£1I: [1£11]; R) such that

sup{[p(e) — [wll : ol < II£11} < 3 (15)

since | - | is continuous on the interval [—|| f[|, || f||]. Additionally, since [p(0) — 0| < §, the constant term is
less than 5. In order to elimiate the constant term of p, we define geP([—|| f|[, | f||]; R) such that

Vwe[=[[fII, I/ 1l] w = g(w) := p(w) — p(0). (16)

Using (15) and (16), we obtain

sup{lg(w) — [wl| : | < [[f[]} <e. (17)

We can write ¢(w) as an n'' degree polynomial so that

(W) = arw + - + apw",

for some neN. Let geC%(X; R) such that

g=aif+---+a,f" (18)

Since A is a function algebra by Lemma ILi and feA, g is also in A. Using (17) and (18), we obtain

VoeX [g(x) — [f(2)]] = la(f () = |f(2)]] <e.

This allows us to construct a sequence of functions in A converging uniformly to | f|, completing the
proof. [

Lemma II: (Inclusion of Pointwise Maximum and Minimum) If f, geA C CO(X;R) then
max(f, g), min(f, g)eA where



~

A min(f,g)= 139 1T —9l

[\D
[\

Proof of Lemma II:
The conclusion is easily obtained via Lemma ILii and the definition of a function algebra.
Theorem: If X is a compact, hausdorff topological space and A C C°(X,R) is a function algebra that

vanishes nowhere and separates points, then A is dense in C°(X,R).

Proof of Stone-Weierstrass Thoerem:

Let feCY(X;R) and £ > 0. The goal is to construct a function geA such that

VaeeX f(z) —e < g(x) < f(z)+e.

Let p, geX be distinct points. Using Lemma I, we can find hpqeA such that

hpq(p) =fp A hpq(Q) = f(q)- (19)

If we let ¢ vary, then we can find an open neighborhood U,; C X of each ¢ so that

zelUg = f(x) — e < hpg(x), (20)

since hy,q is a continuous function. The compactness of X implies that there is an open subcovering
composed of finitely many neighborhoods Uy, , . .., Uy, . If we define g,eC°(X;R) such that

VreX gp(x) = max(hpq, (), -, hpg, (%)), (21)

then gpeﬁ by Lemma II, and, by using (19), (20), and (21),

VzeX f(z) —e <gp(x) N gp(p) = f(p)- (22)

If we let p vary, then, by continuity, we can find an open neighborhood V}, C X of each p so that

zeV, = gp(x) < f(z) +e. (23)

Again, since X is compact, we can find a finite subcovering composed of neighborhoods V,,,, ..., V,, . By
defining geC®(X;R) so that



VzeX g(z) = min(gp, (2),. .., gp, (2)), (24)

so geA. We can apply (22) and (23) to show

VrzeX f(z) —e < g(z) < f(z) +e,
so we can construct a sequence of functions in A converging uniformly to f, completing the proof. [J

Remarks on Stone-Weierstrass Theorem:

1.) If X was not hausdorff, then any function algebra A C C°(X;R) would not be able to separate points,
so the property is implicitly required for the theorem.

2.) As an example of a noncompact space in which Stone-Weierstrass fails in general, set X = R with the
topology of uniform convergence and define the function algebra A C C°(R; R) so that A = CP(R; R). A
vanishes nowhere and separates points, but the distance between any function in .4 and an undbounded
function in C°(R; R) is infinite under the suprememum norm.

Corollary of Stone-Weierstrass Theorem: Any 2m-periodic continuous function on R can be
approximated by trigonometric polynomials of the form

n n
T(x) =co + Z apcoskx + Z bisinkx.
k=1 k=1

Proof of Corollary:

We begin by noticing that we can parameterize the unit circle S' C R? by the interal [0,27) C R so that
x + (cosz, sinz), in which case, all 2-periodic continuous functions are also continuous on S*, which is
compact. Using the Sone-Weierstrass theorem, it is sufficient to show that the set of trigonometric
polynomials 7 C C°(S!) is an algebra that separates points and vanishes nowhere. Using the formulas

coskx sinjr = %(sin(k: + j)z +sin(k — j)x)
coskx cosjx = %(cos(k + j)x + cos(k — j)x)
sinkz sinjr = %(cos(k’ —j)x — cos(k + j)x),
it is simple to show 7 is closed under function product, and closure under addition and scalar

multiplication are trivial. It is similarly trivial to show 7 vanishes nowhere. To show that 7 separates
points, we need only note that if sina = sinb then cosa # cosb, and vice versa, completing the proof. [J



