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Weierstrass Approximation�eorem

�eorem: Every continuous, non-di�erentiable, real-valued function on a closed interval [a, b] ⊆ R can be
approximated by a sequence of polynomials. i.e.:

∀fεC0([a, b],R) ∃(pn) ⊆ P([a, b],R) : ∀ε > 0 ∃NεN : ∀n ≥ N ‖f − pn‖ < ε.

Where P is the set of polynomials and ‖ · ‖is the supremum norm for functions. �is is equivalent to the set of
polynomials being dense in C0([a, b],R).

Before beginning the proof, it is necessary to intoduce a de�nition and a few related formulas.

De�nition: Let fεC0([0, 1],R). �e Bernstein Polynomials of f are the polynomials which construct the
sequence (pn) ⊆ P([a, b],R) such that

∀nεN pn=

n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k (1)

We then de�ne the functions rk : [a, b]→ R :

x 7→ rk(x) :=

(
n

k

)
xk(1− x)n−k. (2)

From this de�nition, we can obtain two useful formulas, namely

n∑
k=0

rk(x) = 1, (3)

and

n∑
k=0

(k − nx)2rk(x) = nx(1− x). (4)

Taking the sum of rk as an nth degree binomial expression, we can set
n∑
k=0

rk(x) = (x+ y)n, where

y = 1− x. �is naturally implies (3). If we temporarily �x y and instead di�erentiate the binomial
equation twice in terms of x, we obtain
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n(x+ y)n−1 =

n∑
k=0

(
n

k

)
kxk−1yn−k, (5)

and

n(n− 1)(x+ y)n−2 =

n∑
k=0

k(k − 1)xk−2yn−k. (6)

Se�ing y = 1− x again, multiplying (5) by x, and multiplying (6) by x2 yields

n∑
k=0

krk(x) = nx, (7)

and

n∑
k=0

k(k − 1)rk(x) = n(n− 1)x2. (8)

From (7) and (8), we obtain

n∑
k=0

k2rk(x) = n(n− 1)x2 +

n∑
k=0

krk(x) = n(n− 1)x2 + nx. (9)

Using (3), (7), and (9), we construct

n∑
k=0

(k − nx)2rk(x) =
n∑
k=0

k2rk(x)− 2nx

n∑
k=0

krk(x) + (nx)2
n∑
k=0

rk(x) = nx(1− x),

which is the expected result in (4).

Proof of Weierstrass Approximation�oerem:

Firstly, instead of considering an arbitrary closed interval [a, b] ⊆ R, we need only consider the closed
interval [0, 1], since any closed interval is homeomorphic to [0, 1]. Our goal is to show that the sequence of
Bernstein polynomials converges uniformly to fεC0([0, 1],R). Using the de�nition of rk and (3), we can
rewrite f and its nth Bernstein polynomial as

f(x) =

n∑
k=0

f(x)rk(x) ∧ pn(x) =

n∑
k=0

f

(
k

n

)
rk(x).
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By doing this, the di�erence between the two functions can be wri�en as

pn − f =

n∑
k=0

(
f

(
k

n

)
− f

)
rk. (10)

Since [0, 1] is compact in R and f is continuous, f is uniformly continuous on [0,1]. �is means, given
some ε > 0, we can �nd a δ > 0 such that

∀x, yε[0, 1] : |x− y| < δ |f(x)− f(y)| < ε

2
. (11)

Using (11), we can group the indices from (10) into two groups, namely, for an arbitrary xε[0, 1],

K1 = {kε{0, . . . , n} : |k
n
− x| < δ} ∧K2 = {0, . . . , n}\K1.

With this grouping of indices, it becomes possible to arrange (10) so that

∀xε[0, 1] |pn(x)− f(x)| ≤
∑
kεK1

|f
(
k

n

)
− f(x)|rk(x) +

∑
kεK2

|f
(
k

n

)
− f(x)|rk(x).

Applying (3) and (11), we obtain

|pn(x)− f(x)| <
ε

2
+
∑
kεK2

|f
(
k

n

)
− f(x)|rk(x). (12)

All that is le� is to show the second sum is also less than ε
2 . We begin by noting that, by (4),

nx(1− x) =
n∑
k=0

(k − nx)2rk(x) ≥
∑
kεK2

(k − nx)2rk(x).

Since kεK2 implies | kn − x| ≥ δ, we obtain

nx(1− x) ≥
∑
kεK2

(k − nx)2rk(x) ≥
∑
kεK2

(nδ)2rk(x). (13)

With this, and the fact that max(x(1− x)) = 1
4 , we can rewrite (13) as

∑
kεK2

rk(x) ≤
nx(1− x)
(nδ)2

≤ 1

4nδ2
. (14)

Since |f
(
k
n

)
− f(x)| ≤ 2M,M = ‖f‖, we can combine (12) and (14) to obtain

|pn(x)− f(x)| <
ε

2
+

M

2nδ2
≤ ε

for su�ciently large n. �is implies (pn)→ f uniformly on [0,1], completing the proof. �
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Stone-Weierstrass �eorem
Before introducing the theorem itself, it is necessary to include several de�nitions which are used in the
proof. Let X be an arbitrary topological space.

De�nition: A ⊆ C0(X;R) is a function algrebra i� it is closed under addition, scalar multiplication, and
function multiplication. i.e.:

∀f1, f2, g1, g2εA ∧ α1, α2, β1, β2εR (α1f1 + β1g1)(α2f2 + β2g2)εA.

De�nition: A function algrebra A ⊆ C0(X;R) vanishes at a point pεX i� ∀fεA f(p) = 0.

De�nition: A function algrebra A ⊆ C0(X;R) separates points i� every pair of distinct points have
distinct values for some function in the algebra. i.e.:

∀p1, p2εX : p1 6= p2 ∃fεA : f(p1) 6= f(p2).

Along with these de�nitions, two lemmas will be required for the proof.

Lemma I: (2-Point Interpolation) If a function algebra A ⊆ C0(X;R) vanishes nowhere and separates
points then there exists an fεA with speci�ed values at any pair of distinct points. i.e.:

∀c1, c2εR ∃fεA ∧ ∃p1, p2εX : p1 6= p2 ∧ f(p1) = c1 ∧ f(p2) = c2.

Proof of Lemma I:

Let c1, c2εR and p1, p2εX . Since A vanishes nowhere, there exist g1, g2εA such that g1(p1) 6= 0 6= g2(p2).
�is means that there exists a gεA such that g = g21 + g22 and g(p1) 6= 0 6= g(p2) by contruction.

Additionally, sinceA separates points, we can �nd an hεA such that h(p1) 6= h(p2). We then construct the
matrix

H =

[
g(p1) g(p1)h(p1)
g(p2) g(p2)h(p2)

]
.

Since g(p1), g(p2) 6= 0 and h(p1) 6= h(p2),

detH = g(p1)g(p2)h(p2)− g(p1)g(p2)h(p1) = g(p1)g(p2)(h(p2)− h(p1)) 6= 0.

�is implies that the columns of H are linearly independent and there is a solution (f1, f2)εA×A such
that

f1g + f2gh = fεA ∧ f(p1) = c1 ∧ f(p2) = c2,

4



completing the proof. �

Lemma II.i: �e closure of a function algebra A ⊆ C0(X;R) is a function algebra.

Proof of Lemma II.i:

�e conclusion is easily obtained via the de�nition of a function algebra.

Lemma II.ii: If A ⊆ C0(X;R) is a function algebra and fεA then |f |εA.

Proof of Lemma II.ii:

Let fεA and ε > 0. Using the Weierstrass Approximation �eorem, we can �nd a polynomial
pεP([−‖f‖, ‖f‖];R) such that

sup{|p(ω)− |ω|| : |ω| ≤ ‖f‖} < ε

2
(15)

since | · | is continuous on the interval [−‖f‖, ‖f‖]. Additionally, since |p(0)− 0| < ε
2 , the constant term is

less than ε
2 . In order to elimiate the constant term of p, we de�ne qεP([−‖f‖, ‖f‖];R) such that

∀ωε[−‖f‖, ‖f‖] ω 7→ q(ω) := p(ω)− p(0). (16)

Using (15) and (16), we obtain

sup{|q(ω)− |ω|| : |ω| ≤ ‖f‖} < ε. (17)

We can write q(ω) as an nth degree polynomial so that

q(ω) = a1ω + · · ·+ anω
n,

for some nεN. Let gεC0(X;R) such that

g = a1f + · · ·+ anf
n. (18)

Since A is a function algebra by Lemma II.i and fεA, g is also in A. Using (17) and (18), we obtain

∀xεX |g(x)− |f(x)|| = |q(f(x))− |f(x)|| < ε.

�is allows us to construct a sequence of functions in A converging uniformly to |f |, completing the
proof. �

Lemma II: (Inclusion of Pointwise Maximum and Minimum) If f, gεA ⊆ C0(X;R) then
max(f, g),min(f, g)εA where
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max(f, g) =
f + g

2
+
|f − g|

2
∧ min(f, g) =

f + g

2
− |f − g|

2
.

Proof of Lemma II:

�e conclusion is easily obtained via Lemma II.ii and the de�nition of a function algebra.

�eorem: If X is a compact, hausdor� topological space and A ⊆ C0(X,R) is a function algebra that
vanishes nowhere and separates points, then A is dense in C0(X,R).

Proof of Stone-Weierstrass �oerem:

Let fεC0(X;R) and ε > 0. �e goal is to construct a function gεA such that

∀xεX f(x)− ε < g(x) < f(x) + ε.

Let p, qεX be distinct points. Using Lemma I, we can �nd hpqεA such that

hpq(p) = f(p) ∧ hpq(q) = f(q). (19)

If we let q vary, then we can �nd an open neighborhood Uq ⊆ X of each q so that

xεUq ⇒ f(x)− ε < hpq(x), (20)

since hpq is a continuous function. �e compactness of X implies that there is an open subcovering
composed of �nitely many neighborhoods Uq1 , . . . , Uqn . If we de�ne gpεC0(X;R) such that

∀xεX gp(x) = max(hpq1(x), . . . , hpqn(x)), (21)

then gpεA by Lemma II, and, by using (19), (20), and (21),

∀xεX f(x)− ε < gp(x) ∧ gp(p) = f(p). (22)

If we let p vary, then, by continuity, we can �nd an open neighborhood Vp ⊆ X of each p so that

xεVp ⇒ gp(x) < f(x) + ε. (23)

Again, since X is compact, we can �nd a �nite subcovering composed of neighborhoods Vp1 , . . . , Vpn . By
de�ning gεC0(X;R) so that
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∀xεX g(x) = min(gp1(x), . . . , gpn(x)), (24)

so gεA. We can apply (22) and (23) to show

∀xεX f(x)− ε < g(x) < f(x) + ε,

so we can construct a sequence of functions in A converging uniformly to f , completing the proof. �

Remarks on Stone-Weierstrass �eorem:

1.) If X was not hausdor�, then any function algebra A ⊆ C0(X;R) would not be able to separate points,
so the property is implicitly required for the theorem.

2.) As an example of a noncompact space in which Stone-Weierstrass fails in general, set X = R with the
topology of uniform convergence and de�ne the function algebra A ⊆ C0(R;R) so that A = C0

b (R;R). A
vanishes nowhere and separates points, but the distance between any function in A and an undbounded
function in C0(R;R) is in�nite under the suprememum norm.

Corollary of Stone-Weierstrass �eorem: Any 2π-periodic continuous function on R can be
approximated by trigonometric polynomials of the form

T (x) = c0 +

n∑
k=1

akcoskx+

n∑
k=1

bksinkx.

Proof of Corollary:

We begin by noticing that we can parameterize the unit circle S1 ⊆ R2 by the interal [0, 2π) ⊆ R so that
x 7→ (cosx, sinx), in which case, all 2π-periodic continuous functions are also continuous on S1, which is
compact. Using the Sone-Weierstrass theorem, it is su�cient to show that the set of trigonometric
polynomials T ⊆ C0(S1) is an algebra that separates points and vanishes nowhere. Using the formulas

coskx sinjx =
1

2
(sin(k + j)x+ sin(k − j)x)

coskx cosjx =
1

2
(cos(k + j)x+ cos(k − j)x)

sinkx sinjx =
1

2
(cos(k − j)x− cos(k + j)x),

it is simple to show T is closed under function product, and closure under addition and scalar
multiplication are trivial. It is similarly trivial to show T vanishes nowhere. To show that T separates
points, we need only note that if sina = sinb then cosa 6= cosb, and vice versa, completing the proof. �

7


