
NORMAL SPACES, REGULAR SPACES, URYSOHN METRIZATION.

Definition. A topological space X is normal if it is Hausdorff and open
sets separate disjoint closed sets:

A,B ⊂ X closed, disjoint ⇒ ∃U ⊃ A, V ⊃ B;U, V ⊂ X open, disjoint.

This condition is equivalent to:

E ⊂ X closed , V ⊃ E open ⇒ ∃U ⊂ Xopen, E ⊂ U ⊂ U ⊂ V.

The main reason to be interested in normal spaces is the following the-
orem.

Urysohn metrization theorem. LetX be Hausdorff and second-countable.
Then X is metrizable if and only if X is normal.

The following lemma used in the proof is also important:
Urysohn’s lemma. Let X be normal, E,F ⊂ X closed and disjoint. Then

there exists f ∈ C(X, [0, 1]) so that f ≡ 0 on E and f ≡ 1 on F .
Conversely, if X is Hausdorff and for each E,F ⊂ X closed and disjoint

we may find such an f , then X is normal (this part is easy.)

In other words, for a Hausdorff space X, the conditions “open sets sep-
arate disjoint closed sets’ and ‘continuous functions separate disjoint closed
sets’ are equivalent.

First the good news:
N1) Every metric space is normal. The easiest way to see this is to realize

the function

f(x) =
d(x,E)

d(x,E) + d(x, F )
E,F ⊂ Xclosed, disjoint

solves the problem in Urysohn’s lemma.

N2) Every compact Hausdorff space is normal. This has a two-step proof.
First we go from Hausdorff to regular (definition below), then from regular
to normal, in each case by taking finite subcovers of open covers.

N3) Tietze extension theorem. Let X be normal, E ⊂ X closed f : E →
R continuous and bounded (say |f | ≤ M on E.) Then we may extend f
to f̄ ∈ C(X) continuous, with the same bound |f̄ | ≤ M (that is, f = f̄ at
points of E.)
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(And conversely, if such an extension exists for each f and E, then X is
normal, assuming Hausdorff.)

Unfortunately normal spaces have two undesirable properties:

N4) A subspace Y ⊂ X of a normal space is not necessarily normal.
However:

Exercise 1. A closed subspace Y ⊂ X of a normal space X is also
normal (with the induced topology.) (Prove and use the fact that if E is
closed in Y , then it is also closed in X (since Y is closed in X.) )

N5) The product X = X1 ×X2 of two normal spaces is not necessarily
normal (for the product topology.)

One could live with (N4), but from the point of view of the metriza-
tion theorem (N5) is really a pity: the hypotheses ‘Hausdorff’ and ‘second
countable’ persist under taking subspaces or (finite) products, as does the
conclusion ‘metrizable’–but the condition ‘normal’ doesn’t! Not a satisfac-
tory state of affairs.

Exercise 2. Prove that if X1, X2 are second countable, then so is X1×
X2 (with the product topology.)

To remedy this state of affairs, we consider a weaker condition.

Definition. A topological space X is regular if it is Hausdorff and ‘open
sets separate points from closed sets’:

(R) ∀F ⊂ X closed ∀x 6∈ F,∃Ux, Vx open, disjoint so that x ∈ Ux, Vx ⊃ F.

The following are equivalent ways to state the definition:

R1) For each x ∈ X, each Vx open neighborhood of x, we may find a
second open neighborhood Ux of x so that Ux ⊂ Ux ⊂ Vx.

(We say ‘the topology admits a local basis of closed sets’.) To see this is
equivalent to (R), set F = (Vx)c (closed).

R2) ∀x ∈ X,F ⊂ X closed , x 6∈ F,∃Ux neighborhood of x, Ux ∩ F = ∅.
(Set Vx = F c (open) in (R1)).

Properties. Regular spaces do not suffer from the same problems as
normal spaces:

R3) Any subspace Y ⊂ X of a regular space is regular (Exercise 3.)

R4) The product X = X1 ×X2 of two regular spaces is regular (and if
X is regular, so are X1 and X2.) (in class)
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R5) Compact Hausdorff spaces and metrizable spaces are regular. (Clearly,
since normal spaces are regular.)

The statement analogous to Urysohn’s lemma fails for general regular
spaces: continuous functions do not necessarily separate points and closed
sets, in a general regular space. (Nothing is perfect!)

However, as far as the metrization theorem goes, we need not be con-
cerned.

R6) Proposition. Let X be a second countable space. If X is regular,
then X is normal.

(Thus ‘normal’, ‘regular’ and ‘metrizable’ are all equivalent, for second
countable spaces.)

Proof. (outline.) Let E,F be closed, disjoint subsets of X. Using Lin-
delöf’s theorem and the definition (R) of ‘regular’, we find countable open
covers of E and F :

E ⊂
⋃
n≥1

Un, F ⊂
⋃
m≥1

Vm, Un ∩ Vn = ∅∀n ≥ 1.

Then set:

An = Un \ (V1 ∪ . . . Vn), Bn = Vn \ (U1 ∪ . . . Un).

It is easy to check we still have the open covers:

E ⊂ A :=
⋃
n≥1

An, F ⊂ B :=
⋃
m≥1

Bm.

It is easy to show that An ∩ Bm = ∅ ∀m,n ≥ 1. Thus A,B are disjoint
open neighborhoods of E,F , and X is regular.

The following is another nice property.

Definition. A Hausdorff topological space X is locally compact if it ad-
mits local bases of compact neighborhoods, that is:

For each x ∈ X, each Vx open neighborhood of x, we may find a second
open neighborhood Ux of x so that Ux ⊂ Ux ⊂ Vx. and Ux is a compact
subset of X.

Proposition. Any locally compact Hausdorff space X is regular.

Remark 1. A locally compact Hausdorff space is not always normal,
though.
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Remark 2. Thus we see that a second countable, locally compact Haus-
dorff space is metrizable, an important consequence.

Remark 3. The proposition is plausible, since ‘regular’ (unlike ‘normal’ or
‘Hausdorff’) is a local property: if each point of X has an open neighborhood
which, regarded as a space in its own right via the induced topology, is
regular, then X itself is regular (using definition R2).

Example. A topological space X is an n-dimensional topological manifold
if it is Hausdorff, second countable, and locally homeomorphic to Rn. (That
is, each x ∈ X has a neighborhood homeomorphic to an open ball in Rn.)
So any n-manifold is metrizable.

Proof of Proposition. Let x ∈ X. Let Ux be an open neighborhood of x.
Using definition R2, we want to find a second open neighborhood B of x so
that B ⊂ Ux.

Since X is locally compact, we may find V (open nbd. of x) with V
compact. From the definition of open set, we may find Wx open in X
(containing x) so that Wx ⊂ Ux ∩ V . In particular, Wx is open in V (and
hence in the compact space V ).

Now, compact spaces are regular, so using definition R2) we find B ⊂ V
open in V , containing x, and with B ⊂ Wx. (And now comes the subtle
part.) Since Wx ⊂ V , also B ⊂ V , so B is open in V (not just in V ), and
since V is open in X, B is open in X too. And B is contained in Wx, hence
also in Ux. Thus B satisfies the conditions required by R3).

Topological embeddings. A continuous map f : X → Y of topological
spaces is an embedding if it is injective, and defines a homeomorphism from
X to f(X) (as a topological space with the topology induced form Y .)

Equivalently, f is continuous, injective, and open: maps open subsets of
X to open subsets of f(X) (intersections of open sets of Y with f(X).)

The idea of proof of the Urysohn metrization theorem is to use the exis-
tence of a countable basis and normality to define a continuous map from X
to a metric space C (the Hilbert cube), and show this map is an embedding.
Then f(X) inherits the metric from C, so X is metrizable.

The Hilbert cube.
We first consider the space l2 of square-summable series of real numbers:

l2 = {x = (xi)i≥1;
∞∑
i=1

x2i <∞}.
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Proposition. l2 is a separable Banach space. (shown in class.)

We define the Hilbert cube as the subset of l2:

C = {x; (∀i ≥ 1)|xi| ≤
1

i
}.

Notation In the following, we write xi (superscript) for the ith component
of x ∈ l2; so xi ∈ [−1

i ,
1
i ] if x ∈ C.

Proposition. Let (xn)n≥1 be a sequence in C, and let x0 ∈ l2. Then
xn → x0 in l2 norm if and only if xin → xi0, for each i ≥ 1.

.
Proof. (i) Assume xjn → xj0, for each j ≥ 1. (In particular x0 ∈ C.)

Given ε > 0, choose N ≥ 1 so that
∑

j≥N+1(1/j
2) < ε2.

For each 1 ≤ j ≤ N , pick Nj ≥ N so that |xjn − xj0|2 ≤ ε2

N if N ≥ Nj .
Then let M = max{Nj ; 1 ≤ j ≤ N}. For n ≥ N :

||xn − x0||2 =
N∑
i=1

|xin − xi0|2 +
∞∑

i=N+1

|xin − xi0|2

≤ N ε2

N
+ 2

∞∑
i=N+1

(xin)2 + (xi0)
2 ≤ ε2 + 4

∑
j≥N+1

1

j2
< 5ε2.

(Note that this is false for general sequences in l2: convergence of each
component does not imply convergence in L2 norm!)

(ii) The converse is clear: if xn → x0 in l2 norm, for each i ≥ 1:

|xin − xi0| ≤ ||xn − x0|| → 0.

Corollary. In particular, we see that C is closed in l2, hence is a complete
metric space.

We also see that the l2 norm induces in C the product topology:

C = Π∞i=1[−
1

i
,
1

i
].

Proposition. C is compact.
Proof (outline). It is enough to show C is totally bounded. Given ε > 0,

choose N ≥ 1 so that
∑

i≥N+1(1/i
2) < ε2/2.

For each 1 ≤ i ≤ N , let Fi be a ε√
2N

-net in [−1
i ,

1
i ]. Then define:

F = {x;xi ∈ Fi for 1 ≤ i ≤ N ;xi = 0, i ≥ N + 1}.
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F is a finite set, and it is easy to check that F is an ε-net for C (that is, for
any y ∈ C we may find x ∈ F so that ||x − y||2 < ε2): for each 1 ≤ i ≤ N ,
find xi ∈ Fi so that |xi − yi| < ε/

√
2N . Then set the remaining xi equal to

0.

Proof of the Urysohn metrization theorem. Let B = (Bn)n≥1 be
a countable basis of X.

Since X is regular, for each x ∈ X we may find n and m so that:

x ∈ Bm ⊂ Bm ⊂ Bn.

Let’s call a pair (Bm, Bn) of open sets in B admissible if Bm ⊂ Bn. Denote
by P the set of admissible pairs, which is countable (being a subset of B×B).
So we take an enumeration P = (Pi)i≥1, Pi = (Bmi , Bni).

By Urysohn’s lemma, we may find for each i ≥ 1 a continuous function
fi : X → [−1/i, 1/i] so that fi ≡ 1/i on Bmi , fi ≡ 0 on Bc

ni
.

Define f : X → C via f(x)i = fi(x), for each i ≥ 1. We claim this f is
an embedding of X into C.

1. f is continuous. Since X is first countable, it is enough to consider
xn → x0 in C. Then fi(xn)→ fi(x0) for each i ≥ 1 (since fi is continuous);
hence, as seen above, f(xn)→ f(x0) in C.

2. f is injective. Let x 6= y be points of C. Then we may find (since
X is Hausdorff) Bn ∈ B so that x ∈ Bn, y ∈ Bc

n. Since X is regular,
we may also find Bm ∈ B so that x ∈ Bm ⊂ Bm ⊂ Bn. Thus the pair
(Bm, Bn) is admissible, equal to Pi = (Bmi , Bni) for some i ≥ 1. We see
that fi(x) = 1/i, fi(y) = 0, so f(x) 6= f(y).

3. f maps open sets of X to open subsets of f(X) (in the topology
induced from C).

It is enough to show that for each Bk ∈ B, f(Bk) = Ak ∩ f(X), for some
open set Ak ⊂ C.

Fix k ≥ 1, and let Jk ⊂ N be the set of n ≥ 1 so that (Bn, Bk) is an
admissible pair.

For each i ≥ 1, the set Ci = {y ∈ C; yi > 0} is open in C (why?) Thus
the set

Ak =
⋃
i∈Jk

Ci

is also open in C. We claim f(Bk) = Ak ∩ f(X).
First, let x ∈ Bk. Then ∃m ≥ 1 with x ∈ Bm ⊂ Bm ⊂ Bk (since

X is regular) , so (Bm, Bk) = Pi (for some i) is admissible, with i ∈ Jk.
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Thus fi(x) = 1/i > 0, and f(x) ∈ Ci, so f(x) ∈ Ak. This shows f(Bk) ⊂
Ak ∩ f(X).

Conversely, if f(x) ∈ Ak, then fi(x) > 0 for some i ∈ Jk. Since fi ≡ 0
on Bc

k, this implies x ∈ Bk. So Ak ∩ f(X) ⊂ f(Bk), concluding the proof.

Exercise 4. Define ‘locally metrizable space’. Prove that a Hausdorff,
separable, locally metrizable space X is metrizable.
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