9: CANTOR SPACES, PEANO SPACES, CONTINUA

A. CANTOR SET

Def. A space X is totally disconnected if the connected components of X are points. Examples: the Cantor set, the rational numbers, the irrationals.

Arbitrary products and subspaces of totally disconnected spaces are totally disconnected.

A related definition is: a space X is zero-dimensional if each point has a nbd basis consisting of open-closed sets: given any x and nbd U of x, there exists V open-closed so that $x \in V \subset U$; or if $A \subset X$ is closed and $x \notin A$, one may find V closed-open containing x and disjoint from A.

Clearly any zero-dimensional Hausdorff space is totally disconnected, but the converse is false.

1. A compact Hausdorff space X is totally disconnected iff whenever $x \neq y$ in X there exists an open-closed subset of X containing x but not y.

Proposition. A locally compact Hausdorff space is zero-dimensional iff it is totally disconnected.

Proof. Assuming X totally disconnected, we want to prove zero-dimensional: given $A \subset X$ closed and $x \notin A$, we want to find V clopen, containing x and disjoint from A. Let U be. precompact open neighborhood of x disjoint from A (since X is regular), and for each $p \in \partial U$, find $V_{p} \subset \bar{U}$ clopen, containing x but not p (from the previous problem.) The complements (in $X) V_{p}^{c}$ cover the compact set ∂U, so we may take a finite subcover. The intersection $V=V_{p_{1}} \cap \ldots \cap V_{p_{n}}$ is a clopen subset of \bar{U}, containing x and disjoint from ∂U, hence contained in U and disjoint from A.

A little Set Theory. By definition, two sets have the same cardinality if there exists a bijection between them. The Schröder-Bernstein theorem states: it there exist injective maps $f: A \rightarrow B$ and $g: B \rightarrow A$, then $\operatorname{card}(A)=\operatorname{card}(B)$.

An immediate consequence is:

$$
\operatorname{card}[0,1]=\operatorname{card}(\mathbb{R})=\operatorname{card}(0,1)=\operatorname{card}[0,1)=\operatorname{card}(0,1]
$$

(Injections are given by inclusion, and by any homeomorphism $\mathbb{R} \rightarrow(0,1)$.)
Let $\mathcal{F}=\mathcal{F}(\mathbb{N} ;\{0,2\})$ be the space of all infinite sequences of zeros and twos. There is a bijection from the Cantor set to this space, given by interval
labeling: each point in C is the intersection of a decreasing sequence of closed intervals (L_{k}) of lengths $1 / 3^{k}$, with coherent labeling: if $L_{k+1} \subset L_{k}$, the label of L_{k+1} is that of L_{k}, extended by 0 if L_{k+1} is the left third of L_{k}, by 2 if it is the right third of L_{k}.

The 'base 3 expansion' map from \mathcal{F} into $[0,1]$:

$$
\omega \mapsto \sum_{i \geq 1} \frac{\omega_{i}}{3^{i}}
$$

is injective, and corresponds to the inclusion of C into $[0,1]$, for example:

$$
0.0222 \ldots=2 \sum_{i=2}^{\infty} \frac{1}{3^{i}}=\frac{1}{3}
$$

Clearly $\mathcal{F}(\mathbb{N} ;\{0,1\})$ is in bijective correspondence with $\mathcal{P}(\mathbb{N})$, the set of subsets of \mathbb{N}. Thus $\mathcal{P}(\mathbb{N})$ and the Cantor set have the same cardinality. Unfortunately the map from $\mathcal{F}(\mathbb{N} ;\{0,1\})$ to $[0,1]$ given by 'base 2 expansion':

$$
\omega \mapsto \sum_{i=1}^{\infty} \frac{\omega_{i}}{2^{i}} \in[0,1]
$$

is surjective, but not injective, since of instance $0.01111 \ldots$ and $0.1000 \ldots$ both map to $\frac{1}{2}$. To remedy this, consider the subset $\mathcal{F}^{*}(\mathbb{N} ;\{0,1\})$ of sequences that are not eventually 1 . This space is in bijective correspondence with $[0,1)$ (via the formula just given), so we have the chain of bijections and inclusions:
$\mathbb{R} \leftrightarrow[0,1) \leftrightarrow \mathcal{F}^{*}(\mathbb{N} ;\{0,1\}) \hookrightarrow \mathcal{F}(\mathbb{N} ;\{0,1\}) \leftrightarrow \mathcal{F}(\mathbb{N} ;\{0,2\}) \leftrightarrow C \hookrightarrow[0,1] \hookrightarrow \mathbb{R}$,
showing all these sets have the same cardinality (that of $\mathcal{P}(\mathbb{N})$), a perhaps surprising fact.
B. CANTOR SPACES Def. A metric space M is perfect if $M^{\prime}=M$: every point of M is a cluster point of M.

1. A complete perfect metric space is uncountable. (Without completeness, \mathbb{Q} is a counterexample.)

The middle-thirds Cantor set is a compact (hence complete), perfect, totally disconnected metric space. (A compact metric space is totally disconnected if each point has arbitrarily small clopen neighborhoods.)

Def. A metric space is a Cantor space if it is compact, perfect and totally disconnected.
2. Any nonempty clopen subset $A \subset M$ of a Cantor space M is a Cantor space.

Thus a Cantor space M can always be divided into two disjoint Cantor pieces. Let $p \in M, U \subset M$ a small clopen nbd of p. Then $M=U \sqcup U^{c}$.

Lemma. Given a Cantor space M and $\epsilon>0$, one may find N so that if $d \geq N$ there exists a partition of M into exactly d Cantor pieces of diameter $\leq \epsilon$.

