
COMPACTNESS AND LOCAL COMPACTNESS (all spaces assumed
Hausdorff.)

Definition. X is countably compact if any countable open cover admits
a finite subcover.

Thus any compact space is countably compact, and on a Lindelöf space
the concepts are equivalent (for example on any 2nd countable space.)

Def. X is sequentially compact if any sequence on X admits a convergent
subsequence.

Def. A point z ∈ X is an accumulation point of a sequence (xn) in X if
any neighborhood of X contains infinitely many points of the sequence.

1. If X is first-countable, z ∈ X is an accumulation point of (xn) iff
some subsequence of (xn) converges to z.

2. If X is countably compact, any sequence in X has an accumulation
point. As a consequence, if X is countably compact (in particular, if X is
compact) and first-countable, X is sequentially compact.

Hint: If (xn) is a sequence without any accumulation points, each xn
has a neighborhood Un with no other points of the sequence. Let A =
{x1, x2, . . .}, a closed subset of X (why?). Adding Ac to the Un gives an
open covering of X, which has no finite subcover.

3. If X is sequentially compact, X is countably compact. (Hence for
first-countable spaces, these concepts are equivalent.)

Hint. Let {Un}n≥1 be a countable open cover of X. If it has no finite
subcover, we may define a sequence (xn) in X taking:

x1 ∈ X \ U1, x2 ∈ X \ (U1 ∪ U2), . . . , xn ∈ X \ (
n⋃

i=1

Ui).

Note xn 6∈ Ui if n ≥ i: each Ui has only finitely many sequence elements.
But if z ∈ X, z is in some Un0 .

4. The space X of all functions from [0, 1] to itself (with the topology of
pointwise convergence) is compact (by Tychonoff’s theorem), but not first-
countable. And indeed it is not sequentially compact: exhibit a sequence
fn ∈ X with no convergent subsequence.

Hint. Let fn be the function (with image in {0, 1}) that assigns to each
x ∈ [0, 1] the nth. digit in its base 2 expansion (terminating in 0s if x is a
dyadic rational). For any increasing sequence (nk)k≥1, Let x0 ∈ [0, 1] have
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the binary expansion 0.a1a2.a3...: ak = 0 if k is even, ak = 1 if k is odd.
Then fnk

(x0) does not converge.

5. If X is second countable and sequentially compact, X is compact.
Hint. X is first countable (hence countably compact) and Lindelöf.

6. If X is first countable and countably compact, X is regular. (It
follows via Urysohn metrization that compact second countable spaces are
metrizable!)

Hint. Since X is Hausdorff, given x ∈ X we may find a countable local
basis (Vn) at x which decreases to x:

V1 ⊃ V2 ⊃ V3 ⊃ . . . ,
⋂
n≥1

Vn = {x}.

Let V be a nbd of x. Adding V to {(Vn)c;n ≥ 1} one gets a countable cover
of X. Taking a finite subcover we find VN so that VN ⊂ V , showing X is
regular.

COMPACTNESS IN METRIC SPACES

7. (X, d) compact metric is sequentially compact; in particular, X is
complete.

Hint. This follows from the fact X is first countable (and countably
compact). For a direct proof, if a sequence with not convergent subsequence
exists, then for each x ∈ X there is an open ball B(x, rx) including only
finitely many sequence elements; taking a finite subcover leads to a contra-
diction. (This uses first countability too.)

Def. (X, d) compact metric is totally bounded: for each R > 0, finitely
many balls of radius R cover X.

8. (i) In a totally bounded metric space, any sequence has a Cauchy
subsequence (nested balls argument.)

(ii) If (X, d) is totally bounded and complete, X is sequentially compact.

9. A totally bounded metric space is separable (hence second-countable.)

10. If (X, d) is a sequentially compact metric space, X is complete and
totally bounded.

Hint. If not, one may find R > 0 and x1 ∈ X,x2 6∈ B(x1, R), . . . xn 6
inB(x1, R) ∪ . . . B(xn−1, R), so d(xn+1, xi) ≥ R for i = 1, . . . , xn: this se-
quence has no convergent subsequence.
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So far we see that a compact metric space is sequentially compact; and
that a metric space is sequentially compact iff it is complete and totally
bounded. To close the circle, we need:

10. Lebesgue number lemma. Any open cover F of a sequentially com-
pact metric space has a Lebesgue number: L > 0 so that any subset C ⊂ X
with diameter less than or equal to L is contained in a set U of the cover.

Hint: If not, we may find a sequence of closed sets Cn with diameter
less than 1/n, not contained in any open set in F , and xn ∈ Cn. Then a
subsequence xni → z ∈ U , U ∈ F open. But also B(z, ε) ⊂ U for some
ε > 0, and for i large, Cni ⊂ U (show this). Contradiction.

11. Any sequentially compact metric space (X, d) is compact.
Hint. Use the fact X is totally bounded: given an arbitrary open cover,

consider its Lebesgue number L, and cover X by finitely many balls of radius
L/3.

CONCLUSION: For a metric space, ‘compact’, ‘sequentially compact’,
‘countably compact’ and ‘complete and totally bounded’ are all equivalent.
Compact metric spaces are separable and second countable; and any open
cover admits a Lebesgue number.

12. If X,Y are separable metric spaces with X compact, then C(X;Y )
is separable metric (with the topology of uniform convergence.) If X is not
compact, this is false in general. [Solved in lecture.]

Def. A metric space (X, d) is locally separable if for each x ∈ X there
exists an open ball B(x, rx) containing a countable dense subset.

13. (i) If (X, d) is connected and locally separable, then X is separable.
[Solved in lecture]

(ii) If (X, d) is connected and locally compact, then X is separable (and
second countable.)

14. A metric space X is separable if and only if it is homeomorphic to
a subset of a compact metric space.

LOCALLY COMPACT SPACES (Def: each point x ∈ X has a precom-
pact open neighborhood.

Already discussed: (i) Locally compact Hausdorff spaces are regular
(even completely regular); (ii) Locally compact Hausdorff spaces are Baire
spaces; (iii) Connected, locally compact metrizable spaces are separable.

15. X (Hausdorff) is loc. compact ⇔ each x ∈ X admits a local basis
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of precompact neighborhoods.
Hint. ETS any open nbd U of X contains a precompact one. Let V be

a precompact neighborhood of x. The open nbd of x A = U ∩V contains an
open nbd B s.t. x ∈ B ⊂ B ⊂ A (why?) Now B is precompact, contained
in U .

Def. S ⊂ X is locally closed if any x ∈ S has a neighborhood U ⊂ X
(open), so that U ∩ S is closed in U .

Proposition 1. S is loc. closed ⇔ S = A ∩ F , where A is open in X, F
is closed in X [Proved in lecture]

16. Example: consider the graph G ⊂ R2 of

f : (0,∞)→ R, f(x) = sin
1

x
.

(i) G is a closed subset of (0,∞)×R, but not of R2.
(ii) G is locally closed in R2; find sets A and F as in proposition 1.

Proposition 2. X loc. compact Hausdorff, S ⊂ X loc. closed⇒ S is loc.
compact.

Proof. By prop. 1, S = U ∩ F , with U open, F closed in X. Given
x ∈ S, there is a precompact nbd V of x with V ⊂ U . Then V ∩ S is a nbd
of x in S, with closure (in the induced topology) V ∩ S. But:

V ∩ S = V ∩ (U ∩ F ) = V ∩ F,

which is compact. Thus any x ∈ S has a precompact open nbd. (in S with
the induced topology.)

17. Let X be locally compact Hausdorff.
(i) Closed subsets of X are locally compact.
(ii) Open subsets of X are locally compact.

Proposition 3. X loc. compact Hausdorff, S ⊂ X dense in X and locally
compact ⇒ S is open in X. [Proof seen in Lecture.]

18. (i) Any locally compact metric space is open in its completion.
(ii) Any locally compact metric space is completely metrizable (i.e. ad-

mits a complete metric defining the same topology.)

A locally compact Hausdorff spaceX admits an Alexandrov compactifica-
tion X∗, meaning a compact Hausdorff space and an embedding ϕ : X → X∗

with X∗ \ ϕ(X) = {ω}, the ‘point at infinity’. Neighborhoods of ω in X∗
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have the form {ω} tU (disjoint union), where U ⊂ X is the complement of
a compact subset of X. [Proof given in lecture.]

Such a compactification is unique: if ψ : X → X̃ is a second one,
X̃ = X t {ω̃}, one may find a homeomorphism h : X∗ → X̃, h(ω) = ω̃,
so that ϕ = ψ ◦ h|X .

18.5 Use the existence of the Alexandrov compactification to prove that
locally compact Hausdorff spaces are completely regular.

Def. The Alexandrov compactification of a loc. cpt Hausdorff space
X is countable at infinity if the point at infinity has a countable basis of
neighborhoods.

19. This happens iff X is σ-compact: X =
⋃

i≥1Ki, Ki ⊂ X compact,
which may be assumed to be increasing, Ki ⊂ int(Ki+1).

Extension of continuous functions and maps.

Def. Let X be loc. compact Hausdorff and non-compact, Y be a Haus-
dorff space, f : X → Y continuous, y0 ∈ Y . We say limx→∞ f(x) = y0 if for
any neighborhood V of y0 in Y , we may find a compact set K ⊂ X so that:

x ∈ X \K ⇒ f(x) ∈ V.

20. f : X → Y extends continuously to the Alexandrov compactification
X∗ (via F : X∗ → Y, F (ω) = y0) iff limx→∞ f(x) = y0.

Def. Let X,Y be both locally compact Hausdorff. A continuous map
f : X → Y is proper if the preimage of any compact set is compact.

21. f extends to a continuous map F : X∗ → Y ∗ of the Alexandrov
compactifications (with F (ωX) = ωY ) iff f is proper.

Remark on problem 21. A related concept is that of perfect map [Munkres,
p.199]: A continuous surjective map f : X → Y is perfect if it is closed and
all level sets f−1(y) are compact.

This implies the properties (i) Hausdorff; (ii) regular; (iii) locally com-
pact; (iv) second countable are inherited by Y , if satisfied by X.

22. Let f : X → Y be continuous, surjective and closed.
(i) For each y ∈ Y and any U ⊂ X open neighborhood of the preimage

(level set) f−1(y), there exists V ⊂ Y open neighborhood of y so that
f−1(V ) ⊂ U . (In fact this ‘continuity of level sets’ characterizes closed
maps.)

(ii) Let y ∈ Y , let U ⊂ X be an open neighborhood of f−1(y). Then
f(U) contains an open neighborhood V ⊂ Y of y.
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23. Perfect maps are proper. Hint: Problem 22(i).

Remark. The converse is true, under the hypothesis the topologies of X
and Y are compactly generated ([Munkres p. 283]): a subset A ⊂ X is open
in X if A ∩ C is open in C, for each C ⊂ X compact subspace.

As proved in [Munkres, p.283]: locally compact spaces and first countable
spaces (in particular, metric spaces) are compactly generated.
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