
PROPER (or HEINE-BOREL) METRIC SPACES

Def. (X, d) is proper (or HB) if closed bounded sets are compact.

Ex.1 Rn is HB. (Since bounded sets are totally bounded.)

Ex.2 For X compact metric, C(X) (with the sup norm) is complete
separable metric, but not HB.

Exercise 1. Let (X, d) be a proper metric space. Then X is complete,
locally compact and σ-compact.

The converse is not true: it is easy to destroy the HB property.

Ex. 3. Let (X, d) be a non-compact metric space. Then the metric
dmin = min{d, 1} is equivalent to d (same topology), locally coincides with
d (in a neighborhood of the diagonal in X×X), but is not HB. In particular,
(X, dmin) is locally compact, σ-compact and complete, if d is.

Exercise 2. A metric space (X, d) is proper if and only if the distance
function to a point x 7→ d(x, x0) is a proper function on X (preimage of
compact is compact.) Hence the name.

In the paper [Williamson-Janos], the following theorems are proved:

Theorem 1. If (X, d) is locally compact, σ-compact, there exists an
equivalent metric (same topology) which is HB.

Idea of proof. Let (Kn) be a compact exhaustion of X, Kn ⊂ int(Kn+1).
Let fn : X → [0, 1] continuous satisfy: fn ≡ 0 on Kn, fn ≡ 1 on Kc

n+1.
Consider the metric on X:

d′(x, y) = d(x, y) +
∑
n≥1
|fn(x)− fn(y)|.

Exercise 3. Show that d and d′ are equivalent on X. (It suffices to show
that limxn = x with respect to d iff this holds with respect to d′.)

Note that any bounded set must be contained in some Kn, so (X, d′)
is HB. In particular complete, even if (X, d) isn’t. This gives a proof that
locally compact, σ-compact metric spaces are completely metrizable.

Theorem 2. Let (X, d) be locally compact, σ-compact and complete.
Then X admits a HB metric that locally coincides with d.

Idea of proof. Let W be an open cover of X. Define a new metric on X
as follows. Given x, y ∈ X, find a chain of points from x to y:

x0 = x, x1, . . . , xN = y, and ∀i = 0, . . . , N−1 : xi, xi+1 ∈ A, for some A ∈ W.
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Then let dW(x, y) be the infimum of
∑N−1

i=0 d(xi, xi+1) over all such chains
from x to y. This ‘W distance’ is a metric locally equivalent to d.

To prove the theorem, the authors consider a compact exhaustion (Kn)
of X, and the associated open cover by the sets int(Kn+1) \Kn and show
(using completeness) that the metric associated with this cover is HB.

Gromov’s Hopf-Rinow Theorem.

Def. Let γ : [0, 1] → X be a continuous curve, where (X, d) is metric.
The length of γ is defined as:

L[γ] = sup{
∑
i

d(γ(ti), γ(ti+1))},

where the supremum is taken over all partitions of [0, 1]. (In general, this
will be infinite–for example, for a non-rectifiable curve in Rn.)

Def. (X, d) (path connected) is a length space if d(x, y) is the inf of the
lengths of curves joining x to y.

Def. A path γ : [0, L]→ X is a geodesic segment if it is an isometry from
[0, L] (with its usual metric) to X. X is a geodesic length space if any two
points can be joined by a geodesic segment. (Example: R2 \ {0} with the
metric induced from R2 is a length space, but not a geodesic one.)

On a Riemannian manifold M , lengths of C1 ucrves are defined by inte-
grating the lengths of their tangent vectors, and Riemannian distance d is
defined by taking the inf of the lengths of C1 curves joining two points. The
Hopf-Rinow theorem says the following conditions are equivalent: (i) (M,d)
is a complete metric space; (ii) (M,d) is HB. And if either condition holds,
(M,d) is a geodesic length space.

Gromov’s version of this for general metric spaces is:
Theorem. Any complete, locally compact length space is HB (and geodesic.)

Idea of proof. Fix x0 ∈ X and let J ⊂ R+ be the set of r > 0 such that:

K(x0, r) := {x ∈ X; d(x0, x) ≤ r}

is compact. From local compactness, J is non-empty and open; either J =
R+ (in which case X is proper) or J = (0, a) for some a > 0.

Observe the following property of length spaces: if d(x, z) < a + b, we
may find y ∈ X so that d(x, y) < a, d(y, z) < b. Indeed just find a path from
x to z with length less than a+ b, and pick y suitably along that path.
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So by contradiction assume J = (0, a) and let (xn) be a sequence in
K(x0, a). Using this observation, for each n ≥ 1, k ≥ 1 find yn,k so that:

yn,k ∈ K(x0, a−
1

k
), d(yn,k, xn) <

2

k
.

For each k fixed, (yn,k)n has a convergent subsequence. Then use a diagonal
argument to find nj so that (ynj ,k)j is convergent for each k. Considering:

d(xnj ,, xnl
) ≤ d(xnj , ynj ,k) + d(ynj ,k, ynl,k) + d(ynl,k, xnl

),

where the middle term is small for j and l large and the sum of the other two
is less than 4

k , taking k large enough we see that (xnj ) is a Cauchy sequence,
hence convergent since X is complete. Thus any sequence in K(x0, a) has a
convergent subsequence, so this set is compact. Contradiction.

(Reference: John Roe, Lectures on Coarse Geometry.)

We conclude with a proposition involving this circle of ideas:

Proposition. Let M be a locally compact metric space. The following
conditions are equivalent:

1- M has a countable basis;
2- M is σ-compact;
3-M admits an equivalent Heine-Borel metric;
4- The Alexandroff compactification M∗ = M t {ω} is metrizable.

Proof. (1)⇒ (2): Each x ∈M is in an open, precompact set Ux. Since M
is Lindelöf, the open cover {Ux}x∈M admits a countable subcover {Un}n≥1.
Thus M is contained in the countable union of compact sets {Un}n≥1.

(2) ⇒ (3): this is Theorem 1 above.

(3) ⇒ (2): Exercise 1 above.
(2)⇒ M∗ has a countable basis: It is clear that M does (that is, (2)

⇒ (1)), and also that ω has a countable local basis. The union of these
two bases is a countable basis for the topology of M∗ (informally speaking;
fill in the details as an exercise.) Since M∗ is normal (being compact),
metrizability (4) follows from Urysohn metrization.

Thus (1),(2),(3) are equivalent, and each implies (4). But (4)⇒ (1)
is clear, since compact metrizable spaces are second-countable, and this is
inherited by subspaces.
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