
COMPACTIFICATIONS AND STONE-CECH

Def. A compactification of a Hausdorff space X is a pair (X̂, ϕ), where
X̂ is compact Hausdorff and ϕ : X → X̂ is an embedding (homeomorphism
onto ϕ(X) ⊂ X̂), with ϕ(X) dense in X̂.

An example is the Alexandroff compactification of a locally compact
space X, which adds a single ‘point at infinity’ to X to obtain X̂. The
continuous bounded functions on X that extend to the Alexandroff com-
pactification are exactly those tending to a constant ‘at infinity’.

Recall the following general construction: for a family F ⊂ Cb(X) (the
space of bounded continuous functions from X to R), consider the product
of closed intervals indexed by F :

P = Πf∈FIf , If = [inf f, sup f ] ⊂ R

and the ‘evaluation map’:

e : X → P, [e(x)]f = f(x) ∈ If .

P is compact Hausdorff, by Tychonoff’s theorem. We know:
(i) e is continuous; (ii) if F separates points, e is injective; (iii) if F

separates points from closed sets, e is an open map onto ϕ(X), with the
induced topology. Hence X̂ = ϕ(X) (closure in P ) is a compactification of
X, associated with F .

(Informally, we may think of X as a subset of X̂, identifying X with
ϕ(X).)

Let πf : P → If be the standard projection. Then f̂ = (πf )|X̂ ∈
C(X̂; If ) satisfies f̂ ◦ e = f , and under the identification just mentioned f̂

extends f to X̂ (any f ∈ F can be so extended.)

1. If X is locally compact and F is the family of continuous real-valued
functions on X tending to a constant at infinity, show (i) F separates points
from closed sets; (ii) the compactification associated to F is homeomorphic
to Alexandroff’s.

If X is (Hausdorff and) completely regular, then F = Cb(X) separates
points from closed sets. The associated compactification is called the Stone-
Cech compactification of X, traditionally denoted βX. As just noted, any
f ∈ Cb(X) extends continuously to βX (under identification via the evalua-
tion embedding e : X → P ). A more general ‘universal extension property’
is true:
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Theorem. If X is completely regular (Hausdorff), K is compact Haus-
dorff and h : X → K is continuous, there exists h̄ : βX → K extending h,
in the sense that h̄ ◦ e = h.

Uniqueness. Let X be completely regular (Hausdorff), (Y1, e1) and
(Y2, e2) two compactifications of X with the universal extension property.
Then they are equivalent: homeomorphic via f2 : Y1 → Y2 satisfying
f2 ◦ e1 = e2, with inverse f1 : Y2 → Y1 satisfying f1 ◦ e2 = e1.

2. Lemma Let X,Y be Hausdorff, A ⊂ X, f : A→ Y continuous. Then
there exists at most one continuous extension of f to a continuous map from
A to Y .

3. Using the lemma, prove the uniqueness statement. Hint: Find f2 as
the extension of e2 to Y2 (meaning f2 ◦ e1 = e2). Show that f2 ◦ f1 is the
identity on the dense subset e2(X) of Y2.

Problems 4,5,6 are from [Munkres].

4. If (Y, eY ) is any compactification of X (eY : X → Y the embedding),
there exists F : βX → Y continuous surjective closed map, satisfying F ◦
eβ = ey. (In this sense, βX is the ‘maximal’ compactification of X.)

5. X is connected iff βX is connected.

6. (i) If X is normal and y ∈ βX\X, then y is not the limit of a sequence
of points in X.

(ii) If X is completely regular (Hausdorff) and noncompact, then βX is
not metrizable.

Remark: In particular if X is locally compact metric, non-compact, then
βX is not metrizable (and is separable, and connected, if X is.) This gives
lots of examples of compact, connected, separable non-metrizable spaces.

7. If F1 ⊂ F2 are two families in Cb(X), both separating points from
closed sets, with associated compactifications ((Y1, e1), (Y2, e2), there exists
a continuous map F : Y2 → Y1 satisfying F ◦ e2 = e1.

Question. If F1 is dense in F2, does it follow that Y1 and Y2 are homeo-
morphic?

8. If F ⊂ Cb(X) is a countable family separating points from closed sets,
the associated compactification X̂ of X is second countable, hence metriz-
able. (Prove first that the product of countably many second countable
spaces is second countable.)
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9. If X is normal (Hausdorff), noncompact and second countable, there
exists a countable family F ⊂ Cb(X) separating points from closed sets. Use
this to prove the Urysohn metrization theorem. The associated compactifi-
cation is second countable and metrizable. (But the Stone-Cech is not, see
problem 6.)

10. Prove that if X is locally compact, σ-compact, noncompact (Haus-
dorff), then Cb(X) is separable metric (with the uniform topology). Thus
there exists a countable family F ⊂ Cb(X), dense in Cb(X). Prove that F
separates points from closed sets. How does the associated compactification
(which is metrizable) relate to Stone-Cech?

A rigidity property of compact Hausdorff topologies.

Proposition. Let τ1 ⊂ τ2 be two topologies on a set X (so τ2 is finer than
τ1. If τ1 is Hausdorff and τ2 is compact, then τ1 = τ2.

Informally if τ is a compact Hausdorff topology on X, you can’t make
it coarser without losing ‘Hausdorff’, or finer without losing ‘compact’.

Recall the following:
(i) compact subsets of Hausdorff spaces are closed;
(ii) closed subsets of compact spaces are compact (from the definition–

Hausdorff not needed,)

Proof of prop. Let F ⊂ X be τ2-closed, hence τ2 compact (by (ii)). Since
τ1 ⊂ τ2, F is τ1-compact, hence (by (i)) τ1-closed. Hence τ2 ⊂ τ1, so τ1 = τ2.

11. Let F is a family of mappings f : X → Yf (X:set, Yf : Haus-
dorff space depending on f .) If F separates points, the F-topology of X is
Hausdorff. (Recall this the weakest topology on X making all f continuous.
B = {f−1(Uf );Uf open in Yf} is a basis.

12. Let X be compact. Suppose F ⊂ C(X;R) is a countable family
of real-valued functions on X. Assume F separates points. Then X is
metrizable.

Hint: Let F = (fn)n≥1, where we may assume |fn| ≤ 1 on X. Consider
the function on X ×X:

d(p, q) =
∞∑
n=1

2−n|fn(p)− fn(q)|.

Let τ be the topology on X. Explain why d is τ × τ -continous on X ×X,
so the sets Br(p) = {q ∈ X|d(p, q) < r} are τ -open. Let τd be the metric
topology defined by d. Then τd ⊂ τ , so they must ee equal.
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