
NOTES ON BAIRE’S THEOREM

Example. A complete metric space (X, d) without isolated points is
uncountable.

Suppose by contradiction X = {x1, x2, . . .}. Let y1 6= x1 and 0 < r1 < 1
be such that x1 6∈ B̄r1(y1). Then choose y2 ∈ Br1(y1) and r2 > 0 so that
y2 6= x2 and B̄r2(y2) ⊂ Br1(y1), with 0 < r2 < 1/2. We can do this since X
has no isolated points.

Proceeding in this fashion we get a descending chain of closed balls:

B̄r1(x1) ⊃ B̄r2(y2) ⊃ . . . rn <
1

n
,

so (yn) is Cauchy, and by completeness yn → y. But y 6= xn for all n,
contradiction.

Baire’s Theorem. Let (Gn) be a countable family of open dense sets
in a complete metric space X. Then

⋂
n≥1Gn is dense in X (in particular

non-empty.)

Informally, a property defined by an open set (within a class X of math-
ematical objects) is thought of as ‘stable’; a property defined by a dense
subset of X can be thought of as ‘generic’ (any object in X may be approx-
imated by a sequence of objects with the property).

Definition. A Hausdorff topological space X is a Baire space if countable
intersections of open dense subsets of X are dense. Thus Baire’s theorem
says complete metric spaces are Baire spaces.

Some terminology: a countable intersection of open, dense sets in a
Baire space is called residual. Thus residual sets are dense.

By complementation, one sees that in a Baire space: a countable union
of closed sets with empty interior has empty interior. This connects with
some old terminology:

A subset P of a space X is nowhere dense (or ‘of first category’) if for any
U ⊂ X open, there exists V ⊂ U containing no elements of P : P ∩ V = ∅.

Exercise 1. Let X be a Hausdorff space. Show that P is nowhere dense
if and only if its closure P has empty interior.

Proof. (i) Assume P is nowhere dense. Let x ∈ P , Ux open nbd of x,
V ⊂ Ux open in X so that V ∩ P = ∅. Since V is open, also V ∩ P = ∅.
Thus x is not an interior point of P . (ii) Conversely, assume int(P ) = ∅.
Let U ⊂ X open, x ∈ P ∩U not an interior point of P . Thus ∃z ∈ (P )c∩U ,
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and since (P )c is open, we find a neighborhood of z, V ⊂ U ∩ (P )c. This
shows P is nowhere dense.

Here are two applications to Analysis:

Example. There exists a function f ∈ C[0, 1] which is not monotone on
any interval. In fact the set of such functions is residual in C[0, 1] (endowed
with the sup norm.)

Idea. To see this, let (In)n≥1 be an enumeration of the set of subintervals
of [0, 1] with endpoints in Q. Let En be the set of f ∈ C[0, 1] which are not
monotone on In. The idea is to show that En is open and dense, and apply
Baire’s theorem.

En is open: if f ∈ En, we may find x < y < z in En so that f(x) < f(y)
and f(z) < f(y) (the other case, f dropping between x and z, is similar.)
Then if ||f − g|| < 1

2 min{f(y)− f(x), f(y)− f(z)}, it is easy to see that g
also fails to be monotone, in the same way as f .

En is dense: let f ∈ C[0, 1], and say f is monotone increasing on In.
Pick x ∈ In. Given ε > 0, we may find x− < x < x+ very close to x, so that
f(x+) and f(x−) are ε-close to f(x). Then we can change f slightly in the
interval (x−, x+) (and nowhere else), to find g continuous and ε-close to f
in sup norm, so that g is not monotone on this interval (say g(x−) > g(x)
and g(x+) > g(x)), hence not on In.

Example. Uniform Boundedness Theorem. Let E,F be Banach spaces,
and consider a family of linear maps Tα ∈ L(E,F ), α ∈ Λ. If the family
is equibounded at each x ∈ E (||Tα(x)|| < M(x) for all α ∈ Λ), then it is
uniformly equicontinuous on E:

sup
α∈Λ
||Tα|| <∞.

Proof. For each n ≥ 1, consider the closed subset of E:

En = {x ∈ E; ||Tα(x)|| ≤ n∀α ∈ Λ}.

By assumption
⋃
n≥1En = E. Thus by Baire’s theorem, some En0 has

nonempty interior: x0 ∈ En0 and ||x−x0|| < r ⇒ x ∈ En0 . Let supα∈Λ ||Tα(x0)||} =
c. Then if x ∈ E, ||x|| < 1, we have x0 + rx ∈ En0 , thus for arbitrary α ∈ Λ:

||Tα(x)|| = 1

r
||Tα(x0 + rx)− Tα(x0)|| ≤ n0 + c

r
,

concluding the proof.
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Theorem. Locally compact Hausdorff topological spaces X are Baire
spaces.

Proof. Let G1, G2, . . . be open dense sets. Let U ⊂ X be open. Then
U ∩G1 6= ∅, and ∃B1 open, with compact closure, so that B̄1 ⊂ U ∩G1. In
the same way, we successively find open sets Bn with compact closure, so
that B̄n ⊂ Bn−1 ∩Gn.

The B̄n are closed in the compact B̄1 and nested, so
⋂
n≥1 B̄n 6= ∅,

and this intersection is contained in U ∩
⋂
n≥1Gn (since B̄n ⊂ Gn∀n, and

B̄1 ⊂ U ∩G1. Thus (
⋂
n≥1Gn) ∩ U 6= ∅, as we wished to show.

Proposition. If X is a Baire space, any open subset U ⊂ X is also a
Baire space.

Definition. A subset of a topological space is a Gδ set if it is a countable
intersection of open sets.

Example. In a metric space (X, d), any closed set A is a Gδ, since

A =
⋂
n≥1

Gn, Gn = {x ∈ X; d(x,A) <
1

n
}.

Example. The set of rational numbers Q ⊂ R is not a Gδ set. If it were,
we’d have:

Q =
⋂
n≥1

Gn,

with each Gn open and also dense. (Any open subset of R intersects Q,
hence would intersect each Gn.) But then we can add to the countable
family (Gn) of open dense sets the countable family {rn}cn≥1 (complement
of the one-point sets {rn}, where the rn are an enumeration of Q.) Since
each of these sets is open and dense in R, taken together these families
would necessarily have nonempty intersection (by Baire’s theorem). But
clearly the intersection is empty.

What this argument shows is that no countable dense set without isolated
points can be a Gδ (in a complete metric space, or a locally compact space.)

Example. Let X be a topological space, Y a metric space, f : X → Y
any map. Then the set of continuity Cf of f is a Gδ (which may be empty!)

Indeed, f is continuous at p ∈ X iff ∀n ≥ 1 ∃U nbd of p so that
d(f(x), f(y)) < 1/n ∀x, y ∈ U . Set:

An = {p; ∃U nbd of p; d(f(x), f(y)) <
1

n
∀x, y ∈ U}.
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Considering the family of open sets of X:

Λn = {U open ; d(f(x), f(y)) <
1

n
∀x, y ∈ U}

we have that An is the union of this family, an open subset of X:

An =
⋃
{U ;U ∈ Λn}

and clearly:

Cf =
⋂
n≥1

An,

and hence Cf is a Gδ.

Example. In particular, Q cannot be the set of continuity of a function
from R to R. But the irrationals I can be. For example, Thomae’s function:

f(x) =
1

q
, x =

p

q
∈ Q, with p ∈ Z, q ∈ N coprime; f(x) = 0, x ∈ I

is continuous exactly at points of I.

Exercise 2. Let fn : X → Y be continuous (X topological, (Y, d) met-
ric.) Suppose fn → f pointwise on X. Then each level set {x ∈ X; f(x) =
L} of f is a Gδ subset of X.

Proof: x ∈ X is in the level set if, and only if, there exists a subsequence
of (fn(x)) converging to L. Thus the level set Z equals:

Z =
⋂
j≥1

⋂
i≥1

⋃
n≥i

f−1
n (B(L,

1

j
)),

where B(L, 1
j ) = {y ∈ Y ; d(y, L) < 1

j }. Since each fn is continuous and
N× N is countable, this set is a Gδ.

Note Q ⊂ R is dense, but not residual; while its complement I (irra-
tionals) is a residual subset of R (why?) Above we outlined a proof that the
set of functions in C[0, 1] which are not monotone on any interval of [0, 1] is
residual. Here is another example:

Example: The set of functions in C[0, 1] which are not differentiable at
any point is residual (in the uniform topology.)

Outline of proof: (for details, see [Munkres 1, no. 49]). For f ∈ C[0, 1],
0 < h < 1/2 and x ∈ I = [0, 1], define:

∆f (x, h) = max{|f(x+ h)− f(x)

h
|, |f(x)− f(x− h)

h
|}.
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(If 0 < x < 1/2, at least one of these difference quotients is defined; if only
one is defined, take ∆f (x, h) to be that one.). Then set:

∆f (h) = inf{∆f (x, h);x ∈ I}.

We consider the set of f ∈ C[0, 1] that have large slope on small intervals:

Un =
⋃

0<h<1/n

{f ∈ C[0, 1]; ∆f (h) > n}.

And then prove the following claims:
(i) Un is open in C[0, 1];
(ii) Un is dense in C[0, 1] (this is the hard part.)
(iii) If f ∈

⋂
n≥1 Un, f is nowhere differentiable.

Remark: This should be contrasted with the fact that, by the Stone-
Weierstrass theorem, polynomials are dense in C[0, 1]; in particular smooth
functions are dense.

An early application of Baire’s theorem is the following:

Theorem. Let X be a Baire space, Y a metric space. If f : X → Y is
the pointwise limit of continuous maps fn : X → Y , then the continuity set
Cf ⊂ X is residual in X.

Proof (outline). For ε > 0, N ≥ 1, define

AN (ε) = {x ∈ X; d(fm(x), fn(x)) ≤ ε, ∀x ∈ X.}

The AN (ε) are closed in X (since the fn are continuous.) Since (fn(x)) is a
Cauchy sequence in Y for any x, we have

⋃
N≥1AN (ε) = X. Now let

U(ε) =
⋃
N≥1

int(AN (ε))

(interior in X). U(ε) is evidently open in X. Now consider the lemma, whose
proof uses the fact that open subsets of Baire spaces are Baire spaces:

Lemma. Let X be a Baire space, Fn ⊂ X closed subsets so that X =⋃
n≥1 Fn. Then A =

⋃
int(Fn) is (open and) dense in X.

Thus the set U(ε) is dense in X, and therefore S =
⋂
k≥1 U( 1

k ) is residual
in X. The following claim is not hard to prove, and concludes the proof of
the theorem:

Claim: S ⊂ Cf .
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Historical remark. This theorem led Baire to define ‘classes’ of functions
f : R→ R, as follows: continuous f are ‘class 0’. Pointwise limits of class 0
functions which are not themselves class 0 are ‘class 1’ (examples are easy
to find.) Pointwise limits of class 1 functions which are not themselves class
1 are ‘class 2’; and so on. For example, consider the function:

D(x) = lim
k→∞
{ lim
j→∞

(cos(k!πx))j}.

Exercise 3. Show that D(x) = 1 for x ∈ Q, D(x) = 0 for x ∈ I. Use this
to show that D is in Baire’s ‘class 2’.

H.Lebesgue (in 1904) proved that each Baire class is nonempty, and that
functions exist which are in no Baire class.

The following example is in the same circle of ideas:
Example: Let f : R→ R be a differentiable function. Then the continu-

ity set of f ′ is residual in R.
Indeed, f ′ is the pointwise limit of continuous functions:

f ′(x) = lim
k→∞

k[f(x+
1

k
)− f(x)].
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