COMPACTNESS, COUNTABILITY, FUNCTION SPACES:
EXAMPLES

Ex 1. X = F,(R, R) is not first countable.

Let f € X, suppose we had {Vi,...,V,,...} countable basis at f. Each
V., would contain a basis element:

A, = Af(tnl, ey bk €nly - - - ,Enk) C V.

Thus the A, would also form a countable basis of neighborhoods of f.

The set of all ¢ appearing in these sets is also countable, so there exists
to € R not occurring in any of them. Consider the basis set Ag = Ay(to, 1).
For functions in A,, there is no restriction on the value at ¢y, so certainly
there is g, € A,, with |gn(to) — f(to)| > 1, so gn & Ao, showing Ay is not
contained in any A,. So the A, can’t be a local basis at f.

This argument also works to show the compact space F,(R;[0,1]) is not
first countable, hence not metrizable.

Ex 2. Againlet X = F,(R, R), and let S C X be the set of characteristic
functions of finite sets. Claim: The constant function g = 1 € X is in the
closure of S, but is not the pointwise limit of functions in S.

Indeed given any basic neighborhood A = Ay(t1,...,ts,€), the charac-
teristic function of the set {¢1,...,t,} isin ANS. Now if f, € S, fn = ¢
pointwise on R, the set of ¢ € R such that f,(t) # 0 for some n is count-
able, so there exists tg € R such that f,(tp) = 0 for all n. This contradicts

fn(to) — 1.

Ex. 3. The uniform topology in F,, = F,(X,Y) is metrizable (X : set;
(Y, d) metric space.)

This is not obvious, since X may be infinite and (Y, d) unbounded; so
we can’t just take the sup metric. Recall a local basis for F,, at f is given
by the sets:

By(e) = {g € Fud(f(c), g(x)) < e,V € X}.

Recall two metrics d,d’ in Y are uniformly equivalent if the identity is a
uniform homeomorphism. (A homeomorphism f of metric spaces is uniform
if both f and f~! are uniformly continuous.) For example, the metrics

d(z,y), min{d(z,y),1}, 11(;(5,)@;) are all uniformly equivalent (exercise.)




Proposition. If M, N are metric spaces and ¢ : M — N is uniformly
continuous, the map induced by composition ¢, : Fy, (X, M) — F, (X, N) is
continuous. (The converse holds if X is infinite.)

As a corollary, if ¢ is a uniform homeomorphism, ¢, is a homeomor-
phism. If ¢ is bounded (for instance if dy is bounded), then ¢, maps
Fu(X, M) to B,(X, N), the space of bounded maps, with the uniform topol-
ogy (which is metrizable via the sup norm.)

Thus two uniformly equivalent metrics in Y define equivalent topologies
in Fu,(X,Y), and if one of them is bounded we have that F,(X,Y) and
B, (X,Y) are homeomorphic, the latter space being metrizable.

Since any metric in Y is uniformly equivalent to a bounded one, we see
that F,(X,Y) is always metrizable.

Ex. 4. Let X be an infinite set. Then F, (X, R) (where R has the usual
metric d(z,y) = |x — y|) is disconnected, since B, (X, R) (bounded maps) is
open, closed, non-empty, and not the whole space. Let h: R — (—=1,1) = J
be the homeomorphism h(x) = z/(1 + |z|), and define in R the bounded
metric dy(z,y) = |h(x) — h(y)|, which is equivalent to d, but not uniformly.
Let Ry = (R,dy). Then F, (X, Ry) is metrizable (since d; is bounded), and
in fact hy : Fou (X, R1) — Fu(X, J) is an isometry (between d; and d), in par-
ticular a homeomorphism. Now F,, (X, J) is a convex subset of the normed
vector space By (x, R), in particular a connected space. Hence F,,(X, R;) is
connected as well, and so cannot be homeomorphic to F, (X, R).

This example should be carefully compared with the argument in Ex-
ample 3.

Ex. 5 Compactness vs. sequential compactness. Consider the conditions
(for a given space X). Note: sequences always assumed injective.

(1) Every sequence in X has a cluster point (x is a cluster point of (zy,)
if any open neighborhood of x contains infinitely many x,,.)

(2) Every sequence in X has a subsequence converging to a point of X
(sequential compactness.)

(3) X is compact.

Then:

a) (3)= (1), for any space:

Proof: If (z,,) has no cluster point, for all x there is an open neighbor-
hood V, containing only finitely many sequence elements. Taking a finite
subcover, we see this would imply the set {z,,;n > 1} is finite, contradiction.



b) (2)= (1), for any space (clear);
c) If X is first-countable, (1)= (2). In particular, for 1st countable
spaces, compact implies sequentially compact.

Proof: Let = be a cluster point of (zy), (V})j>1 a countable basis of
neighborhoods of =, where we may assume V;41 C V;. Form a subsequence
in the following way: take n; so that z,, € Vi, then ny > n; so that
Tny € Va,..., njy1 > nj so that T,y € Vi, ete. Then Tp; —> T as j — 00.

Note that in Example 2 (for the compact space F,(R,[0,1])), the char-
acteristic function x¢ of the rationals is a cluster point of the set of continu-
ous functions (see Example 6 below), but there is no sequence of continuous
functions converging pointwise to g.

d) If X is second countable, all are equivalent. (L.e. (1) or (2) imply
(3), in particular compact and sequentially compact are equivalent for 2nd
countable spaces (for example, for separable metric spaces).

Proof: Let C be an open cover of X. Second countable implies Lin-
delof [Munkres p. 190-191], so there exists a countable subcover {U;};>1.
Proceeding by contradiction, assume there is no finite subcover. Then take
r1 € Up,zo € Uy \ Us,x3 € Us \ (U1 U UQ), .xy € Uy, \ (U1 U...UU,1,
... This defines an infinite sequence (x,) so that x,, & U, if m < n. Let x be
a cluster point. Then = € U; for some ¢, and then z,, € U; for some n > 1,
contradiction.

Ex. 6. Consider again the compact space X = F,(R,[0,1]). Let
{rn}n>1 be an enumeration of the rationals. For each E; = {ry,...,r;},
let f; € X be the characteristic function of E;. Then f; converges pointwise
to the characteristic function xg € X of the rationals, and on the other
hand each f; is the pointwise limit of a sequence of continuous functions in
X. Soif § C X is the set of continuous functions, x¢ is a cluster point of X:
any neighborhood of x¢g contains infinitely many points of S (check this.)
However, x¢g cannot be the pointwise limit of any sequence in S, since it is
discontinuous everywhere.

Ex. 7. First countable spaces X are compactly generated.

Let F' C X such that FNC' is closed in C, for each C' C X compact. To
show F' is sequentially closed in X, let x,, be a sequence in F', and assume
limz, =xin X. Let C = {z,;n > 1} U{x}. Then C is compact: if U is an
open cover of C, we may, for each n, pick U, € U so that x,, € Uy; and also
Uy € U containing . Now let N be such that x, € Uy for n > N. Then
Uy, Uy, ... U, is a finite subcover of C.



Thus F'NC is (sequentially) closed in C' (first countability is inherited
by subspaces.) Since z, € FNC, also z € FNC, proving x € F, so F is
sequentially closed.

Ex 8. Locally compact spaces X are compactly generated.

Let A C X be such that AN C is open in C, for all C' C X compact.
Given z € A, we want to find W open in X and containing x, so that
W C A.

Since X is locally compact, there exist V open in X and C' compact in X,
so that z € V.C C. Then AN C is open in C (on the subspace topology),
while x € AN C. So there exists U open in X and containing = so that
UNC cCc ANC. Now let W =U NV, clearly open in X and containing x.
WcUandWcCcV cC,soWcUNC C A.

Ex. 9. Example of a non-compactly generated space [Willard 43H, p.
289

X = Fp(R,R) (pointwise convergence) is not compactly generated. To
see this consider the set:

T={feX;(3n>1)(3F C R)card (F) <n, f(z) =0on F, f(x) =n on R\F}.

Then T is not closed (the identically 0 function is in the closure of T, but
not in 7'.) But "N C is compact (in particular closed in C), for all C C X
compact. (Exercise). Qutline: Note that if C' is compact, for each x € R
there exists an M, > 0 so that |f(x)| < M,, for all f € C. The definition of
T then implies that, for each x € R, the image {f(x); f € TNC} is a finite,
hence compact subset of R. By Tychonoff’s theorem, T'N C' is compact.

Ex. 10. Let K be a compact metric space, M a separable metric space
(in particular, with countable basis). The metric space X = Cy(K, M)
(continuous functions, uniform topology, sup metric) has countable basis.

Proof. Let B be a countable basis for M. We may assume diam(B;) < €:
given x € K the ball of center x and radius €/3 is a union of elements of
N, all with diameter < ¢, and one of which must contain x.

For each n > 1, fix once and for all a decomposition K = K{'U... UK},
where diam(K]') < 1/n and p = p(n). For each n > 1 and each p-tuple
o= (By,...,Bp) of elements of B (with the same cardinality p = p(n)), let

A(n,0) ={f € C(K;M); f(K]') C Bi;i=1,...,p}.

Clearly the collection of all such A(n, o) (for varying n and o) is countable.
We claim it is a basis of open sets for X.



The A(n, o) are open: if f € A(n,o), f(K]') is a compact subset of B;,
so d(f(K['),M \ B;) = ¢; > 0, and if ¢ = min; ¢; and d(f, g) < €, then also
g(K") C B;, so g € A(n,0).

Now we show that for each f € X and € > 0, we may find A(n, o) so that
€ A(n,o) C By(e). For the later it suffices to show diam(A(n, o)) < 2¢. (We
take the sup metric in X. )We know f(K) is contained in a finite number
of sets of B, each with diameter < €. Let 1 be a Lebesgue number of this
cover of f(K).

By uniform continuity of f, there exists an n > 1 so that in the decom-
position K = K{'U...U K}. we have diam(f(K}')) < n, and hence each
f(K7) is contained in a single set of the cover, giving o = (B1,...,B,) in B
so that f(K') C B;. So f € A(n,0).

In addition, if g,h € A(n,0) and z € K, x € K for some i and both ¢
and h map K] to B;, so d(g(z),h(x)) < e. This shows diam(A(n, o)) <€,
as desired.

In particular, the metric space C(K) of continuous R-valued functions
in K has a countable basis, and hence is separable.

Ex. 11. (Ezample of an inseparable metric space.) If, instead, we
consider X = C(M, K) (M separable metric, K compact metric), X (with
the sup metric, or uniform convergence) is not necessarily separable. For an
example, consider X = Cy(R, [0, 1]).

The set P(Z) of subsets of Z is uncountable. To each S C Z, associate
a piecewise linear function fg whichis 1 on S, 0 on Z\ S. Then if S; # So
are two different subsets of Z, d(fs,, fs,) = 1. So the set of all fg is an
uncountable, discrete subset of X, and therefore X cannot be separable
(exercise.) In particular, it follows that, unlike F,(R,[0,1]) (pointwise),
Fu(R,[0,1]) (sup metric) is not compact. (Since compact metric spaces are
always separable—proof?)

Note that this example also shows the Banach space CY(R, R) (con-
tinuous bounded functions, with the sup norm) is not separable. Another
example is given next.

Ex.12. For fixed 0 < a < 1, consider the space E, = C%[0,1] of real-
valued Hoélder-continuous functions on the unit interval, with the norm:

1fll = 1£(0)] + sup LS

x1;éx2 ’fl;l _xQ‘a

It is easy to show this is a Banach space, and we claim it is not separable.



The argument is the same as in the preceding example: we find an uncount-
able family {fi};c(,1) in Ea, with pairwise unit distance from each other.
Namely, consider:

filz) =0,0<x<t; fi(z)=(z—-t)%t<z<1.

We have: (i) f; € Eq, with ||f¢]| = 1. (DIE0 <t <t <1, ||fy — fel| = 1.
Thus FE, is not separable.
To see this, note that a simple computation gives:

|(fe = f) @) — (fe = f)@E)] _

(# —1)°

|| fe—fel]| = sup |(fe — fo)(z1) = (fr — fi)(22)] -

T172 |21 — 22|® - |t/ — t|™

Remarks: (i) Spaces of Holder-continuous functions are ubiquitous in
PDE (where they are needed for sharp regularity results), usually with a
different norm:

fllce = 111wy + sup L&D =S @2)]

T1£T2 ‘xl _x2|a

It is still true the space is inseparable for this norm: since it dominates the
earlier norm, a countable dense set in this norm would also be dense for the
earlier one.

(ii) Exactly the same argument, in the case a = 1, shows that the space
of Lipschitz functions in [0, 1] (with the usual norm, which makes it a Banach
space) is also not separable.

In the next examples we consider the questions of metrizability and
countable basis for the spaces F,(X, M), Cy (X, M),C.(X, M) (X: top. space,
(M, d): metric space.

For the pointwise topology, we just use known facts about the product
topology to conclude:

For M metric (and with more than one point!), F,(X, M) is metrizable
if and only if X is countable (and then there is a natural metric.) And
Fp(X, M) is second-countable if, and only if, X is countable and M is sep-
arable.

For the uniform topology: C, (X, M) is always metrizable by the sup
metric, replacing d by a uniformly equivalent bounded metric, if needed, as
discussed in Example 3. (And this metric will be complete, if the metric
on M is.) And we saw in Example 10 that C, (X, M) is second countable

(& —1)°

=1.



(equivalently: separable), if X is compact metric and M is separable metric.
On the other hand, Example 11 shows this fails if X is not compact.

Turning to the u.o.c topology, we focus on the case: X locally compact
and o-compact. Then there exists a compact exhaustion:

X = U K;; K; compact , K; Cint(K;i1).
i>1

Ex. 13. If X is locally compact, o-compact (for instance, a topological
manifold), then C.(X, M) is second-countable if M is separable metric.

For each i > 1, let B; be a countable basis for C,(K;, M) (using Example
10.) Then B = |J,», Bi is a countable basis for C.(X,M). To see this,
consider a basic open neighborhood By(K,€) of f € C.(X, M), and pick
some 7 > 1 so that K C K;. (Note: we need local compactness for this.)
Let gi = fk,. Then:

B¢(K,€) D By, (Ki e) ={h € C(K;, M);d(h(x), gi(x)) < €,z € K;}.
And this latter set (a basis element for the uniform topology over K;) is the

union of (countably many) open sets in B;.

Ex. 14. If X is locally compact, o-compact, (M,d) metric, then
Ce(X, M) is metrizable with a natural metric (complete, if the metric on
M is.)

Indeed, we may take on C.(X, M) the metric:

o0

&1 w d(f(x),g(x))
d(f.9) = ; 2 SR+ d(f(x), 9(x)

The last two examples answer questions raised in class:
Ex. 15 A subset of the real line which is both residual and a nullset.

Let {r1,r2,...} be an enumeration of the rationals, and for each n > 1
and j > 1 let I,,; be an open interval with center 7, length 1/2"%J. Then
Aj =U,>1 Inj is open and dense in R, hence A = (1), 4; is residual in R.
But also A C U, Inj, and 3_, i length(I,;) =
small, taking j large enough.

Corollary: Any subset of R is the union of a nullset and a set of first
category. (Ref: J.C. Oxtoby, Measure and Category, Springer-Verlag 1980,

p.5.)

1 . .
57 can be made arbitrarily



Ex. 16. There exists a function f, differentiable in [0,1], whose deriva-
tive does not have constant sign on any non-degenerate interval in [0,1].
(Ref: Twelve Landmarks of Twentieth Century Analysis by Choimet and
Queffélec, p.116.)



