THE WEIERSTRASS and STONE APPROXIMATION THEOREMS

Theorem 1. Weierstrass approximation theorem (1885). The space of
polynomials is dense in Cfa, b], for the uniform topology.

About sixty years later, a generalization was found to algebras of con-
tinuous functions on any (Hausdorff) space. (An algebra is a linear subspace
of C(X) which is closed under pointwise multiplication.).

Theorem 2. (M.H. Stone) Let X be a Hausdorff space. Suppose A C
C(X) is a subalgebra of the algebra of continuous real-valued functions on
X, satisfying:

(i) A vanishes nowhere: for all p € X there exists f € A so that f(p) # 0;

(ii) A separates points of X: if p # ¢, there exists f € A so that
f(p) # f(q). (Note this implies X is Hausdorff.)

Then A is dense in C(X), for the topology of uniform convergence on
compact sets.

The proof follows from Weierstrass’s theorem and the following even
more general fact, of interest in itself:

Theorem 3. Lattices in C(X) with two-point interpolation are dense.

Let X be a Hausdorff space, F C C(X) be a subset with the following
two properties:

(i) two-point interpolation property: given p # ¢ in X and ¢p,¢q € R,
there exists f € F so that f(p) = ¢p, f(q) = ¢4

(ii) F is a lattice: if f,g € F, their pointwise min f A g and pointwise
max f Vg are also in F (and therefore the same is true for any finite number
of functions in F).

Then F is dense in C(X), for the topology of uniform convergence on
compact sets.

Proof of Theorem 3. Given f € C(X), K C X compact and € > 0, we
must find g € F so that |[f(x) — g(z)| <, for all x € K.

For each p,q € K, let hy, € F satisfy hpq(p) = f(p), hpg(q) = f(@) (p=¢
not excluded.) Now fix p € K.

For each ¢ € K we have a neighborhood V,4 so that f(z) — € < hyq(z),
for x € Vj,q. Thus K C Vp, U...UV),y,, for some finite set {q1,...,qn} C K.
In particular, for the pointwise max of the hyq,:

f(x)—€ < (hpg V.. Vhpgy )(@),z € K;  and hy = hpg, V.. Nhpgy € F, hy(p) = f(p).



Now we vary p. For each p € K we have a neighborhood U, such that
hp(z) < f(x)+e, for all z € U,. Thus K C U, U...UU,,,, for some finite set
{p1,...,pm} C K. Therefore their pointwise minimum, g = hy,, A... Ah
is in F and satisfies, for all z € K:
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f(@) —e<g(x) < f(z) +e
as desired.

The proof of Stone’s theorem from Theorem 3 amounts to proving the
following two lemmas:

Lemma 1. Any algebra A C C(X) satisfying the non-vanishing and
separation properties automatically has the two-point interpolation prop-
erty.

Proof of Lemma 1. Let p # q be points in X, h € A with h(p) # h(q),

g1,92 € A with g1(p) # 0, g2(p) # 0. Then g = g7 + g5 € A and g(p) #
0,9(q) # 0. Look for a solution of f(p) = c1, f(q) = c2 of the form:

f=z9+yghe A

The 2 x 2 linear system for (z,y) defined by f(p) = c1,f(¢) = c2 has
determinant g(p)g(q)(h(g) — h(p)) # 0, and hence has a unique solution.

Lemma 2. Let A C C(X) be an algebra. Then f € A = |f|] € A
(closure in the topology of uniform convergence on compact sets.)

Indeed Lemma 2 implies the u.o.c closure of any algebra A in C(X) is a
lattice, since, for f,g € A:

FVg=5(ftatlf—ali fAg=y(i+g—If g

Proof of Lemma 2.

Let f € C(X), K C X compact, ||f||x = sup{|f(z)|;x € K}. Using
the Weierstrass approximation theorem, we find a polynomial p so that
Ip(t) — |t|] < §, for all ¢ with |t| < [|f[|x. In particular |p(0)] < §, so
q(t) = p(t) — p(0) is a polynomial with zero constant term (¢(0) = 0),
satisfying |q(t) — |t|| < € whenever |t| < ||f||k-

Thus g = q(f) € A (we need ¢(0) = 0 for this, since we don’t assume A
includes constant functions other than 0), and:

lg(z) — |f(z)|]| <€ forall z € K,

as we wished to show.



Proof of Stone’s Theorem 2. We apply Theorem 3 to the algebra A C
C(X), which is a lattice (Lemma 2) with two-point interpolation (since A
has this property, by Lemma 1.) The conclusion is A is dense in C'(X). But
this clearly implies A itself is dense in C'(X) (for the u.o.c. topology, in both
cases.)

Proof of the Weierstrass approzimation theorem. We consider C0,1]
and P,[0, 1], the subspace of polynomials of degree at most n. There is
a “formula” for the approximation, given by Bernstein polynomials, the
bounded linear operator B,, : C[0,1] — P,[0,1], || By|| = 1:

Balf] = . Okl (k1 — ay
k=0

where C), j, = m are binomial coefficients. This is reminiscent of the

binomial formula; we see that B,[1] = 1, and differentiating (twice) in z the
binomial expansion of (x 4+ y)" and setting y = 1 — z, we see that:

n= Z Crkaz®(1 — )" n(n—1)2% = ch,kk(k —1D)az* (1 — )",
k=1 k=2

Thus, we have:

Bplz] =z, Byula?] =2+ %:1:(1 —x).

Exercise 1. Restricted to the space spang{l,z,2%} of quadratic polyno-
mials, the operator B, is diagonalizable, with eigenbasis {1,z,z(1 — z)},
eigenvalues {1,1,1— 1} (resp.)

Exercise 2. The operator B,, preserves convexity and pointwise ordering of
functions.

The proof of the theorem gives a quantitative estimate. Recall the mod-
ulus of continuity of a function f on [0, 1] is defined by:

wy(0) = sup{|f(z) = f(y)l;z,y € [0,1], |z — y| < 6}.
By uniform continuity, f € C[0, 1] iff ws(d) L 0 as 0 | 0.
Lemma 3. Let f € C|[0,1]. Then for all 6 > 0,

1Balf] = 71l < (14 sy ()
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(sup norm). As a corollary, taking 6 = in, we have the estimate:

1811 = 11l < For( =)

a quantitative estimate that clearly implies Weierstrass’s theorem.

Proof of Lemma 3. We let rpi(z) = Cppaf(1 — 2)"* € P,[0,1], so
> ko Tnk(z) =1 on [0,1] and:

(f = Balf)a) = (@) ~ FC)raaa).

k=0

Fix 0 > 0 and n. For a given x € [0, 1] split the set of k from 0 to n into
two:

Ki(z) = {k: |2 — %y <6}, Ka(z) = {ki |z — Sy > 5.

The sum over Ki(z) is estimated in absolute value by w¢(9).

To estimate the sum over k € Ko(x), divide the segment from z to each

_k
% into segments of length 6. We need |z57n‘ segments, and following the

change of f along the chain we find, for k € Ks(x):

Lk _k _ k)2
@) - s < Bl < by,

n

since xT > 1 for k € Ka(z). Thus the sum over Ks(z) is estimated by:

wf(0) ko k2

(2% — 22— 4+ —5]ra(2)
52 P n ' pzl "
O 2 by o) + Bale?) = 20 a1 - o),

using the facts about B, alluded to earlier. Since (1 —x) is bounded above
by i when z € [0, 1], this concludes the proof.

Remark on complex-valued functions. Let X = D, the open unit disk in
the complex plane. The algebra A of complex-valued polynomials on D is
non-vanishing and separate points; but its closure in the u.o.c. topology in
C(X,C) is the space of all holomorphic functions on D! Thus the Weierstrass
theorem is not true in the complex-valued case. But it’s true if we add a



condition on A (a nonvanishing, separating algebra in C'(X,C)), X any
Hausdorff space:

feA=fcA

Exercise 8. Under the above conditions, the set B = {f+ f,i(f — f); f € A}
is an algebra in C'(X, R), nonvanishing and separating points (and contained
in A).

Thus we can reduce to the real-valued Stone theorem, taking real and
imaginary parts of functions in A (exercise: check this.) Namely, given
g € C(X,C), e-approximate Re(g),Im(g) € C(X,R) over K C X compact
by fi1, fo € B. Then with f = f; +ify € A, we have:

g — fllx < V2e.

The following are easily proven corollaries of Stone’s approximation the-
orem.

Corollary. (i) Let X be a smooth manifold. If f € C(X), f can
be approximated by smooth functions g € C°°(X), uniformly on compact
subsets of X.

(ii) If X is a smooth manifold, any continuous map f : X — R™ may be
approximated by smooth maps ¢ : X — R™, uniformly on compact subsets
of X. If f is a proper map, the approximating smooth maps g may be taken
to be proper maps as well.

(iii) if X is a smooth manifold, any continuous map to the n-sphere,
f X — 58" may be approximated by smooth maps ¢ : X — S™, uniformly
over compact subsets of X. If X is compact, the approximating smooth
maps g may be taken homotopic to f (as maps to S™).



