
THE WEIERSTRASS and STONE APPROXIMATION THEOREMS

Theorem 1. Weierstrass approximation theorem (1885). The space of
polynomials is dense in C[a, b], for the uniform topology.

About sixty years later, a generalization was found to algebras of con-
tinuous functions on any (Hausdorff) space. (An algebra is a linear subspace
of C(X) which is closed under pointwise multiplication.).

Theorem 2. (M.H. Stone) Let X be a Hausdorff space. Suppose A ⊂
C(X) is a subalgebra of the algebra of continuous real-valued functions on
X, satisfying:

(i) A vanishes nowhere: for all p ∈ X there exists f ∈ A so that f(p) 6= 0;
(ii) A separates points of X: if p 6= q, there exists f ∈ A so that

f(p) 6= f(q). (Note this implies X is Hausdorff.)
Then A is dense in C(X), for the topology of uniform convergence on

compact sets.

The proof follows from Weierstrass’s theorem and the following even
more general fact, of interest in itself:

Theorem 3. Lattices in C(X) with two-point interpolation are dense.

Let X be a Hausdorff space, F ⊂ C(X) be a subset with the following
two properties:

(i) two-point interpolation property: given p 6= q in X and cp, cq ∈ R,
there exists f ∈ F so that f(p) = cp, f(q) = cq.

(ii) F is a lattice: if f, g ∈ F , their pointwise min f ∧ g and pointwise
max f ∨g are also in F (and therefore the same is true for any finite number
of functions in F).

Then F is dense in C(X), for the topology of uniform convergence on
compact sets.

Proof of Theorem 3. Given f ∈ C(X),K ⊂ X compact and ε > 0, we
must find g ∈ F so that |f(x)− g(x)| < ε, for all x ∈ K.

For each p, q ∈ K, let hpq ∈ F satisfy hpq(p) = f(p), hpq(q) = f(q) (p = q
not excluded.) Now fix p ∈ K.

For each q ∈ K we have a neighborhood Vpq so that f(x) − ε < hpq(x),
for x ∈ Vpq. Thus K ⊂ Vpq1∪. . .∪VpqN , for some finite set {q1, . . . , qN} ⊂ K.
In particular, for the pointwise max of the hpqi :

f(x)−ε < (hpq1∨. . .∨hpqN )(x), x ∈ K; and hp = hpq1∨. . .∨hpqN ∈ F , hp(p) = f(p).
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Now we vary p. For each p ∈ K we have a neighborhood Up such that
hp(x) < f(x)+ε, for all x ∈ Up. Thus K ⊂ Up1∪. . .∪UpM , for some finite set
{p1, . . . , pM} ⊂ K. Therefore their pointwise minimum, g = hp1 ∧ . . . ∧ hpM
is in F and satisfies, for all x ∈ K:

f(x)− ε < g(x) < f(x) + ε,

as desired.

The proof of Stone’s theorem from Theorem 3 amounts to proving the
following two lemmas:

Lemma 1. Any algebra A ⊂ C(X) satisfying the non-vanishing and
separation properties automatically has the two-point interpolation prop-
erty.

Proof of Lemma 1. Let p 6= q be points in X, h ∈ A with h(p) 6= h(q),
g1, g2 ∈ A with g1(p) 6= 0, g2(p) 6= 0. Then g = g21 + g22 ∈ A and g(p) 6=
0, g(q) 6= 0. Look for a solution of f(p) = c1, f(q) = c2 of the form:

f = xg + ygh ∈ A.

The 2 × 2 linear system for (x, y) defined by f(p) = c1, f(q) = c2 has
determinant g(p)g(q)(h(q)− h(p)) 6= 0, and hence has a unique solution.

Lemma 2. Let A ⊂ C(X) be an algebra. Then f ∈ A ⇒ |f | ∈ A
(closure in the topology of uniform convergence on compact sets.)

Indeed Lemma 2 implies the u.o.c closure of any algebra A in C(X) is a
lattice, since, for f, g ∈ A:

f ∨ g =
1

2
(f + g + |f − g|); f ∧ g =

1

2
(f + g − |f − g|).

Proof of Lemma 2.
Let f ∈ C(X), K ⊂ X compact, ||f ||K = sup{|f(x)|;x ∈ K}. Using

the Weierstrass approximation theorem, we find a polynomial p so that
|p(t) − |t|| < ε

2 , for all t with |t| ≤ ||f ||K . In particular |p(0)| < ε
2 , so

q(t) = p(t) − p(0) is a polynomial with zero constant term (q(0) = 0),
satisfying |q(t)− |t|| < ε whenever |t| ≤ ||f ||K .

Thus g = q(f) ∈ A (we need q(0) = 0 for this, since we don’t assume A
includes constant functions other than 0), and:

|g(x)− |f(x)|| < ε, for all x ∈ K,

as we wished to show.
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Proof of Stone’s Theorem 2. We apply Theorem 3 to the algebra A ⊂
C(X), which is a lattice (Lemma 2) with two-point interpolation (since A
has this property, by Lemma 1.) The conclusion is A is dense in C(X). But
this clearly implies A itself is dense in C(X) (for the u.o.c. topology, in both
cases.)

Proof of the Weierstrass approximation theorem. We consider C[0, 1]
and Pn[0, 1], the subspace of polynomials of degree at most n. There is
a “formula” for the approximation, given by Bernstein polynomials, the
bounded linear operator Bn : C[0, 1]→ Pn[0, 1], ||Bn|| = 1:

Bn[f ] =

n∑
k=0

Cn,kf(
k

n
)xk(1− x)n−k,

where Cn,k = n!
(n−k)!k! are binomial coefficients. This is reminiscent of the

binomial formula; we see that Bn[1] = 1, and differentiating (twice) in x the
binomial expansion of (x+ y)n and setting y = 1− x, we see that:

n =
n∑
k=1

Cn,kkx
k(1− x)n−k, n(n− 1)x2 =

n∑
k=2

Cn,kk(k − 1)xk(1− x)n−k.

Thus, we have:

Bn[x] = x, Bn[x2] = x2 +
1

n
x(1− x).

Exercise 1. Restricted to the space spanR{1, x, x2} of quadratic polyno-
mials, the operator Bn is diagonalizable, with eigenbasis {1, x, x(1 − x)},
eigenvalues {1, 1, 1− 1

n} (resp.)

Exercise 2. The operator Bn preserves convexity and pointwise ordering of
functions.

The proof of the theorem gives a quantitative estimate. Recall the mod-
ulus of continuity of a function f on [0, 1] is defined by:

ωf (δ) = sup{|f(x)− f(y)|;x, y ∈ [0, 1], |x− y| < δ}.

By uniform continuity, f ∈ C[0, 1] iff ωf (δ) ↓ 0 as δ ↓ 0.

Lemma 3. Let f ∈ C[0, 1]. Then for all δ > 0,

||Bn[f ]− f || < (1 +
1

4nδ2
)ωf (δ)
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(sup norm). As a corollary, taking δ = 1√
n

, we have the estimate:

||Bn[f ]− f || < 5

4
ωf (

1√
n

),

a quantitative estimate that clearly implies Weierstrass’s theorem.

Proof of Lemma 3. We let rnk(x) = Cn,kx
k(1 − x)n−k ∈ Pn[0, 1], so∑n

k=0 rnk(x) ≡ 1 on [0,1] and:

(f −Bn[f ])(x) =
n∑
k=0

(f(x)− f(
k

n
))rnk(x).

Fix δ > 0 and n. For a given x ∈ [0, 1] split the set of k from 0 to n into
two:

K1(x) = {k; |x− k

n
| < δ}, K2(x) = {k; |x− k

n
| ≥ δ.}.

The sum over K1(x) is estimated in absolute value by ωf (δ).
To estimate the sum over k ∈ K2(x), divide the segment from x to each

k
n into segments of length δ. We need

|x− k
n
|

δ segments, and following the
change of f along the chain we find, for k ∈ K2(x):

|f(x)− f(
k

n
)| ≤

|x− k
n |

δ
ωf (δ) ≤

|x− k
n |

2

δ2
ωf (δ),

since
|x− k

n
|

δ ≥ 1 for k ∈ K2(x). Thus the sum over K2(x) is estimated by:

ωf (δ)

δ2

n∑
k=0

[x2 − 2x
k

n
+
k2

n2
]rnk(x)

=
ωf (δ)

δ2
(x2 − 2xBn[x] +Bn[x2]) =

ωf (δ)

δ2
1

n
x(1− x),

using the facts about Bn alluded to earlier. Since x(1−x) is bounded above
by 1

4 when x ∈ [0, 1], this concludes the proof.

Remark on complex-valued functions. Let X = D, the open unit disk in
the complex plane. The algebra A of complex-valued polynomials on D is
non-vanishing and separate points; but its closure in the u.o.c. topology in
C(X,C) is the space of all holomorphic functions onD! Thus the Weierstrass
theorem is not true in the complex-valued case. But it’s true if we add a
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condition on A (a nonvanishing, separating algebra in C(X,C)), X any
Hausdorff space:

f ∈ A ⇒ f ∈ A.

Exercise 3. Under the above conditions, the set B = {f+f, i(f−f); f ∈ A}
is an algebra in C(X,R), nonvanishing and separating points (and contained
in A).

Thus we can reduce to the real-valued Stone theorem, taking real and
imaginary parts of functions in A (exercise: check this.) Namely, given
g ∈ C(X,C), ε-approximate Re(g), Im(g) ∈ C(X,R) over K ⊂ X compact
by f1, f2 ∈ B. Then with f = f1 + if2 ∈ A, we have:

||g − f ||K ≤
√

2ε.

The following are easily proven corollaries of Stone’s approximation the-
orem.

Corollary. (i) Let X be a smooth manifold. If f ∈ C(X), f can
be approximated by smooth functions g ∈ C∞(X), uniformly on compact
subsets of X.

(ii) If X is a smooth manifold, any continuous map f : X → Rn may be
approximated by smooth maps g : X → Rn, uniformly on compact subsets
of X. If f is a proper map, the approximating smooth maps g may be taken
to be proper maps as well.

(iii) if X is a smooth manifold, any continuous map to the n-sphere,
f : X → Sn, may be approximated by smooth maps g : X → Sn, uniformly
over compact subsets of X. If X is compact, the approximating smooth
maps g may be taken homotopic to f (as maps to Sn).
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