MATH 561, FALL 2022–PROBLEM SET 1

1. Let X be a locally compact, second countable Hausdorff space. Starting from a countable basis of open sets, remove those whose closure is not compact. Prove that the remaining open sets still form a (countable) basis of X.

2. Let X be a normal space. There exists a continuous function $f : X \to [0,1]$ such that f(x) = 0 for $x \in A$, f(x) > 0 otherwise, if and only if A is a closed G_{δ} set in A.

3. Let X be a normal space. There exists a continuous function $f : X \to [0,1]$ such that f(x) = 0 for $x \in A$, f(x) = 1 for $x \in B$, 0 < f(x) < 1 otherwise, if and only if A and B are disjoint, closed G_{δ} subsets of A.