MATH 562, SPRING 2023-HOMEWORK SET 5

1. Prove that the boundary orientation of $S^{k}=\partial B^{k+1}$ is the same as its preimage orientation under the map:

$$
g: R^{k+1} \rightarrow R, \quad g(x)=|x|^{2} .
$$

2.(i) Let $f: R^{2} \rightarrow R$ be a smooth function, $S \subset R^{3}$ its graph, $S=$ $\{(x, y, f(x, y)\}$. Determine the preimage orientation of S under the map:

$$
F: R^{3} \rightarrow R, \quad F(x, y, z)=z-f(x, y)
$$

(ii) A basis of tangent vectors and the upward normal at a point of the graph are given by:

$$
v_{1}=\left(1,0, f_{x}\right), \quad v_{2}=\left(0,1, f_{y}\right), \quad\left(-f_{x},-f_{y}, 1\right)
$$

Is $\left\{v_{1}, v_{2}\right\}$ positively oriented? Does the preimage orientation coincide with that induced on S by the upwards or the downwards normal?
3. Prove that every compact hypersurface in euclidean space is orientable. (You may use the Jordan-Brower theorem.)
4. (i) Compute the degree of the antipodal map of S^{k}.
(ii) Prove the antipodal map is homotopic to the identity if and only if k is odd.
(iii) Prove there exists a nonvanishing vector field on S^{k} if and only if k is odd.
5. (i) Prove that for given $f: X \rightarrow Y, g: Y \rightarrow Z, \operatorname{deg}(g \circ f)=\operatorname{deg}(f) \operatorname{deg}(g)$.
(ii) Suppose $g: W \rightarrow X, f: X \rightarrow Y$ and a submanifold $Z \subset Y$ are given, with $f \pitchfork Z$ on X. Show that if $f \circ g$ and Z are appropriate for intersection theory, so are g and $f^{-1}(Z)$, and prove that:

$$
I(f \circ g, Z)=I\left(g, f^{-1}(Z)\right)
$$

6. (i) Prove that the Euler characteristic of the product of two compact, oriented manifolds is the product of their Euler characteristics.
(ii) Let Z be a compact submanifold of Y, both oriented, with $\operatorname{dim}(Z)=$ $\frac{1}{2} \operatorname{dim}(Y)$. Prove that:

$$
I(Z, Z)=I(Z \times Z, \Delta)
$$

(See the hint in [G-P, p.118].) Δ is the diagonal submanifold of $Y \times Y$.

