
EXISTENCE OF TUBULAR NEIGHBORHOODS

Let Mm ⊂ Rm+n be a submanifold. At each p ∈ M , the tangent space
TpM is a subspace of Rm+n, and we denote by νpM (normal space at p) its
orthogonal complement. These subspaces fit together to give a vector bundle
over M , which can be given a Ck−1 manifold structure if M is of class Ck

(k ≥ 2):
νM = {(p, v) ∈M ×Rm+n; v ∈ νpM},

the normal bundle of M in Rn+m, a vector bundle of rank n (fiber dimension)
over M . We also consider the open normal ball of radius ε > 0 at p:

B⊥(p, ε) = {p+ v ∈ Rm+n; v ∈ νpM, |v| < ε},

a union of normal segments [p, p+ v], |v| < 1, based at p, normal to M .

Example: Preimages of regular values. If f : U → Rn is a Cr map (U ⊂
Rm+n open) , c ∈ Rn is a regular value and M = f−1(c), the gradients ∇f i of
the components of f give n linearly independent normal vector fields, globally
defined on M and linearly independent at each point. (They are l.i. since c is
a regular value, so at any point p ∈M , the differential df(p) ∈ L(Rm+n, Rn) is
surjective, and its rows are the ∇f i.) Thus the normal bundle νM is ‘trivial’
in this case, that is, equivalent to the product bundle M ×Rn.

Note that, by the definition of submanifold, this is always true locally: given
any p ∈ M , there exists a neighborhood U ⊂ Rn+m (open) of p, and a map
f : U → Rn so that 0 ∈ Rn is a regular value and M ∩ U = f−1(0), and thus
we have n linearly independent normal vector fields defined in M ∩ U .

An admissible normal radius for M is a number εM > 0 so that normal balls
based at different points of M , with radius less than or equal to εM , do not
intersect.

Theorem 1: Tubular neighborhood of a compact submanifold. Let Mm ⊂
Rm+n be a compact submanifold (of class Ck). Then there exists an admissible
normal radius εM for M . If ε ≤ εM , the set:

Vε(M) =
⊔
p∈M

B⊥(p, ε)

(disjoint union) is open in Rm+n. The nearest-point retraction π : Vε(M)→M ,
defined by taking each x ∈ Vε to the center p of the unique normal ball B⊥(p, ε)
containing x, is a Ck−1 map.

Proof. (i) The theorem is true locally: any p ∈M has an open neighborhood
U ⊂ M for which an admissible normal radius εU exists. To see this, consider
local parameters at p, φ : V0 → V (diffeo of class Ck, V0 ⊂ Rm open, V an open
neighborhood of p in M). On V we have n linearly independent vector fields
v1, . . . , vn (of class Ck−1), which we may assume orthonormal. Define the Ck−1
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map Φ : V0 ×Rn → Rm+n by:

Φ(x, t1, . . . , tn) = φ(x) +
∑
i

tivi(φ(x))

(addition in Rn+m). The Jacobian [dΦ]|(x, 0) at a point of V0×{0} ⊂ Rn+m has
as its first m columns the vectors ∂xi

φ(x), as last n the vectors v1(x), . . . , vn(x).
Since the first m vectors are a basis for Tφ(x)M , the last n a basis for νφ(x)M ,
it follows dΦ(x, 0) is an isomorphism.

By the inverse function theorem, if φ(x0) = p there exists an open neighbor-
hood U0×Bε of (x0, 0) in Rm×Rn, on which Φ is a diffeomorphism to an open
set in Rn+m of the form:

Vε(U) =
⊔
q∈U

B⊥(q, ε), U = φ(U0) ⊂M.

It’s the same ε, since the fact the normal frame {vi} in V is orthonormal implies
Φ(x, ·) is an isometry from Bε in Rn to B⊥(φ(x), ε), for each x ∈ U0. And
the union is disjoint, since the normal balls are images under the diffeo. Φ of
disjoint sets {x} × Bε, {x′}×,Bε, for x 6= x′ in U0.

Within the open set Vε(U) (which contains U), the nearest-point map π(q, v) =
q ∈ U , v ∈ B⊥(q, ε), is Ck−1, since it is the inverse of Φ, followed by projec-
tion from U0 × Bε to the first factor U0, and then followed by the Ck diffeo.
φ : U0 → U .

(ii) The theorem holds globally on M : from compactness, we may cover
M by finitely many coordinate neighborhoods U1, . . . , Ur, in each of which the
conclusions of part (i) of the proof holds. So we have admissible normal radii
ε1, . . . , εr. This finite open cover also has a Lebesgue number λ, so let:

εM = min{λ
2
, ε1, . . . , εr}.

Then if ε < εM , two normal segments of length ε and different basepoints
p, q ∈ M may not intersect. This is clear if p, q are in the same Ui. If they’re
in different sets of the cover, the distance |p − q| ≥ λ > 2ε; so p, q can’t be
basepoints of intersecting euclidean segments of length ε. Clearly we have:

Vε(M) =

r⋃
i=1

Vε(Ui),

and therefore is an open set. That the nearest-point retraction π : Vε(M)→M
is a Ck−1 map is a local statement, hence already shown in part(i).

We record the case of trivial normal bundle, Say a tubular neighborhood
Vε(M) is equivalent to a product if there exists a diiffeomorphism h : M ×Bε →
Vε(M) which preserves fibers (takes {x} × Bε to B⊥(p, ε), p = h(x, 0)).
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Proposition. For a submanifold Mm ⊂ Rm+n (compact or not), the fol-
lowing are equivalent:

1) M is the preimage of a regular value a ∈ Rn, for some smooth map
f : U → Rn, U ⊂ Rm+n open.

2) M admits n linearly. independent, globally defined normal vector fields,
vi : M → Rm+n, vi(p) ∈ νpM .

3) Any tubular neighborhood of M in Rm+n is equivalent to a product.

Exercise. Show that the graph (in R2) of the curve y = x4/3, x ∈ R (a
submanifold of R2 that is C1, but not C2), does not have an admissible normal
radius.

Case of non-compact submanifolds of Rn+m.

Simple examples show that even properly embedded, smooth noncompact
manifolds may fail to have a globally admissible normal radius. But it does
admit a normal radius that is a function on M .

Theorem 2. Let Mm ⊂ Rm+n be an embedded submanifold, compact or
not. There exists a positive continuous function ε : M → R so that:

1) p 6= q on M ⇒ B⊥(p, ε(p)) ∩B⊥(q, ε(q)) = ∅;
2) The set Vε(M) =

⊔
p∈M B⊥(p, ε(p)) (disjoint union of normal balls) is an

open neighborhood of M in Rm+n;
3) The nearest point retraction π : Vε(M)→ M is well-defined and smooth

(if M is smooth; Ck−1 if M is Ck.)

Lemma. Given any compact subset K ⊂ M , we may find an admissible
normal radius αK > 0 with the property:

VαK
(K) ∩M = K, VαK

(K) =
⊔
p∈K

B⊥(p, αK).

(The point is the admissible radius can be taken small enough that the tubular
nbd. of K with that radius doesn’t ‘bump up’ against other parts of M , far
from K.)

Proof of Lemma. Let L ⊂M be a compact neighborhood of K, let αL be an
admissible normal radius for L, and set:

αK =
1

2
min{αL, d(K,M \ L)}.

Let q ∈ VαK
(K) ∩M . Then since d(q,K) ≤ αL < d(K,M \ L). we have

q ∈ L. And also q is in a normal segment to M of length < αL, based at
p ∈ K ⊂ L. Thus necessarily p = q, so q ∈ K.

Proof of theorem. Consider a compact exhaustion of M , M =
⋃
i≥1Ki,Ki ⊂

int(Ki+1). Let αi be the admissible normal radius associated to Ki by the
lemma, where we assume αi+1 ≤ αi. Now define a new sequence of admissible
normal radii, starting with ε1 = α2, ε2 = α3.
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Inductively, assuming ε1 ≥ ε2 ≥ ε3 ≥ . . . ≥ εs defined, choose εs+1 by
requiring εs+1 ≤ min{εs, αs+2} and:

εs+1 ≤ dist(Ks+1 − int(Ks),

s−1⋃
i=1

Vεi(Ki)).

We claim this choice accomplishes the following:

If p ∈ Ki, q ∈ Kj , p 6= q, then B⊥(p, εi) ∩B⊥(q, εj) = ∅.

Indeed if i, j ≤ s, this is the induction hypothesis. If i = s, j = s+ 1, this is
true since εs ≤ αs+1. The remaining case is:

p ∈ Ks \ int(Ks+1) and q ∈ Ki0 , with i0 < s.

Then we consider two normal segments to M , [p, a] with length < εs+1, [q, b]
with length < εi0 . We have:

[q, b] ⊂ Vεi0 (Ki0) ⊂
s−1⋃
i=1

Vεi(Ki),

and then the second condition used above in the choice of εs+1 implies εs+1 <
dist(p, [q, b]). That is, the length of [p, a] is smaller than the distance from p to
[q, b]. Thus [p, a] ∩ [q, b] = ∅, proving the claim.

To prove the theorem, let V (M) =
⋃∞
i=1 Vεi(Ki), and define ε : M → R+ as:

ε(p) = dist(p,Rm+n \ V (M)).

This is a positive continuous function on M , and 0 < ε(p) ≤ εi, if p ∈ Ki \Ki−1.
So Vε(M) ⊂ V (M), and any x ∈ Vε(M) lies in a unique segment normal to M .
Thus the nearest-point retraction π : Vε(M) is well-defined.

To see that Vε(M) is open, proceed as in the compact case and cover M by
domains U of charts, with normal vector fields v1, . . . , vn defined and orthonor-
mal in U , and local parameters φ : U0 → U (U0 ⊂ Rm open) so that with A the
open set: in Rm ×Rn

A = {(x, y) ∈ U ×Rn; |y| < ε(φ(x))}

we have a diffeomorphism Φ : A→ π−1(U), Φ(x, y) = φ(x) +
∑
i y
ivi(φ(x)). So

π−1(U) is open in Rm+n, and Vε(M), as the union of the π−1(U) over all such
U in the cover, is open too. The fact that π is of class Ck−1 is a local statement,
proved exactly as in the compact case. This concludes the proof of the theorem.

For submanifoldsMm ⊂ V m+n of (smooth) manifolds, we have the following:
define a tubular neighborhood of M in V to be a smooth embedding Φ : N → V
of a rank n vector bundle p : N →M into V , with image an open neighborhood
T of M in V , so that:
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(i) A smooth retraction π : T →M is defined, and π ◦ Φ = p;
(ii) The embedding maps the zero section to M , as the identity (Φ(x, 0) =

x, ∀x ∈M), and is transversal on fibers:

dΦ|(x,0)[Nx]⊕ TxM = TxV, x ∈M.

Theorem 3. Any submanifold M ⊂ V admits a tubular neighborhood T ,
as defined above.

For the proof, see [Hirsch, thm 5.2, p.110].
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