EXISTENCE OF TUBULAR NEIGHBORHOODS

Let M™ C R™™ be a submanifold. At each p € M, the tangent space
T,M is a subspace of R™"" and we denote by v,M (normal space at p) its
orthogonal complement. These subspaces fit together to give a vector bundle
over M, which can be given a C*~! manifold structure if M is of class C*
(k > 2):

vM = {(p,v) € M x R™""™;v € y,M},

the normal bundle of M in R"*™, a vector bundle of rank n (fiber dimension)
over M. We also consider the open normal ball of radius € > 0 at p:

B*(p,e) ={p+ve R™"vev,M, v <el,

a union of normal segments [p,p + v], |v| < 1, based at p, normal to M.

Example: Preimages of reqular values. If f : U — R™ is a C" map (U C
R™*" open) , ¢ € R™ is a regular value and M = f~1(c), the gradients V f? of
the components of f give n linearly independent normal vector fields, globally
defined on M and linearly independent at each point. (They are l.i. since c is
a regular value, so at any point p € M, the differential df (p) € L(R™", R") is
surjective, and its rows are the Vf%.) Thus the normal bundle vM is ‘trivial’
in this case, that is, equivalent to the product bundle M x R™.

Note that, by the definition of submanifold, this is always true locally: given
any p € M, there exists a neighborhood U C R™*™ (open) of p, and a map
f:U — R" so that 0 € R" is a regular value and M NU = f~1(0), and thus
we have n linearly independent normal vector fields defined in M NU.

An admissible normal radius for M is a number ep; > 0 so that normal balls
based at different points of M, with radius less than or equal to €,;, do not
intersect.

Theorem 1: Tubular neighborhood of a compact submanifold. Let M™ C
R™*™ be a compact submanifold (of class C*). Then there exists an admissible
normal radius e€y; for M. If € < €4, the set:

Vo(M)= | | B*(p.e)

pEM

(disjoint union) is open in R™*". The nearest-point retraction 7 : V.(M) — M,
defined by taking each = € V, to the center p of the unique normal ball B+ (p, ¢)
containing z, is a C*~! map.

Proof. (i) The theorem is true locally: any p € M has an open neighborhood
U C M for which an admissible normal radius ey exists. To see this, consider
local parameters at p, ¢ : Vo — V (diffeo of class C*, V; C R™ open, V an open
neighborhood of p in M). On V we have n linearly independent vector fields
v1, ...,y (of class C*~1), which we may assume orthonormal. Define the C*~1



map @ : Vy x R* — R™T" by:

Oz, th, .. ") = () + Ztivi(gb(x))

(addition in R"*™). The Jacobian [d®]|(x,0) at a point of V5 x {0} C R™*™ has
as its first m columns the vectors 9., (), as last n the vectors vy (z), ..., v, ().
Since the first m vectors are a basis for Ty(,) M, the last n a basis for vg,)M,
it follows d®(x,0) is an isomorphism.

By the inverse function theorem, if ¢(xg) = p there exists an open neighbor-
hood Uy x B, of (29,0) in R™ x R™, on which ® is a diffeomorphism to an open
set in R of the form:

‘/E(U): |_|BL(Q76)> U:d)(UO)CM
qelU

It’s the same ¢, since the fact the normal frame {v;} in V' is orthonormal implies
®(z,-) is an isometry from B, in R" to B*(¢(z),¢€), for each z € Uy. And
the union is disjoint, since the normal balls are images under the diffeo. ® of
disjoint sets {x} x B, {2’} x, B, for x # 2’ in Up.

Within the open set V¢ (U) (which contains U), the nearest-point map 7(¢,v) =
q € U, v € BY(q,¢), is C*~1, since it is the inverse of ®, followed by projec-
tion from Uy x B, to the first factor Uy, and then followed by the C* diffeo.
¢:Uy—U.

(ii) The theorem holds globally on M: from compactness, we may cover
M by finitely many coordinate neighborhoods Uy, ..., U,, in each of which the
conclusions of part (i) of the proof holds. So we have admissible normal radii
€1,...,€-. This finite open cover also has a Lebesgue number A, so let:

e = min{i,el, cey Erte

Then if € < €p7, two normal segments of length ¢ and different basepoints
p,q € M may not intersect. This is clear if p,q are in the same U;. If they're
in different sets of the cover, the distance |p — gq| > A > 2¢; so p,q can’t be
basepoints of intersecting euclidean segments of length e. Clearly we have:

and therefore is an open set. That the nearest-point retraction 7 : Vo(M) — M
is a C*~! map is a local statement, hence already shown in part(i).

We record the case of trivial normal bundle, Say a tubular neighborhood
V(M) is equivalent to a product if there exists a diiffeomorphism h : M x B, —
V.(M) which preserves fibers (takes {z} x B, to B(p,€), p = h(z,0)).



Proposition. For a submanifold M™ C R™" (compact or not), the fol-
lowing are equivalent:

1) M is the preimage of a regular value a € R"™, for some smooth map
f:U— R* UC R™™ open.

2) M admits n linearly. independent, globally defined normal vector fields,
v : M — R™" v;(p) € v, M.

3) Any tubular neighborhood of M in R™*" is equivalent to a product.

Exercise. Show that the graph (in R?) of the curve y = 2%/3, z € R (a
submanifold of R? that is C!, but not C?), does not have an admissible normal
radius.

Case of non-compact submanifolds of R™T™.

Simple examples show that even properly embedded, smooth noncompact
manifolds may fail to have a globally admissible normal radius. But it does
admit a normal radius that is a function on M.

Theorem 2. Let M™ C R™" be an embedded submanifold, compact or
not. There exists a positive continuous function € : M — R so that:

1) p#qon M = B(p,e(p)) N B*(q,¢(q)) = 0;

2) The set Ve(M) = | e Bt (p,e(p)) (disjoint union of normal balls) is an
open neighborhood of M in R™*";

3) The nearest point retraction 7 : V(M) — M is well-defined and smooth
(if M is smooth; C*¥~1 if M is C*.)

Lemma. Given any compact subset K C M, we may find an admissible
normal radius ax > 0 with the property:

Var B)NM =K, Vo (K) = | | B*(p,ax).
peEK

(The point is the admissible radius can be taken small enough that the tubular
nbd. of K with that radius doesn’t ‘bump up’ against other parts of M, far
from K.)

Proof of Lemma. Let L C M be a compact neighborhood of K, let ay be an
admissible normal radius for L, and set:

1
ag = §min{aL,d(K,M\L)}.
Let ¢ € Vo, (K) N M. Then since d(q,K) < ar < d(K,M \ L). we have
q € L. And also ¢ is in a normal segment to M of length < «y, based at
p € K C L. Thus necessarily p = ¢, so g € K.

Proof of theorem. Consider a compact exhaustion of M, M = J,~, K;, K; C
int(K;11). Let a; be the admissible normal radius associated to K; by the
lemma, where we assume a;11 < a;. Now define a new sequence of admissible
normal radii, starting with €; = asg, €5 = ag.



Inductively, assuming €; > €5 > €3 > ... > €5 defined, choose €541 by
requiring €541 < min{es, @512} and:

s—1
€or1 < dist(Koy —int(K), | Ve, (K))).

i=1
We claim this choice accomplishes the following:
Ifpe Ki,qe K;,p# q, then B*(p,e;) N B*(q, ;) = 0.

Indeed if 7, j < s, this is the induction hypothesis. If i = s,j = s+ 1, this is
true since €; < as41. The remaining case is:

p € K, \ int(Ks41) and g € K, with ig < s.

Then we consider two normal segments to M, [p,a] with length < €541, [g, 0]
with length < ¢;,. We have:

s—1
[q’ b] - Veqio (Klo) C U V€z (K1)7
=1

and then the second condition used above in the choice of €541 implies €511 <
dist(p, [q,b]). That is, the length of [p, a] is smaller than the distance from p to
[g,b]. Thus [p,a] N [q,b] = B, proving the claim.

To prove the theorem, let V(M) = J;2, V¢, (K;), and define € : M — R, as:
e(p) = dist(p, ™"\ V(M)).

This is a positive continuous function on M, and 0 < e(p) < e;, if p € K; \ K;_1.
So V(M) C V(M), and any x € V(M) lies in a unique segment normal to M.
Thus the nearest-point retraction 7 : Ve(M) is well-defined.

To see that V(M) is open, proceed as in the compact case and cover M by
domains U of charts, with normal vector fields v1, ..., v, defined and orthonor-
mal in U, and local parameters ¢ : Uy — U (Uy C R™ open) so that with A the
open set: in R™ x R"™

A={(z,y) € U x R™|y| < e(p(x))}

we have a diffeomorphism ® : 4 — 7= 1(U), ®(z,y) = ¢(x) + >, y'vi(¢(x)). So
7~1(U) is open in R™*™ and V.(M), as the union of the 7=(U) over all such
U in the cover, is open too. The fact that 7 is of class C*~! is a local statement,
proved exactly as in the compact case. This concludes the proof of the theorem.

For submanifolds M™ C V™*" of (smooth) manifolds, we have the following:
define a tubular neighborhood of M in V' to be a smooth embedding ® : N — V
of a rank n vector bundle p : N — M into V', with image an open neighborhood
T of M in V, so that:



(i) A smooth retraction m : 7 — M is defined, and 7o & = p;
(ii) The embedding maps the zero section to M, as the identity (®(x,0) =
x,Vx € M), and is transversal on fibers:

d®|(, 0)[N] & TuM = T,V, «€ M.

Theorem 3. Any submanifold M C V admits a tubular neighborhood T,
as defined above.

For the proof, see [Hirsch, thm 5.2, p.110].



