MATH 562, Hw Set 1 (spring 2023): partial solutions

1. Claim: Any closed interval in S^{1} is a retract of S^{1}.

Let $I \subset S^{1}$ be a closed interval defined by a chord C, and let \bar{I} be the complementary closed interval (so I and \bar{I} intersect at their endpoints; we ignore the trivial cases: a single point and all of S^{1}.) There are three cases to consider:
(i) length $(I)=\pi$. Then C is a diameter; lett $\rho_{C}: S^{1} \rightarrow S^{1}$ denote the reflection on C, we define the retraction $r: S^{1} \rightarrow I$ setting $r(x)=x$ for $x \in I$, $r(x)=\rho_{C}(x) \in I$, for $x \in \bar{I}$.
(ii) length $(I)<\pi$. Then there exists a interval J of length π containing I. Let $\rho_{I J}: J \rightarrow I$ be the retraction which fixes I pointwise, and maps each of the two intervals in $J \backslash I$ to the closest endpoint of I. Then if $r_{J}: S^{1} \rightarrow J$ is the retraction described in (i), the map $r=\rho_{I J} \circ r_{J}: S^{1} \rightarrow I$ is a retraction.
(iii) length $(I)>\pi$. Then length $(\bar{I})<\pi$, and let $I^{\prime}=\rho_{C}(\bar{I})$, the image of \bar{I} under the reflection on the chord C defining I. Let $q \in S^{1}$ be the closest point to C on the $\operatorname{arc} \bar{I}$ (so q is the endpoint on \bar{I} of the diameter perpendicular to C), and denote by $\rho_{q}: I^{\prime} \rightarrow I$ the radial projection from q (which in fact defines a homeomorphism from I^{\prime} to $\left.I\right)$. Then the map $r: S^{1} \rightarrow I$ defined as $r(x)=x, x \in I ; r(x)=\rho_{q}\left(\rho_{C}(x)\right), x \in \bar{I}$ is continuous, and a retraction onto I.
2. The Gram-Schmidt process defines a deformation retraction of matrix groups (with real entries):

$$
O_{n} \subset G L_{n}
$$

By restriction, we obtain that each successive inclusion below is a deformation retraction:

$$
S O_{n} \subset S L_{n} \subset G L_{n}^{+}
$$

(the last group are the $n \times n$ matrices with positive determinant.)
Solution. Gram-Schmidt constructs, from a given basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of R^{n}, an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$, in such a way that:

$$
\left\{e_{1}, \ldots, e_{i}\right\} \in \operatorname{span}_{R}\left\{v_{1}, \ldots, v_{i}\right\}, \text { for each } i=1, \ldots, n .
$$

In matrix terms, this says that, letting $V=\left[v_{1}|\ldots| v_{n}\right], U=\left[e_{1}|\ldots| e_{n}\right]$ (by columns), we have:

$$
U=V T
$$

where T is an upper-triangular $n \times n$ matrix (zeros below the diagonal), with positive diagonal entries.

So let $B_{n} \subset G L_{n}$ be the group of upper-triangular matrices with positive diagonal entries. B_{n} is contractible, since the deformation:

$$
T_{s}=s \mathbb{I}_{n}+(1-s) T \in B_{n}, \quad T \in B_{n}, s \in[0,1]
$$

defines a homotopy in B_{n} from the identity map in B_{n} to the constant map $\mathbb{I}_{n} \in B_{n}$. Now, Gram-Schmidt defines a continuous map:

$$
\mathcal{G}: G L_{n} \rightarrow B_{n},
$$

so that for each $V \in G L_{n}$:

$$
V \mathcal{G}(V) \in O_{n}
$$

Consider then the deformation of a given $V \in G L_{n}$:

$$
V_{s}=V \mathcal{G}_{s}(V) \in G L_{n}, \quad \mathcal{G}_{s}(V)=\left[(1-s) \mathbb{I}_{n}+s \mathcal{G}(V)\right] \in B_{n}, \quad s \in[0,1]
$$

We see that $V_{0}=V, V_{1} \in O_{n}$. Thus the map $V \mapsto V \mathcal{G}(V)$ defines a deformation retraction from $G L_{n}$ to O_{n}.

Now, since $\operatorname{det}\left(V \mathcal{G}_{s}(V)\right)>0$ if $\operatorname{det}(V)>0$ (since the diagonal entries of $\mathcal{G}_{s}(V) \in B_{n}$ are positive), we see that $V_{s} \in G L_{n}^{+}$if $V \in G L_{n}^{+}$, so by restriction (bearing in mind $S O_{n}=O_{n} \cap G L_{n}^{+}$) we obtain a deformation retraction $V \mapsto$ $V \mathcal{G}(V)$ from $G L_{n}^{+}$to $S O_{n}$. And the restriction of this map to $S L_{n}$ defines a deformation retraction from $S L_{n}$ to $S O_{n}=O_{n} \cap S L_{n}$.

That $S L_{n}$ is a deformation retract of $G L_{n}^{+}$can be seen directly. The deformation:
$V_{s}=\left[(1-s)+s(\operatorname{det}(V))^{-\frac{1}{n}}\right] V, \quad s \in[0,1] ; \quad V_{s} \in G L_{n}^{+}$if $V_{0}=V \in G L_{n}^{+}, V_{1} \in S L_{n}$, establishes a deformation retraction from $G L_{n}^{+}$to $S L_{n}$.

