MATH 562, SPRING 2023-FINAL EXAM-SOLUTIONS

1. (i) If every $f: Y \to Z$ extends (for every Z), in particular the identity map of Y, $id_Y: Y \to Y$ extends to $g: X \to Y$ continuous; by definition, g retracts X to Y. Conversely, if a retraction $g: X \to Y$ exists (so $g|_Y = id_Y$), we may extend an arbitrary $f: Y \to Z$ by setting $\bar{f} = f \circ g: X \to Z$.

(ii) We need $f : E^c \to S^1$ and $g : S^1 \to E^c$ so that $f \circ g \simeq id_{S^1}$ and $g \circ f \simeq id_{E^c}$. Let g be the inclusion map; then $f \circ g = id_{S^1}$ is guaranteed if f is a retraction; and $g \circ f \simeq id_{E^c}$ is guaranteed if f is a deformation retraction, that is, if f may be joined to id_{E^c} by a continuous path $f^t : E^c \to E^c$.

Write $f = f_2 \circ f_1$, where $f_1 : E^c \to R^2 \setminus 0$ is vertical projection $f_1(x, y, z) = (x, y, 0)$ and $f_2 : R^2 \setminus 0 \to S^1$ is the radial projection. Both are deformation retractions (via $f_1^t(x, y, z) = (x, y, (1-t)z)$ and $f_2^t(v) = (1-t)v + t \frac{v}{|v|}$ respectively), and therefore so is f.

2. Borsuk-Ulam theorem: if $f: S^k \to R^{k+1} \setminus 0$ is an odd map (f(-x) = -f(x)), then the mod 2 winding number $W_2(f, 0)$ equals 1 (mod 2). A map $g: S^k \to S^k$ commutes with α exactly if it is odd as a map to $R^{k+1} \setminus 0$; and then, by definition of the winding number, $W_2(g, 0) = deg_2g = 1 \pmod{2}$.

3. Define $f: X \times \mathbb{R}^N \to \mathbb{R}^N$ by f(x, a) = x + a. Then the partial differential with respect to the second argument $d_2f(x, a) \in \mathcal{L}(\mathbb{R}^N)$ is the identity for all (x, a); in particular f is a submersion, and transversal to any submanifold $Y \subset \mathbb{R}^N$. By the (parametrized) transversality theorem, for almost every $a \in \mathbb{R}^N$ the map $f_a: X \to \mathbb{R}^N$, $f_a(x) = x + a$, will be transversal to Y; so either $im(f_a) \cap Y = \emptyset$ (the translate of X and Y do not intersect at all), or they intersect transversely (possible only if $dim(X) + dim(Y) \ge N$).

4. (i) Since $p'(z) = 2z \neq 0$ for $z \neq 0$, the map p is a local diffeomorphism as a map from $R^2 \setminus 0$ to itself, hence restricts to a surjective local diffeomorphism of S^1 . Since S^1 is compact, p is a covering map. (And clearly a 2-1 cover, since each point on S^1 has two preimages on S^1 .) Since the fundamental group of S^1 is abelian, the covering is regular.

(ii) Let $\gamma(t) = e^{2\pi i t}$, $t \in [0, 1]$, represent a generator $u = [\gamma]$ of $\pi_1(S^1, 1) = \mathbb{Z}$. Then $f \circ \gamma(t) = e^{4\pi i t}$, so $f_* u = 2u$ and $H(1) = 2\mathbb{Z}$ (even integers), while the automorphism group of the cover is isomorphic to $\pi_1(S^1, 1)/H(1) \approx \mathbb{Z}_2$.

5. (i) G acts properly discontinuously on Y if $\forall y \in Y \exists U \subset Y$ nbd. of y, so that $gU \cap U = \emptyset, \forall g \in G, g \neq id_Y$.

(ii) Let $x \in \tilde{X}$, $p(x) = y \in X$, $V \subset X$ be an evenly covered neighborhood of Y, so $p^{-1}(V) = \bigsqcup_{\lambda \in \Lambda} U_{\lambda}$, all disjoint. Say $x \in U_{\lambda_0}$. Then if $g \in Aut(\tilde{X}|X), g \neq id$, we have $g(U_{\lambda_0}) = U_{\lambda}$ for some $\lambda \neq \lambda_0$, and therefore $g(U_{\lambda_0}) \cap U_{\lambda_0} = \emptyset$.

6. Suppose S^k admits a nonvanishing vector field V; to see α is homotopic

to the identity (and thus $deg(\alpha) = 1$, so k is odd), consider the map of S^k :

$$f(x) = \frac{x + V(x)}{|x + V(x)|}.$$

This map is well-defined (V(x) + x = 0 is not possible, since $\langle V(x), x \rangle = 0$ and homotopic to the identity on S^k (replace V by $tV \in [0, 1]$.) But f doesn't have any fixed points on S^k (since $V(x) \neq 0$ for all x), and hence is homotopic to α via the normalized linear homotopy:

$$f_t(x) = \frac{t\alpha(x) + (1-t)f(x)}{|t\alpha(x) + (1-t)f(x)|}, \quad t \in [0,1].$$

7. Let $A = df_0 \in Iso(\mathbb{R}^k)$ (since $0 \in \mathbb{R}^k$ is a regular value and f(0) = 0). Let B be a closed ball at the origin, with small radius; say |Ax| > c|x| for $x \in \mathbb{R}^k$ (with c > 0), and B has small enough radius that $|r(x)| < \frac{c}{2}|x|$ for $x \in \partial B$. Then since f(x) = Ax + r(x), we have $|f(x)| > c|x| - \frac{c}{2}|x| > 0$ for $x \in \partial B$. The winding number W(g, 0) equals (by definition) the degree of $\frac{g}{|g|} : \partial B \to S^{k-1}$. But $\frac{g}{|g|}$ is homotopic to $\hat{A}(x) = \frac{Ax}{|Ax|}$ on ∂B , via:

$$h^{t}(x) = \frac{Ax + (1-t)r(x)}{|Ax + (1-t)tr(x)|}, \quad h^{t}: \partial B \to S^{k-1}, \quad h^{1}(x) = \hat{A}(x), \\ h^{0}(x) = \frac{g(x)}{|g(x)|}, \quad t \in [0,1].$$

where we already established the denominator does not vanish on ∂B . By homotopy invariance, the degree of g/|g| on ∂B equals that of \hat{A} . And \hat{A} is either homotopic (as a diffeomorphism of the sphere) either to the identity (if det(A) = 1) or to a reflection (if det(A) = -1), so its degree is ± 1 .

8. (i) V has finitely mani zeros x_1, \ldots, x_N in int(W), since W is compact and the zeros are isolated. Let B_i be a small ball centered at x_i , contained in int(W) and containing no other zeros of V in its closure. Let $W_1 = W \setminus \bigsqcup_{i=1}^N B_i$, and set $\hat{V} = \frac{V}{|V|}$ (taking values in S^{k-1}). Then $deg(\hat{V}; \partial W_1) = 0$, since \hat{V} is defined in W_1 . Since the oriented boundary of W_1 is $\partial W - \sum_i \partial B_i$, we have $deg(\hat{V}; \partial W) = \sum_i deg(\hat{V}; \partial B_i) = \sum_i ind(V; x_i)$, by definition of the index of V at x_i .

(ii) A smooth map $f: X \to X$ (X a compact oriented manifold without boundary) is a *Lefschetz map* if $Graph(f) \pitchfork \Delta_X$, as submanifolds of $X \times X$ (Δ_X is the diagonal submanifold). For a linear Lefschetz map $f: \mathbb{R}^k \to \mathbb{R}^k$ (that is, 1 is not an eignevalue) the local Lefschetz number is the sign of the determinant of $f - Id_{\mathbb{R}^k}$. In this case, $L_0(f) = sign(\frac{1}{2} - 1)^k = (-1)^k$.