## MATH 562, SPRING 2023-FINAL EXAM-SOLUTIONS

1. (i) If every $f: Y \rightarrow Z$ extends (for every $Z$ ), in particular the identity map of $Y, i d_{Y}: Y \rightarrow Y$ extends to $g: X \rightarrow Y$ continuous; by definition, $g$ retracts $X$ to $Y$. Conversely, if a retraction $g: X \rightarrow Y$ exists (so $g_{\mid Y}=i d_{Y}$ ), we may extend an arbitrary $f: Y \rightarrow Z$ by setting $\bar{f}=f \circ g: X \rightarrow Z$.
(ii) We need $f: E^{c} \rightarrow S^{1}$ and $g: S^{1} \rightarrow E^{c}$ so that $f \circ g \simeq i d_{S^{1}}$ and $g \circ f \simeq i d_{E^{c}}$. Let $g$ be the inclusion map; then $f \circ g=i d_{S^{1}}$ is guaranteed if $f$ is a retraction; and $g \circ f \simeq i d_{E^{c}}$ is guaranteed if $f$ is a deformation retraction, that is, if $f$ may be joined to $i d_{E^{c}}$ by a continuous path $f^{t}: E^{c} \rightarrow E^{c}$.

Write $f=f_{2} \circ f_{1}$, where $f_{1}: E^{c} \rightarrow R^{2} \backslash 0$ is vertical projection $f_{1}(x, y, z)=$ $(x, y, 0)$ and $f_{2}: R^{2} \backslash 0 \rightarrow S^{1}$ is the radial projection. Both are deformation retractions (via $f_{1}^{t}(x, y, z)=(x, y,(1-t) z)$ and $f_{2}^{t}(v)=(1-t) v+t \frac{v}{|v|}$ respectively), and therefore so is $f$.
2. Borsuk-Ulam theorem: if $f: S^{k} \rightarrow R^{k+1} \backslash 0$ is an odd map $(f(-x)=$ $-f(x))$, then the $\bmod 2$ winding number $W_{2}(f, 0)$ equals $1(\bmod 2)$. A map $g: S^{k} \rightarrow S^{k}$ commutes with $\alpha$ exactly if it is odd as a map to $R^{k+1} \backslash 0$; and then, by definition of the winding number, $W_{2}(g, 0)=d e g_{2} g=1(\bmod 2)$.
3. Define $f: X \times R^{N} \rightarrow R^{N}$ by $f(x, a)=x+a$. Then the partial differential with respect to the second argument $d_{2} f(x, a) \in \mathcal{L}\left(R^{N}\right)$ is the identity for all $(x, a)$; in particular $f$ is a submersion, and transversal to any submanifold $Y \subset$ $R^{N}$. By the (parametrized) transversality theorem, for almost every $a \in R^{N}$ the map $f_{a}: X \rightarrow R^{N}, f_{a}(x)=x+a$, will be transversal to $Y$; so either $i m\left(f_{a}\right) \cap Y=\emptyset$ (the translate of $X$ and $Y$ do not intersect at all), or they intersect transversely (possible only if $\operatorname{dim}(X)+\operatorname{dim}(Y) \geq N$ ).
4. (i) Since $p^{\prime}(z)=2 z \neq 0$ for $z \neq 0$, the map $p$ is a local diffeomorphism as a map from $R^{2} \backslash 0$ to itself, hence restricts to a surjective local diffeomorphism of $S^{1}$. Since $S^{1}$ is compact, $p$ is a covering map. (And clearly a 2-1 cover, since each point on $S^{1}$ has two preimages on $S^{1}$.) Since the fundamental group of $S^{1}$ is abelian, the covering is regular.
(ii) Let $\gamma(t)=e^{2 \pi i t}, t \in[0,1]$, represent a generator $u=[\gamma]$ of $\pi_{1}\left(S^{1}, 1\right)=\mathbb{Z}$. Then $f \circ \gamma(t)=e^{4 \pi i t}$, so $f_{*} u=2 u$ and $H(1)=2 \mathbb{Z}$ (even integers), while the automorphism group of the cover is isomorphic to $\pi_{1}\left(S^{1}, 1\right) / H(1) \approx \mathbb{Z}_{2}$.
5. (i) $G$ acts properly discontinuously on $Y$ if $\forall y \in Y \exists U \subset Y$ nbd. of $y$, so that $g U \cap U=\emptyset, \forall g \in G, g \neq i d_{Y}$.
(ii) Let $x \in \tilde{X}, p(x)=y \in X, V \subset X$ be an evenly covered neighborhood of $Y$, so $p^{-1}(V)=\bigsqcup_{\lambda \in \Lambda} U_{\lambda}$, all disjoint. Say $x \in U_{\lambda_{0}}$. Then if $g \in \operatorname{Aut}(\tilde{X} \mid X), g \neq$ $i d$, we have $g\left(U_{\lambda_{0}}\right)=U_{\lambda}$ for some $\lambda \neq \lambda_{0}$, and therefore $g\left(U_{\lambda_{0}}\right) \cap U_{\lambda_{0}}=\emptyset$.
6. Suppose $S^{k}$ admits a nonvanishing vector field $V$; to see $\alpha$ is homotopic
to the identity (and thus $\operatorname{deg}(\alpha)=1$, so $k$ is odd), consider the map of $S^{k}$ :

$$
f(x)=\frac{x+V(x)}{|x+V(x)|}
$$

This map is well-defined $(V(x)+x=0$ is not possible, since $\langle V(x), x\rangle=0)$ and homotopic to the identity on $S^{k}$ (replace $V$ by $t V, \in[0,1]$.) But $f$ doesn't have any fixed points on $S^{k}$ (since $V(x) \neq 0$ for all $x$ ), and hence is homotopic to $\alpha$ via the normalized linear homotopy:

$$
f_{t}(x)=\frac{t \alpha(x)+(1-t) f(x)}{|t \alpha(x)+(1-t) f(x)|}, \quad t \in[0,1] .
$$

7. Let $A=d f_{0} \in I \operatorname{so}\left(R^{k}\right)$ (since $0 \in R^{k}$ is a regular value and $f(0)=0$ ). Let $B$ be a closed ball at the origin, with small radius; say $|A x|>c|x|$ for $x \in R^{k}$ (with $c>0$ ), and $B$ has small enough radius that $|r(x)|<\frac{c}{2}|x|$ for $x \in \partial B$. Then since $f(x)=A x+r(x)$, we have $|f(x)|>c|x|-\frac{c}{2}|x|>0$ for $x \in \partial B$. The winding number $W(g, 0)$ equals (by definition) the degree of $\frac{g}{|g|}: \partial B \rightarrow S^{k-1}$. But $\frac{g}{|g|}$ is homotopic to $\hat{A}(x)=\frac{A x}{|A x|}$ on $\partial B$, via:
$h^{t}(x)=\frac{A x+(1-t) r(x)}{|A x+(1-t) \operatorname{tr}(x)|}, \quad h^{t}: \partial B \rightarrow S^{k-1}, \quad h^{1}(x)=\hat{A}(x), h^{0}(x)=\frac{g(x)}{|g(x)|}, \quad t \in[0,1]$,
where we already established the denominator does not vanish on $\partial B$. By homotopy invariance, the degree of $g /|g|$ on $\partial B$ equals that of $\hat{A}$. And $\hat{A}$ is either homotopic (as a diffeomorphism of the sphere) either to the identity (if $\operatorname{det}(A)=1$ ) or to a reflection (if $\operatorname{det}(A)=-1$ ), so its degree is $\pm 1$.
8. (i) $V$ has finitely mani zeros $x_{1}, \ldots, x_{N}$ in $\operatorname{int}(W)$, since $W$ is compact and the zeros are isolated. Let $B_{i}$ be a small ball centered at $x_{i}$, contained in $\operatorname{int}(W)$ and containing no other zeros of $V$ in its closure. Let $W_{1}=W \backslash \bigsqcup_{i=1}^{N} B_{i}$, and set $\hat{V}=\frac{V}{|V|}$ (taking values in $\left.S^{k-1}\right)$. Then $\operatorname{deg}\left(\hat{V} ; \partial W_{1}\right)=0$, since $\hat{V}$ is defined in $W_{1}$. Since the oriented boundary of $W_{1}$ is $\partial W-\sum_{i} \partial B_{i}$, we have $\operatorname{deg}(\hat{V} ; \partial W)=\sum_{i} \operatorname{deg}\left(\hat{V} ; \partial B_{i}\right)=\sum_{i} i n d\left(V ; x_{i}\right)$, by definition of the index of $V$ at $x_{i}$.
(ii) A smooth map $f: X \rightarrow X$ ( $X$ a compact oriented manifold without boundary) is a Lefschetz map if $\operatorname{Graph}(f) \pitchfork \Delta_{X}$, as submanifolds of $X \times X$ ( $\Delta_{X}$ is the diagonal submanifold). For a linear Lefschetz map $f: R^{k} \rightarrow R^{k}$ (that is, 1 is not an eignevalue) the local Lefschetz number is the sign of the determinant of $f-I d_{R^{k}}$. In this case, $L_{0}(f)=\operatorname{sign}\left(\frac{1}{2}-1\right)^{k}=(-1)^{k}$.
