Problem. The graph of the function $y(x)=x^{4 / 3}$, regarded as a submanifold of $R^{2}$ (of class $C^{1}$, but not $C^{2}$ ), does not have an admissible normal radius.

Solution. The (upward) unit normal at the point $(x, y)$ on the graph is $n=\frac{\left(-y^{\prime}, 1\right)}{\sqrt{1+\left(y^{\prime}\right)^{2}}}$. Thus two segments normal to the graph, of length $L$, drawn from the points $(x, y)$ and $(-x, y)$ on the graph $(x>0)$, will intersect on the $y$ axis if:

$$
L y^{\prime}=x \sqrt{1+\left(y^{\prime}\right)^{2}}
$$

which quickly leads to:

$$
L^{2}=\left(\frac{x}{y^{\prime}}\right)^{2}+x^{2}
$$

As $x \rightarrow 0_{+}$, we see that $L \rightarrow 0$. Thus no admissible radius exists. Since for this function $y(0)=y^{\prime}(0)=0$ and $y^{\prime}(x)$ is monotone, clearly this is a reflection of the fact $y(x)$ is not twice-differentiable at $x=0$. The same would happen for $y(x)=|x|^{\alpha}$, for any $1<\alpha<2$.

