1. $S^{k}=g^{-1}(1)$, and the normal line bundle $\left\{N_{x}\right\}_{x \in S^{k}}$ of S^{k} in R^{k+1} is oriented by the requirement $d g_{x}\left[n_{x}\right]>0$. Since $d g_{x}[v]=2\langle x, v\rangle$ for $v \in R^{n+1}$, it follows we must have $n_{x}=c x$ with $c>0$, the outward normal. Then the preimage orientation is defined by requiring the splitting $R^{k+1}=N_{x} \oplus T_{x} S^{k}$ to be oriented; equivalently, by declaring a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of $T_{x} S^{k}$ to be. positive if $\left\{n_{x}, v_{1}, \ldots, v_{k}\right\}$ is a positive basis of R^{k+1}. Since n_{x} is the outward normal, this is the same as the orientation induced on S^{k} as the boundary of the open submanifold $B^{k+1} \subset R^{k+1}$.
2. Here the graph $S=F^{-1}(0)$, and again the normal line bundle $N=$ $\left\{N_{p}\right\}_{p \in S}$ is oriented by requiring $d F_{p}\left[n_{p}\right]>0$. Since $d F_{p}[v]=v_{3}-f_{x} v_{1}-f_{y} v_{2}$ for $v \in R^{3}$ and $p=(x, y, f(x, y)) \in S$, setting $n_{p}=\left(-f_{x},-f_{y}, 1\right)$ we find $d F_{x}\left[n_{x}\right]=f_{x}^{2}+f_{y}^{2}+1>0$, so we orient N by n_{p}, the upward normal to the graph at p. The preimage orientation on S is then defined by declaring a basis $\left\{v_{1}, v_{2}\right\}$ of $T_{p} S$ to be positive $(p \in S)$ if $\left\{n_{p}, v_{1}, v_{2}\right\}$ is a positive basis of R^{3}. For the choice $v_{1}=\left(1,0, f_{x}\right), v_{2}=\left(0,1, f_{y}\right)$, we see that $\operatorname{det}\left[n_{p}\left|v_{1}\right| v_{2}\right]=f_{x}^{2}+f_{y}^{2}+1>0$, so this is a positive basis of $T_{p} S$.
3. By the Jordan-Brouwer theorem, $M^{n}=\partial D$, where $D \subset R^{n+1}$ is the bounded component of the two into which M separates R^{n+1}. As the boundary of the manifold with boundary D, M is oriented by the unit outward normal, defined as the unit normal pointing into the unbounded component of the complement, at each point of M.
4. (i) $\alpha: S^{k} \rightarrow S^{k}$ preserves orientation for k odd, reverses for k even, and is a diffeomorphism (so each point on S^{k} has a unique preimage). Thus $\operatorname{deg}(\alpha)=(-1)^{k+1}$.

If α is homotopic to the identity, $\operatorname{deg}(\alpha)=1$, so k is odd. Conversely, if k is odd, $S^{k} \subset R^{k+1}$ has a nonvanishing tangent vector field:

$$
V(x)=\left(x_{2},-x_{1}, \ldots, x_{2 n},-x_{2 n-1}\right), \quad k+1=2 n .
$$

And if S^{k} admits a nonvanishing vector field V, it follows that α is homotopic to the identity (and thus k is odd). To see this, consider the map of S^{k} :

$$
f(x)=\frac{x+V(x)}{\|x+V(x)\|}
$$

This map is well-defined $(V(x)+x=0$ is not possible, since $\langle V(x), x\rangle=0)$ and homotopic to the identity on S^{k} (replace V by $t V, \in[0,1]$.) But f doesn't have any fixed points on S^{k} (since $V(x) \neq 0$ for all x), and hence is homotopic to α via the normalized linear homotopy:

$$
f_{t}(x)=\frac{t \alpha(x)+(1-t) f(x)}{\|t \alpha(x)+(1-t) f(x)\|}, \quad t \in[0,1] .
$$

This proves points (ii) and (iii).
5. (i) $\operatorname{dim}(X)=\operatorname{dim}(Y)=\operatorname{dim}(Z)$, with X, Y, Z oriented and compact. In this situation, z is a regular value for g iff, for each $y \in g^{-1}(z)$, we may find neighborhoods $V \subset Y$ of y and $W \subset Z$ of w so that $g_{\mid V}: V \rightarrow W$ is a diffeomorphism; and similarly for regular values of f. Then Sard's theorem and a simple continuity argument show one may choose a regular value z for g so that its preimage $g^{-1}(z)$ consists of regular values for f. And then we have:

$$
(g \circ f)^{-1}(z)=f^{-1}\left(g^{-1}(z)\right)=\bigsqcup_{y \in g^{-1}(z)} f^{-1}(y)
$$

a finite disjoint union of finite sets.
The degree of the composition is:

$$
\operatorname{deg}(g \circ f)=\sum_{y \in g^{-1}(z)} \sum_{x \in f^{-1}(y)} \operatorname{sign}\left(d g_{y} \circ d f_{x}\right),
$$

and since $\operatorname{sign}\left(d g_{y} \circ d f_{x}\right)=\operatorname{sign}\left(d g_{y}\right) \operatorname{sign}\left(d f_{x}\right)$, this equals:

$$
\operatorname{deg}(g \circ f)=\left[\sum_{y \in g^{-1}(z)} \operatorname{sign}\left(d g_{y}\right)\right]\left[\sum_{x \in f^{-1}(y)} \operatorname{sign}\left(d f_{x}\right)\right]=\operatorname{deg}(g) \operatorname{deg}(f)
$$

(ii) We have $f: X \rightarrow Y$ and $g: W \rightarrow X$, with W compact, and $Z \subset Y$, all with empty boundary. The expression " $f \circ g$ and Z are appropriate for intersection theory" means W, Z and Y are oriented and $\operatorname{dim}(W)+\operatorname{dim}(Z)=$ $\operatorname{dim}(Y)$. Here it is assumed that $f \pitchfork Z$, so $S=f^{-1}(Z)$ is a submanifold of X, with $\operatorname{codim}_{X} S=\operatorname{codim}_{Y} Z$, which also equals $\operatorname{dim}(W)$. Thus $\operatorname{dim}(W)+$ $\operatorname{dim}(S)=\operatorname{dim}(X)$. Since S can be given the preimage orientation (defined by f and by the given orientations of X, Y and Z), we also have " g and S are appropriate for intersection theory".

Next we must show $I(g, S)=I(g \circ f, Z)$. Replacing g by a homotopic map (which doesn't change the intersection numbers), we may assume g is transversal to S; by the dimension and compactness conditions, it follows that $g^{-1}(S)=(f \circ g)^{-1}(Z)$ is a finite subset of W. Fix an arbitrary w in this finite set, and let $s=g(w) \in S$. Let $E_{s}=d g_{w}\left[T_{w} W\right] \subset T_{s} X$. By transversality of g to $S($ at $w)$ and dimension count, we see that:

$$
\begin{equation*}
E_{s} \oplus T_{s} S=T_{s} X \tag{1}
\end{equation*}
$$

and that $d g_{w}$ is an isomorphism from $T_{w} W$ to E_{s}. From transversality of f to Z (at $s \in S$), we also know:

$$
\begin{equation*}
d f_{s}\left[T_{s} X\right]+T_{f(s)} Z=T_{f(s)} Y \tag{2}
\end{equation*}
$$

(not a direct sum, until proof to the contrary). To establish the equality of intersection numbers, we must show:

$$
\begin{equation*}
d f_{s}\left[E_{s}\right] \oplus T_{f(s)} Z=T_{f(s)} Y \tag{3}
\end{equation*}
$$

$\left(\right.$ Note $d f_{s}\left[E_{s}\right]=d(f \circ g)_{w}\left[T_{w} W\right]$, and $f(s)=(f \circ g)(w)$.) Since $d f_{s}\left[T_{s} S\right] \subset T_{f(s)} Z$, it follows from (1) and (2) that we do have:

$$
d f_{s}\left[E_{s}\right]+T_{f(s)} Z=T_{f(s)} Y
$$

and we must show this is a direct sum. This last decomposition already implies $\operatorname{dim}\left(d f_{s}\left[E_{s}\right]\right) \geq \operatorname{dim}(Y)-\operatorname{dim}(Z)$, the first in the chain of inequalities:

$$
\operatorname{dim}(Y)-\operatorname{dim}(Z) \leq \operatorname{dim}\left(d f_{s}\left[E_{s}\right]\right) \leq \operatorname{dim}\left(E_{s}\right)=\operatorname{dim}(X)-\operatorname{dim}(S)
$$

Since the rightmost and leftmost numbers coincide, we must have:

$$
\operatorname{dim}\left(d f_{s}\left[E_{s}\right]\right)=\operatorname{dim}\left(E_{s}\right)=\operatorname{dim}(Y)-\operatorname{dim}(Z),
$$

implying (3).
The point $w \in f^{-1}(S)$ is positive for the intersection number of $f \circ g$ with Z if (3) is an oriented direct sum, and this is the case if and only if the direct sum in (1) is also oriented, where S is given the preimage orientation. (This is exactly the definition of 'preimage orientation', given that $d f_{s}$ is an isomorphism on E_{s}.) Since $w \in g^{-1}(S)=(f \circ g)^{-1}(Z)$ is arbitrary, this concludes the proof that the intersection numbers of $f \circ g$ with Z and of g with S are equal.
6. (i) Let M, N be compact and oriented; take the product orientation on $M \times N$. Let $f: M \rightarrow M, g: N \rightarrow N$ be homotopic to $i d_{M}, i d_{N}$ (resp.) and with graphs Γ_{f}, Γ_{g} transversal to the diagonals Δ_{M}, Δ_{N} in $M \times M, N \times N$ (resp); that is, f and g are Lefschetz maps. Then $\chi(M)=\# F i x(f), \chi(N)=\# F i x(g)$ (finitely many fixed points, in each case). Clearly $f \times g$ will then be a Lefschetz map of $M \times N$, with set of fixed points $F i x(f \times g)=F i x(f) \times F i x(g)$. Also, from the definition of $L_{x} f$ as $\operatorname{sign}\left(\operatorname{det}\left(d f_{x}-I_{T_{x} M}\right)\right)$ for $x \in F i x(F)$ (and similarly for g and $f \times g$), we see immediately that, for $(x, y) \in \operatorname{Fix}(f) \times F i x(g)$:

$$
L_{(x, y)}(f \times g)=L_{x}(f) L_{y}(g)
$$

Thus:
$\chi(M \times N)=\sum_{(x, y) \in F i x(f \times g)} L_{(x, y)}(f \times g)=\left(\sum_{x \in F i x(f)} L_{x}(f)\right)\left(\sum_{y \in F i x(g)} L_{y}(g)\right)=\chi(M) \chi(N)$.
(ii) In general (with X, Z compact, oriented, with empty boundary), if f : $X \rightarrow Y, g: Z \rightarrow Y$ with $\operatorname{dim}(X)+\operatorname{dim}(Z)=\operatorname{dim}(Y), f \pitchfork g$ iff $f \times g \pitchfork \Delta_{Y}$, and $I(f, g)=(-1)^{\operatorname{dim}(Z)} I\left(f \times g, \Delta_{Y}\right)$ (p. 114). Applying this to $f=g=i: Z \rightarrow Y$ (the inclusion map) when $Z \subset Y$ and $\operatorname{dim}(Z)=(1 / 2) \operatorname{dim} Y$, we have:

$$
I(Z, Z)=I(i, i)=(-1)^{\operatorname{dim}(Z)} I\left(i \times i, \Delta_{Y}\right)=I\left(Z \times Z, \Delta_{Y}\right)
$$

if $\operatorname{dim}(Z)$ is even (since $i \times i$ is the inclusion map of $Z \times Z$). If $\operatorname{dim}(Z)$ is odd, we know $I(Z, Z)=0$ (intersection number in Y), while considering the general equality:

$$
I\left(f \times g, \Delta_{Y}\right)=(-1)^{\operatorname{dim}(X) \operatorname{dim}(Z)} I\left(g \times f, \Delta_{Y}\right)
$$

applied to the case $f=g=i$ (the inclusion of Z in Y), coupled with the fact $\operatorname{dim}(Z)^{2}$ is also odd, we see that $I\left(Z \times Z, \Delta_{Y}\right)=0$, so the claimed equality also holds in this case.

