
MATH 562, SPRING 2023–HOMEWORK 5 SOLUTIONS

1. Sk = g−1(1), and the normal line bundle {Nx}x∈Sk of Sk in Rk+1 is
oriented by the requirement dgx[nx] > 0. Since dgx[v] = 2〈x, v〉 for v ∈ Rn+1,
it follows we must have nx = cx with c > 0, the outward normal. Then the
preimage orientation is defined by requiring the splitting Rk+1 = Nx ⊕ TxSk

to be oriented; equivalently, by declaring a basis {v1, . . . , vk} of TxS
k to be.

positive if {nx, v1, . . . , vk} is a positive basis of Rk+1. Since nx is the outward
normal, this is the same as the orientation induced on Sk as the boundary of
the open submanifold Bk+1 ⊂ Rk+1.

2. Here the graph S = F−1(0), and again the normal line bundle N =
{Np}p∈S is oriented by requiring dFp[np] > 0. Since dFp[v] = v3 − fxv1 − fyv2
for v ∈ R3 and p = (x, y, f(x, y)) ∈ S, setting np = (−fx,−fy, 1) we find
dFx[nx] = f2x +f2y +1 > 0, so we orient N by np, the upward normal to the graph
at p. The preimage orientation on S is then defined by declaring a basis {v1, v2}
of TpS to be positive (p ∈ S) if {np, v1, v2} is a positive basis of R3. For the
choice v1 = (1, 0, fx), v2 = (0, 1, fy), we see that det[np|v1|v2] = f2x + f2y + 1 > 0,
so this is a positive basis of TpS.

3. By the Jordan-Brouwer theorem, Mn = ∂D, where D ⊂ Rn+1 is the
bounded component of the two into which M separates Rn+1. As the boundary
of the manifold with boundary D, M is oriented by the unit outward normal,
defined as the unit normal pointing into the unbounded component of the com-
plement, at each point of M .

4. (i) α : Sk → Sk preserves orientation for k odd, reverses for k even,
and is a diffeomorphism (so each point on Sk has a unique preimage). Thus
deg(α) = (−1)k+1.

If α is homotopic to the identity, deg(α) = 1, so k is odd. Conversely, if k is
odd, Sk ⊂ Rk+1 has a nonvanishing tangent vector field:

V (x) = (x2,−x1, . . . , x2n,−x2n−1), k + 1 = 2n.

And if Sk admits a nonvanishing vector field V , it follows that α is homotopic
to the identity (and thus k is odd). To see this, consider the map of Sk:

f(x) =
x+ V (x)

||x+ V (x)||
.

This map is well-defined (V (x) +x = 0 is not possible, since 〈V (x), x〉 = 0) and
homotopic to the identity on Sk (replace V by tV , ∈ [0, 1].) But f doesn’t have
any fixed points on Sk (since V (x) 6= 0 for all x), and hence is homotopic to α
via the normalized linear homotopy:

ft(x) =
tα(x) + (1− t)f(x)

||tα(x) + (1− t)f(x)||
, t ∈ [0, 1].

This proves points (ii) and (iii).
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5. (i) dim(X) = dim(Y ) = dim(Z), with X,Y, Z oriented and compact.
In this situation, z is a regular value for g iff, for each y ∈ g−1(z), we may
find neighborhoods V ⊂ Y of y and W ⊂ Z of w so that g|V : V → W is a
diffeomorphism; and similarly for regular values of f . Then Sard’s theorem and
a simple continuity argument show one may choose a regular value z for g so
that its preimage g−1(z) consists of regular values for f . And then we have:

(g ◦ f)−1(z) = f−1(g−1(z)) =
⊔

y∈g−1(z)

f−1(y),

a finite disjoint union of finite sets.

The degree of the composition is:

deg(g ◦ f) =
∑

y∈g−1(z)

∑
x∈f−1(y)

sign(dgy ◦ dfx),

and since sign(dgy ◦ dfx) = sign(dgy)sign(dfx), this equals:

deg(g ◦ f) = [
∑

y∈g−1(z)

sign(dgy)][
∑

x∈f−1(y)

sign(dfx)] = deg(g)deg(f).

(ii) We have f : X → Y and g : W → X, with W compact, and Z ⊂ Y ,
all with empty boundary. The expression “f ◦ g and Z are appropriate for
intersection theory” means W,Z and Y are oriented and dim(W ) + dim(Z) =
dim(Y ). Here it is assumed that f t Z, so S = f−1(Z) is a submanifold of
X, with codimXS = codimY Z, which also equals dim(W ). Thus dim(W ) +
dim(S) = dim(X). Since S can be given the preimage orientation (defined by
f and by the given orientations of X,Y and Z), we also have “g and S are
appropriate for intersection theory”.

Next we must show I(g, S) = I(g ◦ f, Z). Replacing g by a homotopic
map (which doesn’t change the intersection numbers), we may assume g is
transversal to S; by the dimension and compactness conditions, it follows that
g−1(S) = (f ◦ g)−1(Z) is a finite subset of W . Fix an arbitrary w in this finite
set, and let s = g(w) ∈ S. Let Es = dgw[TwW ] ⊂ TsX. By transversality of g
to S (at w) and dimension count, we see that:

Es ⊕ TsS = TsX, (1)

and that dgw is an isomorphism from TwW to Es. From transversality of f to
Z (at s ∈ S), we also know:

dfs[TsX] + Tf(s)Z = Tf(s)Y (2)

(not a direct sum, until proof to the contrary). To establish the equality of
intersection numbers, we must show:

dfs[Es]⊕ Tf(s)Z = Tf(s)Y (3)
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(Note dfs[Es] = d(f◦g)w[TwW ], and f(s) = (f◦g)(w).) Since dfs[TsS] ⊂ Tf(s)Z,
it follows from (1) and (2) that we do have:

dfs[Es] + Tf(s)Z = Tf(s)Y,

and we must show this is a direct sum. This last decomposition already implies
dim(dfs[Es]) ≥ dim(Y )− dim(Z), the first in the chain of inequalities:

dim(Y )− dim(Z) ≤ dim(dfs[Es]) ≤ dim(Es) = dim(X)− dim(S).

Since the rightmost and leftmost numbers coincide, we must have:

dim(dfs[Es]) = dim(Es) = dim(Y )− dim(Z),

implying (3).

The point w ∈ f−1(S) is positive for the intersection number of f ◦ g with
Z if (3) is an oriented direct sum, and this is the case if and only if the direct
sum in (1) is also oriented, where S is given the preimage orientation. (This is
exactly the definition of ‘preimage orientation’, given that dfs is an isomorphism
on Es.) Since w ∈ g−1(S) = (f ◦ g)−1(Z) is arbitrary, this concludes the proof
that the intersection numbers of f ◦ g with Z and of g with S are equal.

6. (i) Let M,N be compact and oriented; take the product orientation on
M×N . Let f : M →M , g : N → N be homotopic to idM , idN (resp.) and with
graphs Γf ,Γg transversal to the diagonals ∆M ,∆N in M ×M,N × N (resp);
that is, f and g are Lefschetz maps.Then χ(M) = #Fix(f), χ(N) = #Fix(g)
(finitely many fixed points, in each case). Clearly f × g will then be a Lefschetz
map of M×N , with set of fixed points Fix(f×g) = Fix(f)×Fix(g). Also, from
the definition of Lxf as sign(det(dfx − ITxM )) for x ∈ Fix(F ) (and similarly
for g and f × g), we see immediately that, for (x, y) ∈ Fix(f)× Fix(g):

L(x,y)(f × g) = Lx(f)Ly(g).

Thus:

χ(M×N) =
∑

(x,y)∈Fix(f×g)

L(x,y)(f×g) = (
∑

x∈Fix(f)

Lx(f))(
∑

y∈Fix(g)

Ly(g)) = χ(M)χ(N).

(ii) In general (with X,Z compact, oriented, with empty boundary), if f :
X → Y, g : Z → Y with dim(X) +dim(Z) = dim(Y ), f t g iff f × g t ∆Y , and
I(f, g) = (−1)dim(Z)I(f × g,∆Y ) (p. 114). Applying this to f = g = i : Z → Y
(the inclusion map) when Z ⊂ Y and dim(Z) = (1/2)dimY , we have:

I(Z,Z) = I(i, i) = (−1)dim(Z)I(i× i,∆Y ) = I(Z × Z,∆Y )

if dim(Z) is even (since i× i is the inclusion map of Z × Z). If dim(Z) is odd,
we know I(Z,Z) = 0 (intersection number in Y ), while considering the general
equality:

I(f × g,∆Y ) = (−1)dim(X)dim(Z)I(g × f,∆Y )

applied to the case f = g = i (the inclusion of Z in Y ), coupled with the fact

dim(Z)
2

is also odd, we see that I(Z×Z,∆Y ) = 0, so the claimed equality also
holds in this case.
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