MATH 562, SPRING 2023-HOMEWORK 5 SOLUTIONS

1. S* = g71(1), and the normal line bundle {N,},cg+ of S*¥ in RF¥! is
oriented by the requirement dg,[n.] > 0. Since dg.[v] = 2(z,v) for v € R"*1,
it follows we must have n, = cx with ¢ > 0, the outward normal. Then the
preimage orientation is defined by requiring the splitting R¥*! = N, & T,S*
to be oriented; equivalently, by declaring a basis {vq,...,vx} of T,S* to be.
positive if {n,,v,..., v} is a positive basis of R**!. Since n, is the outward
normal, this is the same as the orientation induced on S* as the boundary of
the open submanifold B¥*t ¢ RF+1,

2. Here the graph S = F~!(0), and again the normal line bundle N =
{Np}pes is oriented by requiring dF,[n,] > 0. Since dF,[v] = vs — fov1 — fyv2
for v € R® and p = (z,y, f(z,y)) € S, setting n, = (—fz, —fy,1) we find
dF,[n;] = fg—l—f;—i—l > 0, so we orient N by n,,, the upward normal to the graph
at p. The preimage orientation on S is then defined by declaring a basis {v1, va }
of T,S to be positive (p € S) if {n,,vi,ve} is a positive basis of R3. For the
choice vy = (1,0, f,), v2 = (0,1, f,), we see that det[n,|vi|ve] = f2+ fZ+1 >0,
so this is a positive basis of 1,5

3. By the Jordan-Brouwer theorem, M™ = 0D, where D C R"*! is the
bounded component of the two into which M separates R"*!. As the boundary
of the manifold with boundary D, M is oriented by the unit outward normal,
defined as the unit normal pointing into the unbounded component of the com-
plement, at each point of M.

4. (i) a : S* — S* preserves orientation for k odd, reverses for k even,

and is a diffeomorphism (so each point on S* has a unique preimage). Thus
deg(a) = (~1)F+1.

If v is homotopic to the identity, deg(a) = 1, so k is odd. Conversely, if & is
odd, S* ¢ RF*! has a nonvanishing tangent vector field:

V(z) = (x9,—21,...,Zon, —Topn—1), k-+1=2n.

And if S* admits a nonvanishing vector field V, it follows that « is homotopic
to the identity (and thus k is odd). To see this, consider the map of S*:

x4+ V(x)

1) = e v

This map is well-defined (V' (x) 4+ 2z = 0 is not possible, since (V(x),x) = 0) and
homotopic to the identity on S* (replace V by tV, € [0,1].) But f doesn’t have
any fixed points on S* (since V(z) # 0 for all x), and hence is homotopic to «
via the normalized linear homotopy:

_ ta(z) + (1 —1t)f(x)
[[te(z) + (1 =) f(2)]]”

This proves points (ii) and (iii).

fe(z)

t€[0,1].



5. (1) dim(X) = dim(Y) = dim(Z), with X,Y, Z oriented and compact.
In this situation, z is a regular value for g iff, for each y € g='(2), we may
find neighborhoods V' C Y of y and W C Z of w so that g : V — Wis a
diffeomorphism; and similarly for regular values of f. Then Sard’s theorem and
a simple continuity argument show one may choose a regular value z for g so
that its preimage g~!(z) consists of regular values for f. And then we have:

(o ') =r"g'@N= || rw,

y€g—1(2)
a finite disjoint union of finite sets.

The degree of the composition is:

deglgo f) =Y., > sign(dgyodfs),

yeg~(z) zef 1 (y)

and since sign(dg, o dfy) = sign(dg,)sign(df.), this equals:

deg(go f)=[ Y sign(dg,)]] Y sign(df.)] = deg(g)deg(f).

yEg—1(2) z€f~H(y)

(ii) We have f : X - Y and g : W — X, with W compact, and Z C Y,
all with empty boundary. The expression “f o g and Z are appropriate for
intersection theory” means W, Z and Y are oriented and dim(W) + dim(Z) =
dim(Y). Here it is assumed that f h Z, so S = f~!(Z) is a submanifold of
X, with codimxS = codimy Z, which also equals dim(W). Thus dim(W) +
dim(S) = dim(X). Since S can be given the preimage orientation (defined by
f and by the given orientations of X,Y and Z), we also have “g and S are
appropriate for intersection theory”.

Next we must show I(g,S) = I(g o f,Z). Replacing g by a homotopic
map (which doesn’t change the intersection numbers), we may assume g is
transversal to S; by the dimension and compactness conditions, it follows that
g 1(S) = (fog)~1(2) is a finite subset of W. Fix an arbitrary w in this finite
set, and let s = g(w) € S. Let Es = dgy,[TwW] C TsX. By transversality of g
to S (at w) and dimension count, we see that:

E,oT,S=T,X, (1)

and that dg,, is an isomorphism from T,,W to E,. From transversality of f to
Z (at s € S), we also know:

df [T X + Ty Z = Ts)Y (2)

(not a direct sum, until proof to the contrary). To establish the equality of
intersection numbers, we must show:

dfs|Es) © Tr)Z = Ty(s)Y (3)



(Note dfs[Es] = d(fog)w[TwW], and f(s) = (fog)(w).) Since dfs[TsS] C Ty 52,
it follows from (1) and (2) that we do have:

dfs [Es] + Tf(s)Z = Tf(s)Y,

and we must show this is a direct sum. This last decomposition already implies
dim(dfs[Es]) > dim(Y') — dim(Z), the first in the chain of inequalities:
dim(Y') — dim(Z) < dim(dfs[Es]) < dim(Es) = dim(X) — dim(S).
Since the rightmost and leftmost numbers coincide, we must have:
dim(dfs[Fs)) = dim(Es) = dim(Y') — dim(Z),

implying (3).

The point w € f~1(S) is positive for the intersection number of f o g with
Z if (3) is an oriented direct sum, and this is the case if and only if the direct
sum in (1) is also oriented, where S is given the preimage orientation. (This is
exactly the definition of ‘preimage orientation’, given that df, is an isomorphism

on E,.) Since w € g~(S) = (f 0 g)~1(Z) is arbitrary, this concludes the proof
that the intersection numbers of f o g with Z and of g with S are equal.

6. (i) Let M, N be compact and oriented; take the product orientation on
MxN. Let f: M — M, g: N — N be homotopic to idys, idy (resp.) and with
graphs I'y, 'y transversal to the diagonals Ap;, Ay in M x M, N x N (resp);
that is, f and g are Lefschetz maps.Then x(M) = #Fix(f), x(N) = #Fix(g)
(finitely many fixed points, in each case). Clearly f x g will then be a Lefschetz
map of M x N, with set of fixed points Fiz(f xg) = Fix(f)x Fiz(g). Also, from
the definition of L, f as sign(det(df, — It,a)) for x € Fiz(F) (and similarly
for g and f x g), we see immediately that, for (z,y) € Fiz(f) x Fiz(g):

Liay) (f % 9) = Lo (f)Ly(9).
Thus:

X(MxN)= " > Layfxg9) =0 > L) D Lylg) = x(M)x(N).

(z,y)EFiz(fxg) zEFiz(f) yEFiz(g)

(ii) In general (with X, Z compact, oriented, with empty boundary), if f :
X =Y, 9:Z =Y with dim(X) +dim(Z) = dim(Y), f hgiff fxgmh Ay, and
I(f,g) = (=)@ (f x g,Ay) (p. 114). Applying thisto f =g=i:Z =Y
(the inclusion map) when Z C Y and dim(Z) = (1/2)dimY, we have:

1(Z,Z) = I(i,i) = (~1)" ™D (i x i, Ay) = [(Z x Z, Ay)

if dim(Z) is even (since ¢ x i is the inclusion map of Z x Z). If dim(Z) is odd,
we know I(Z,Z) = 0 (intersection number in Y'), while considering the general
equality:

I(f x g, Ay) = (=) "I (g x f, Ay)
applied to the case f = ¢g = i (the inclusion of Z in Y'), coupled with the fact
dim(Z)? is also odd, we see that I(Z x Z, Ay) = 0, so the claimed equality also
holds in this case.



