M562, SPRING 2023-Homework set 3—solutions

1. (i) R*\ M is path-connected, if dim(M) < k — 2.

Given p,q € R*\ M, let f : I — RF be a smooth path (for instance a line
segment) from p to q. By the transversality extension theorem, there exists
g : I — RF transversal to M, coinciding with f in {0, 1}, in particular g(0) =
pg(l) = ¢q. If g(t) € M for some t € I, we have dg(z)[T 1] + TyyM = RF;
impossible, since the space on the left has dimension at most 1 +n < k — 1.
Thus g(t) ¢ M, for all t € I, and g connects p to ¢ in R* \ M. O

(ii) R* \ M is simply-connected, if dim(M) < k — 3.

It is enough to show that any f : S — R¥\ M (smooth) is freely homotopic
to a constant map. This is certainly true in R*, so Jpy € R* \ M and a
homotopy H : S' x I — RF with H(z,0) = f(z), H(z,1) = poVz € S'. Now
use the transversality extension theorem to find G : S* x I — M coinciding with
H on S'x{0,1}, in particular also a homotopy from f to pg. But if G(x,t) € M
for some (,t), transversality means: dG(z,t)[T} +)(S* % I)] + TgwnM = R
And this is not possible, since the vector space on the left has dimension at
most 2+n < k—1. Thus G(z,t) ¢ MV(x,t), and the homotopy G takes values
in RF\ M.

2. Given p,q € X, let Up; contain both p and q. There is a path in Uy,
joining them, hence X is path connected. If a: I — X is a loop at zg € X, a([)
is compact, hence covered by finitely many of the open sets U,,, hence contained
in a single Uy, and a is homotopic in Uy to the constant loop at zy, hence
homotopic to a constant in X. O

3. Z =Y UX, where X is the graph of f(x) = sin% over the interval
0<z< %, while Y is an embedded closed arc from the origin to the point
p= (%, 0) € R?, intersecting X only at p. Both X and Y are path connected, as
is their intersection {p}; hence Z is path-connected. But not locally connected,
since an arbitrarily small open disk centered at the origin intersects X in a
disjoint union of arcs of X; hence 0 has no local basis of connected open subsets

of Z (in the induced topology from R?2.)

Now let X,, = X N{(z,y);z > £},Z, = YUX,,Z = U,>, Zn. This
expresses Z as an increasing union of contractible subsets; unfortunately Z,
is not open in Z (the origin is the problem), so we can’t use the result from
problem 2 to conclude Z is simply-connected. Instead we proceed directly.

Let ¢ : I — Z be a loop based at the origin. We claim ¢(I) is contained
in Zy, for some finite N. (This is all we need, since Zy is homeomorphic
to [0,1), hence contractible.) Otherwise, for arbitrarily large n, we may find
tn < tpt1 in I so that c(t,) = (51,0), c(tns1) = (ﬁ,O). The image of ¢ in
[tn, tnt1] contains the arc of the graph of f between these two points (since it
is a path connected subset of Z containing these two points), hence there exists
Sp, € (tn,tnt1) so that c(s,) = (m, 1). But then lim¢(s,) = (0, 1), which
is not a point of Z; contradiction, proving the claim.



4. Represent X = S' Vv S! (the ‘figure-eight space’) by two circles in R?
labeled L and R, tangent at a common point xg. Parameterize L (clockwise)
and R (counterclockwise), by loops f, : I — L, fp : I = R, f,(0) = f,(0) = x0.
As for X, denote the interval [n,n+1],n € Z on the z-axis by L,,, and the circle
with radius 1/3 tangent to the z-axis at the point (n,0) by R,,. Parametrize each
of the R,, counterclockwise, using the same map b from I used to parametrize

R counterclockwise.

Define the map p : X — X by mapping the z-axis to L, via p(z) = f,(z—n)
if z € [n,n + 1]. And map each point on R, to the corresponding point on R
(that is, with the same parameter value under the map f, from I'). This map p is
clearly continuous, and the preimage of 2y under p are the points (n,0),n € Z,
on the z-axis. It is easy to see p is a covering map: sufficiently small open
intervals at points in L or R (other than z() have preimage a disjoint union of
open intervals on the z-axis (resp. a disjoint union of open intervals, one in each
R,,), with p restricted to each of those intervals defining a homeomorphism onto
its image. And a preimage of a sufficiently small neighborhood of g is also a
disjoint union of open subsets of X, each mapped homeomorphically under p.

The fundamental group of X (with basepoint z) is F5(a,b), the free group
on two generators—the homotopy classes of the loops f, and f;, denoted by a
and b (resp.) Considering loops in X from the origin Z, € X, we see that the
subgroup H(Z) is generated by elements of the form:

b ab™mat, a2, a ™ a, a 2b™a?, ... m e Z.

In other words, it is the normal subgroup of Fs(a,b) generated by the cyclic
subgroup {b™;m € Z}. Since H = H(Z() is a normal subgroup, the covering is
regular. (The lifts of f, are all open, the lifts of f; all closed.)

The quotient group Fx(a,b)/H is the cyclic group {a™,a € Z} (any word in
a,b can be reduced to one of those by repeated multiplication by elements of
H); so this is the automorphism group of the cover, with ™ acting on X via
translation by the integer m (to the right, if m > 0.)

5. Let N be the common cardinality of each fiber of p. The map f : X — R,
being injective on fibers of p, defines a linear ordering in each fiber:

plx)={f <i2<...<in}

It is enough to show that N = 1. Let ¢ be a loop at x¢ € X, lift ¢ to ¢ from 7Y,
the lowest point on the fiber at xo. If ¢ is not closed, ¢(1) = with2 <k < N
(so necessarily N > 2). Let p~1(c(t)) = {#1(t) < ... < Zn(t)}. Consider the
subsets of I = [0, 1]:

U={teLet) <iylt)}; V={teL;et)>a,1(t)}.

Note that: (i) both U and V are open in I (from the definition of covering map
and continuity of ¢ and of f); (i) UNV = 0, for a ¢y in the intersection would



satisfy Zp_1(to) < é(to) < Zr(to), not possible; (iii) the union of U and V is
I, for if é(t) < Zg—_1(t), then é(t) < Zg(t). (iv) 0 € U and 1 € V, so neither
set is empty. This contradicts the fact I = [0,1] is connected. So any lift to
X of a loop in X is closed, or H(#}) = m1(X,z0). But the index of H(&)
in m (X, zo) is exactly N (the cardinality of the fibers), so N = 1, and p is a
homeomorphism.

Remark: Note the conclusion of the exercise is false if the fibers are infinite,
as the standard exponential covering from R to S! shows..

6. Define a : I — S via a(t) = f(e**), and denote by F a lift of a to R,
over the standard exponential covering R — S'. The degree of f is the integer
d so that:

F(t+1)=F(t)+d, where f(e*™t) = ¢2mF®) ¢ ¢ R
Since f is odd, we have:
F(e2m Y)Y — omif (27 or P(t+1/2) = F(t) +m/2 Vi€ R,
where m € Z is an odd integer. But this implies F(t + 1) = F(t) + m Vt € R.

Thus d = m, an odd integer.

7. The map g exists iff f: U — C\ {0} lifts to C over the standard covering
map exp : C — C\ {0}. By the lifting criterion, this happens iff the image of
m1(U) under f, is trivial, or equivalently iff f o ¢ is homotopic to a constant in
C\ {0}, for any loop ¢ in U. But the loop f o ¢ is homotopic to a constant loop
in C\ {0} iff its degree with respect to 0 € C is zero.



