M562, SPRING 2023-Homework set 3-solutions

1. (i) $R^{k} \backslash M$ is path-connected, if $\operatorname{dim}(M) \leq k-2$.

Given $p, q \in R^{k} \backslash M$, let $f: I \rightarrow R^{k}$ be a smooth path (for instance a line segment) from p to q. By the transversality extension theorem, there exists $g: I \rightarrow R^{k}$ transversal to M, coinciding with f in $\{0,1\}$, in particular $g(0)=$ $p g(1)=q$. If $g(t) \in M$ for some $t \in I$, we have $d g(x)\left[T_{t} I\right]+T_{g(x)} M=R^{k}$; impossible, since the space on the left has dimension at most $1+n \leq k-1$. Thus $g(t) \notin M$, for all $t \in I$, and g connects p to q in $R^{k} \backslash M$.
(ii) $R^{k} \backslash M$ is simply-connected, if $\operatorname{dim}(M) \leq k-3$.

It is enough to show that any $f: S^{1} \rightarrow R^{k} \backslash M$ (smooth) is freely homotopic to a constant map. This is certainly true in R^{k}, so $\exists p_{0} \in R^{k} \backslash M$ and a homotopy $H: S^{1} \times I \rightarrow R^{k}$ with $H(x, 0)=f(x), H(x, 1)=p_{0} \forall x \in S^{1}$. Now use the transversality extension theorem to find $G: S^{1} \times I \rightarrow M$ coinciding with H on $S^{1} \times\{0,1\}$, in particular also a homotopy from f to p_{0}. But if $G(x, t) \in M$ for some (x, t), transversality means: $d G(x, t)\left[T_{x, t)}\left(S^{1} \times I\right)\right]+T_{G(x, t)} M=R^{k}$. And this is not possible, since the vector space on the left has dimension at most $2+n \leq k-1$. Thus $G(x, t) \notin M \forall(x, t)$, and the homotopy G takes values in $R^{k} \backslash M$.
2. Given $p, q \in X$, let U_{M} contain both p and q. There is a path in U_{M} joining them, hence X is path connected. If $a: I \rightarrow X$ is a loop at $x_{0} \in X, a(I)$ is compact, hence covered by finitely many of the open sets U_{n}, hence contained in a single U_{N}, and a is homotopic in U_{N} to the constant loop at x_{0}, hence homotopic to a constant in X.
3. $Z=Y \cup X$, where X is the graph of $f(x)=\sin \frac{1}{x}$ over the interval $0<x \leq \frac{1}{\pi}$, while Y is an embedded closed arc from the origin to the point $p=\left(\frac{1}{\pi}, 0\right) \in R^{2}$, intersecting X only at p. Both X and Y are path connected, as is their intersection $\{p\}$; hence Z is path-connected. But not locally connected, since an arbitrarily small open disk centered at the origin intersects X in a disjoint union of arcs of X; hence 0 has no local basis of connected open subsets of Z (in the induced topology from R^{2}.)

Now let $X_{n}=X \cap\left\{(x, y) ; x>\frac{1}{n \pi}\right\}, Z_{n}=Y \cup X_{n}, Z=\bigcup_{n \geq 1} Z_{n}$. This expresses Z as an increasing union of contractible subsets; unfortunately Z_{n} is not open in Z (the origin is the problem), so we can't use the result from problem 2 to conclude Z is simply-connected. Instead we proceed directly.

Let $c: I \rightarrow Z$ be a loop based at the origin. We claim $c(I)$ is contained in Z_{N}, for some finite N. (This is all we need, since Z_{N} is homeomorphic to $[0,1)$, hence contractible.) Otherwise, for arbitrarily large n, we may find $t_{n}<t_{n+1}$ in I so that $c\left(t_{n}\right)=\left(\frac{1}{n \pi}, 0\right), c\left(t_{n+1}\right)=\left(\frac{1}{(n+1) \pi}, 0\right)$. The image of c in $\left[t_{n}, t_{n+1}\right]$ contains the arc of the graph of f between these two points (since it is a path connected subset of Z containing these two points), hence there exists $s_{n} \in\left(t_{n}, t_{n+1}\right)$ so that $c\left(s_{n}\right)=\left(\frac{2}{(2 n+1) \pi}, 1\right)$. But then $\lim c\left(s_{n}\right)=(0,1)$, which is not a point of Z; contradiction, proving the claim.
4. Represent $X=S^{1} \vee S^{1}$ (the 'figure-eight space') by two circles in R^{2} labeled L and R, tangent at a common point x_{0}. Parameterize L (clockwise) and R (counterclockwise), by loops $f_{a}: I \rightarrow L, f_{b}: I \rightarrow R, f_{a}(0)=f_{b}(0)=x_{0}$. As for \tilde{X}, denote the interval $[n, n+1], n \in \mathbb{Z}$ on the x-axis by L_{n}, and the circle with radius $1 / 3$ tangent to the x-axis at the point $(n, 0)$ by R_{n}. Parametrize each of the R_{n} counterclockwise, using the same map b from I used to parametrize R counterclockwise.

Define the map $p: \tilde{X} \rightarrow X$ by mapping the x-axis to L, via $p(x)=f_{a}(x-n)$ if $x \in[n, n+1]$. And map each point on R_{n} to the corresponding point on R (that is, with the same parameter value under the map f_{b} from I). This map p is clearly continuous, and the preimage of x_{0} under p are the points $(n, 0), n \in \mathbb{Z}$, on the x-axis. It is easy to see p is a covering map: sufficiently small open intervals at points in L or R (other than x_{0}) have preimage a disjoint union of open intervals on the x-axis (resp. a disjoint union of open intervals, one in each R_{n}), with p restricted to each of those intervals defining a homeomorphism onto its image. And a preimage of a sufficiently small neighborhood of x_{0} is also a disjoint union of open subsets of \tilde{X}, each mapped homeomorphically under p.

The fundamental group of X (with basepoint x_{0}) is $F_{2}\langle a, b\rangle$, the free group on two generators-the homotopy classes of the loops f_{a} and f_{b}, denoted by a and b (resp.) Considering loops in \tilde{X} from the origin $\tilde{x}_{0} \in \tilde{X}$, we see that the subgroup $H\left(\tilde{x}_{0}\right)$ is generated by elements of the form:

$$
b^{m}, a b^{m} a^{-1}, a^{2} b^{m} a^{-2}, a^{-1} b^{m} a, a^{-2} b^{m} a^{2}, \ldots \quad m \in \mathbb{Z} .
$$

In other words, it is the normal subgroup of $F_{2}\langle a, b\rangle$ generated by the cyclic subgroup $\left\{b^{m} ; m \in \mathbb{Z}\right\}$. Since $H=H\left(\tilde{x}_{0}\right)$ is a normal subgroup, the covering is regular. (The lifts of f_{a} are all open, the lifts of f_{b} all closed.)

The quotient group $F_{2}\langle a, b\rangle / H$ is the cyclic group $\left\{a^{m}, a \in \mathbb{Z}\right\}$ (any word in a, b can be reduced to one of those by repeated multiplication by elements of $H)$; so this is the automorphism group of the cover, with a^{m} acting on \tilde{X} via translation by the integer m (to the right, if $m>0$.)
5. Let N be the common cardinality of each fiber of p. The map $f: \tilde{X} \rightarrow R$, being injective on fibers of p, defines a linear ordering in each fiber:

$$
p^{-1}(x)=\left\{\tilde{x}_{1}<\tilde{x}_{2}<\ldots<\tilde{x}_{N}\right\} .
$$

It is enough to show that $N=1$. Let c be a loop at $x_{0} \in X$, lift c to \tilde{c} from \tilde{x}_{1}^{0}, the lowest point on the fiber at x_{0}. If \tilde{c} is not closed, $\tilde{c}(1)=\tilde{x}_{k}^{0}$ with $2 \leq k \leq N$ (so necessarily $N \geq 2$). Let $p^{-1}(c(t))=\left\{\tilde{x}_{1}(t)<\ldots<\tilde{x}_{N}(t)\right\}$. Consider the subsets of $I=[0,1]$:

$$
U=\left\{t \in I ; \tilde{c}(t)<\tilde{x}_{k}(t)\right\} ; \quad V=\left\{t \in I ; \tilde{c}(t)>\tilde{x}_{k-1}(t)\right\}
$$

Note that: (i) both U and V are open in I (from the definition of covering map and continuity of \tilde{c} and of f); (ii) $U \cap V=\emptyset$, for a t_{0} in the intersection would
satisfy $\tilde{x}_{k-1}\left(t_{0}\right)<\tilde{c}\left(t_{0}\right)<\tilde{x}_{k}\left(t_{0}\right)$, not possible; (iii) the union of U and V is I, for if $\tilde{c}(t) \leq \tilde{x}_{k-1}(t)$, then $\tilde{c}(t)<\tilde{x}_{k}(t)$. (iv) $0 \in U$ and $1 \in V$, so neither set is empty. This contradicts the fact $I=[0,1]$ is connected. So any lift to \tilde{X} of a loop in X is closed, or $H\left(\tilde{x}_{0}^{1}\right)=\pi_{1}\left(X, x_{0}\right)$. But the index of $H\left(\tilde{x}_{0}^{1}\right)$ in $\pi_{1}\left(X, x_{0}\right)$ is exactly N (the cardinality of the fibers), so $N=1$, and p is a homeomorphism.

Remark: Note the conclusion of the exercise is false if the fibers are infinite, as the standard exponential covering from R to S^{1} shows..
6. Define $a: I \rightarrow S^{1}$ via $a(t)=f\left(e^{2 \pi i t}\right)$, and denote by F a lift of a to R, over the standard exponential covering $R \rightarrow S^{1}$. The degree of f is the integer d so that:

$$
F(t+1)=F(t)+d, \quad \text { where } f\left(e^{2 \pi i t}\right)=e^{2 \pi i F(t)}, t \in R
$$

Since f is odd, we have:

$$
f\left(e^{2 \pi i(t+1 / 2)}\right)=e^{\pi i} f\left(e^{2 \pi i t}\right), \text { or } F(t+1 / 2)=F(t)+m / 2 \quad \forall t \in R,
$$

where $m \in \mathbb{Z}$ is an odd integer. But this implies $F(t+1)=F(t)+m \forall t \in R$. Thus $d=m$, an odd integer.
7. The map g exists iff $f: U \rightarrow \mathbb{C} \backslash\{0\}$ lifts to \mathbb{C} over the standard covering map $\exp : \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$. By the lifting criterion, this happens iff the image of $\pi_{1}(U)$ under f_{*} is trivial, or equivalently iff $f \circ c$ is homotopic to a constant in $\mathbb{C} \backslash\{0\}$, for any loop c in U. But the loop $f \circ c$ is homotopic to a constant loop in $\mathbb{C} \backslash\{0\}$ iff its degree with respect to $0 \in \mathbb{C}$ is zero.

