
M562, SPRING 2023–Homework set 3–solutions

1. (i) Rk \M is path-connected, if dim(M) ≤ k − 2.
Given p, q ∈ Rk \M , let f : I → Rk be a smooth path (for instance a line

segment) from p to q. By the transversality extension theorem, there exists
g : I → Rk transversal to M , coinciding with f in {0, 1}, in particular g(0) =
p g(1) = q. If g(t) ∈ M for some t ∈ I, we have dg(x)[TtI] + Tg(x)M = Rk;
impossible, since the space on the left has dimension at most 1 + n ≤ k − 1.
Thus g(t) 6∈M , for all t ∈ I, and g connects p to q in Rk \M .

(ii) Rk \M is simply-connected, if dim(M) ≤ k − 3.
It is enough to show that any f : S1 → Rk \M (smooth) is freely homotopic

to a constant map. This is certainly true in Rk, so ∃p0 ∈ Rk \ M and a
homotopy H : S1 × I → Rk with H(x, 0) = f(x), H(x, 1) = p0∀x ∈ S1. Now
use the transversality extension theorem to find G : S1×I →M coinciding with
H on S1×{0, 1}, in particular also a homotopy from f to p0. But if G(x, t) ∈M
for some (x, t), transversality means: dG(x, t)[Tx,t)(S

1 × I)] + TG(x,t)M = Rk.
And this is not possible, since the vector space on the left has dimension at
most 2 +n ≤ k− 1. Thus G(x, t) 6∈M∀(x, t), and the homotopy G takes values
in Rk \M .

2. Given p, q ∈ X, let UM contain both p and q. There is a path in UM
joining them, hence X is path connected. If a : I → X is a loop at x0 ∈ X, a(I)
is compact, hence covered by finitely many of the open sets Un, hence contained
in a single UN , and a is homotopic in UN to the constant loop at x0, hence
homotopic to a constant in X.

3. Z = Y ∪ X, where X is the graph of f(x) = sin 1
x over the interval

0 < x ≤ 1
π , while Y is an embedded closed arc from the origin to the point

p = ( 1
π , 0) ∈ R2, intersecting X only at p. Both X and Y are path connected, as

is their intersection {p}; hence Z is path-connected. But not locally connected,
since an arbitrarily small open disk centered at the origin intersects X in a
disjoint union of arcs of X; hence 0 has no local basis of connected open subsets
of Z (in the induced topology from R2.)

Now let Xn = X ∩ {(x, y);x > 1
nπ}, Zn = Y ∪ Xn, Z =

⋃
n≥1 Zn. This

expresses Z as an increasing union of contractible subsets; unfortunately Zn
is not open in Z (the origin is the problem), so we can’t use the result from
problem 2 to conclude Z is simply-connected. Instead we proceed directly.

Let c : I → Z be a loop based at the origin. We claim c(I) is contained
in ZN , for some finite N . (This is all we need, since ZN is homeomorphic
to [0, 1), hence contractible.) Otherwise, for arbitrarily large n, we may find
tn < tn+1 in I so that c(tn) = ( 1

nπ , 0), c(tn+1) = ( 1
(n+1)π , 0). The image of c in

[tn, tn+1] contains the arc of the graph of f between these two points (since it
is a path connected subset of Z containing these two points), hence there exists
sn ∈ (tn, tn+1) so that c(sn) = ( 2

(2n+1)π , 1). But then lim c(sn) = (0, 1), which

is not a point of Z; contradiction, proving the claim.
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4. Represent X = S1 ∨ S1 (the ‘figure-eight space’) by two circles in R2

labeled L and R, tangent at a common point x0. Parameterize L (clockwise)
and R (counterclockwise), by loops fa : I → L, fb : I → R, fa(0) = fb(0) = x0.
As for X̃, denote the interval [n, n+1], n ∈ Z on the x-axis by Ln, and the circle
with radius 1/3 tangent to the x-axis at the point (n, 0) by Rn. Parametrize each
of the Rn counterclockwise, using the same map b from I used to parametrize
R counterclockwise.

Define the map p : X̃ → X by mapping the x-axis to L, via p(x) = fa(x−n)
if x ∈ [n, n + 1]. And map each point on Rn to the corresponding point on R
(that is, with the same parameter value under the map fb from I). This map p is
clearly continuous, and the preimage of x0 under p are the points (n, 0), n ∈ Z,
on the x-axis. It is easy to see p is a covering map: sufficiently small open
intervals at points in L or R (other than x0) have preimage a disjoint union of
open intervals on the x-axis (resp. a disjoint union of open intervals, one in each
Rn), with p restricted to each of those intervals defining a homeomorphism onto
its image. And a preimage of a sufficiently small neighborhood of x0 is also a
disjoint union of open subsets of X̃, each mapped homeomorphically under p.

The fundamental group of X (with basepoint x0) is F2〈a, b〉, the free group
on two generators–the homotopy classes of the loops fa and fb, denoted by a
and b (resp.) Considering loops in X̃ from the origin x̃0 ∈ X̃, we see that the
subgroup H(x̃0) is generated by elements of the form:

bm, abma−1, a2bma−2, a−1bma, a−2bma2, ... m ∈ Z.

In other words, it is the normal subgroup of F2〈a, b〉 generated by the cyclic
subgroup {bm;m ∈ Z}. Since H = H(x̃0) is a normal subgroup, the covering is
regular. (The lifts of fa are all open, the lifts of fb all closed.)

The quotient group F2〈a, b〉/H is the cyclic group {am, a ∈ Z} (any word in
a, b can be reduced to one of those by repeated multiplication by elements of
H); so this is the automorphism group of the cover, with am acting on X̃ via
translation by the integer m (to the right, if m > 0.)

5. Let N be the common cardinality of each fiber of p. The map f : X̃ → R,
being injective on fibers of p, defines a linear ordering in each fiber:

p−1(x) = {x̃1 < x̃2 < . . . < x̃N}.

It is enough to show that N = 1. Let c be a loop at x0 ∈ X, lift c to c̃ from x̃01,
the lowest point on the fiber at x0. If c̃ is not closed, c̃(1) = x̃0k with 2 ≤ k ≤ N
(so necessarily N ≥ 2). Let p−1(c(t)) = {x̃1(t) < . . . < x̃N (t)}. Consider the
subsets of I = [0, 1]:

U = {t ∈ I; c̃(t) < x̃k(t)}; V = {t ∈ I; c̃(t) > x̃k−1(t)}.

Note that: (i) both U and V are open in I (from the definition of covering map
and continuity of c̃ and of f); (ii) U ∩ V = ∅, for a t0 in the intersection would
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satisfy x̃k−1(t0) < c̃(t0) < x̃k(t0), not possible; (iii) the union of U and V is
I, for if c̃(t) ≤ x̃k−1(t), then c̃(t) < x̃k(t). (iv) 0 ∈ U and 1 ∈ V , so neither
set is empty. This contradicts the fact I = [0, 1] is connected. So any lift to
X̃ of a loop in X is closed, or H(x̃10) = π1(X,x0). But the index of H(x̃10)
in π1(X,x0) is exactly N (the cardinality of the fibers), so N = 1, and p is a
homeomorphism.

Remark: Note the conclusion of the exercise is false if the fibers are infinite,
as the standard exponential covering from R to S1 shows..

6. Define a : I → S1 via a(t) = f(e2πit), and denote by F a lift of a to R,
over the standard exponential covering R→ S1. The degree of f is the integer
d so that:

F (t+ 1) = F (t) + d, where f(e2πit) = e2πiF (t), t ∈ R.

Since f is odd, we have:

f(e2πi(t+1/2)) = eπif(e2πit), or F (t+ 1/2) = F (t) +m/2 ∀t ∈ R,

where m ∈ Z is an odd integer. But this implies F (t + 1) = F (t) + m ∀t ∈ R.
Thus d = m, an odd integer.

7. The map g exists iff f : U → C \ {0} lifts to C over the standard covering
map exp : C → C \ {0}. By the lifting criterion, this happens iff the image of
π1(U) under f∗ is trivial, or equivalently iff f ◦ c is homotopic to a constant in
C \ {0}, for any loop c in U . But the loop f ◦ c is homotopic to a constant loop
in C \ {0} iff its degree with respect to 0 ∈ C is zero.
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