
REMARKS ON THE MOD 2 DEGREE.

Let f : X → Y be a smooth map, where dimX = dimY ; X is compact (with
empty boundary) and Y is connected, without boundary. If y ∈ Y is a regular
value for f (equivalently, f is transversal to the 0-dim submanifold {y} of Y ),
let deg2(f, y) = #f−1(y) mod 2. This makes sense, since in this case f−1(y) is
a finite set (since f is a local diffeomorphism at each point of the preimage of
y, and X is compact.) If y ∈ Y is not a regular value, find g : Y → X smooth
and homotopic to f , so that y is a regular value for g; then g−1(y) is finite, and
its cardinality mod 2 is independent of the particular g chosen (by homotopy
invariance of the mod 2 intersection number; or directly, since one-dimensional
compact manifolds with boundary have an even number of boundary points.)
So we set deg2(f, y) = #g−1(y) for any such g. The theorem on p. 80 of [G-P]
states, in equivalent form:

Theorem. deg2(f, y) is independent (mod 2) of the point y ∈ Y chosen.

This result is true, but the proof given on p.81 of [G-P] is slightly misleading:
it may appear to be based on connectedness of Y and the fact that #f−1(y)
is (finite and) locally constant, which is true only for y in the set of regular
values, a set which is not always connected, even if Y is. And it is not true that
#f−1(y) is constant over all y ∈ Y , even mod 2. Consider the example:

Example. X = S1 ⊂ R2, Y = R, f : X → Y, f(x1, x2) = x1. Any y 6= ±1
is a regular value. But #f−1(±1) = 1, while #f−1(y) = 2 if |y| < 1 and
#f−1(y) = 0 if y < −1 or y > 1 (so it’s true that #f−1(y) = 0 mod 2, if y is a
regular value.) Here we have deg2(f) = 0.

In fact it is easy to find examples of f : S1 → R smooth, so that for some
y ∈ R, f−1(y) contains countably many nondegenerate intervals (so it is very
much an infinite set.)

A better proof is given in J. Milnor’s Topology from the differentiable view-
point, p.20–25. It leads to a different (but equivalent) definition of the mod 2
degree. Here is an outline. The proof relies on the following lemma:

Homogeneity Lemma. Let y, z be arbitrary interior points of the connected
manifold N . Then there exists a smooth diffeomorphism h : N → N , isotopic
to the identity (that is, homotopic to the identity via maps which are diffeomo-
prhisms), so that h(y) = z.

Theorem. Let X,Y be manifolds of the same dimension, with X compact,
without boundary, and Y connected. Then if y, z are regular values of f , we
have:

#f−1(y) ≡ #f−1(z) mod 2.

This common residue class mod 2, called the mod 2 degree of f , deg2(f), depends
only on the homotopy class of f .

Proof. Let h be a diffeomorphism of Y isotopic to the identity, with h(y) = z.
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Then z is a regular value of h ◦ f , which is homotopic to f . Thus:

#(h ◦ f)−1(z) ≡ #f−1(z) mod 2.

But since (h ◦ f)−1(z) = f−1(h−1(z)) = f−1(y), we have #(h ◦ f)−1(z) =
#f−1(y), and therefore:

#f−1(y) ≡ #f−1(z) mod 2.

Define deg2f to be this common cardinality of the preimage of a regular
value, mod 2.

If f is (smoothly) homotopic to g, let y ∈ Y be a regular value for both
f and g (using Sard’s theorem). Then #f−1(z) ≡ #g−1(z) (from the fact
one-dimensional compact manifolds with boundary have an even number of
boundary points). Hence deg2f = deg2g.

Proof of the homogeneity lemma (outline).

(i) Let B ⊂ Rn be the open unit ball, ϕ : Rn → [0,∞) a smooth function,
positive on B and zero on Rn \ B. For a unit vector c ∈ Sn−1, consider the
smooth, bounded vector field on Rn: Xc(x) = ϕ(x)c (which vanishes outside of
B). Let {Ft}t∈R be the flow of Xc, a one-parameter group of smooth diffeo-
morphisms of Rn, all isotopic to the identity F0 = Id, and equal to the identity
outside of B. (Ft(x) is the value at time t of the solution of the system of ODE
defined by Xc, with initial condition x ∈ Rn.) Given z0 ∈ B, we may find c and
t so that Ft(0) = z0.

(ii) Define an equivalence relation in the interior of N : y ∼ z if there exists
a diffeomorphism isotopic to the identity taking y to z. Since each point y ∈ N
has a neighborhood diffeomorphic to B ⊂ Rn (via a chart taking y to 0), part
(i) shows the equivalence classes are open sets. Since N is connected, there is
only one equivalence class.
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