REMARKS ON THE MOD 2 DEGREE.

Let $f: X \rightarrow Y$ be a smooth map, where $\operatorname{dim} X=\operatorname{dim} Y ; X$ is compact (with empty boundary) and Y is connected, without boundary. If $y \in Y$ is a regular value for f (equivalently, f is transversal to the 0 - dim submanifold $\{y\}$ of Y), let $\operatorname{deg}_{2}(f, y)=\# f^{-1}(y) \bmod 2$. This makes sense, since in this case $f^{-1}(y)$ is a finite set (since f is a local diffeomorphism at each point of the preimage of y, and X is compact.) If $y \in Y$ is not a regular value, find $g: Y \rightarrow X$ smooth and homotopic to f, so that y is a regular value for g; then $g^{-1}(y)$ is finite, and its cardinality mod 2 is independent of the particular g chosen (by homotopy invariance of the mod 2 intersection number; or directly, since one-dimensional compact manifolds with boundary have an even number of boundary points.) So we set $\operatorname{deg}_{2}(f, y)=\# g^{-1}(y)$ for any such g. The theorem on p. 80 of [G-P] states, in equivalent form:

Theorem. $\operatorname{deg}_{2}(f, y)$ is independent $(\bmod 2)$ of the point $y \in Y$ chosen.
This result is true, but the proof given on p. 81 of [G-P] is slightly misleading: it may appear to be based on connectedness of Y and the fact that $\# f^{-1}(y)$ is (finite and) locally constant, which is true only for y in the set of regular values, a set which is not always connected, even if Y is. And it is not true that $\# f^{-1}(y)$ is constant over all $y \in Y$, even $\bmod 2$. Consider the example:

Example. $X=S^{1} \subset \mathbb{R}^{2}, Y=\mathbb{R}, f: X \rightarrow Y, f\left(x_{1}, x_{2}\right)=x_{1}$. Any $y \neq \pm 1$ is a regular value. But $\# f^{-1}(\pm 1)=1$, while $\# f^{-1}(y)=2$ if $|y|<1$ and $\# f^{-1}(y)=0$ if $y<-1$ or $y>1$ (so it's true that $\# f^{-1}(y)=0 \bmod 2$, if y is a regular value.) Here we have $d e g_{2}(f)=0$.

In fact it is easy to find examples of $f: S^{1} \rightarrow \mathbb{R}$ smooth, so that for some $y \in \mathbb{R}, f^{-1}(y)$ contains countably many nondegenerate intervals (so it is very much an infinite set.)

A better proof is given in J. Milnor's Topology from the differentiable viewpoint, p.20-25. It leads to a different (but equivalent) definition of the $\bmod 2$ degree. Here is an outline. The proof relies on the following lemma:

Homogeneity Lemma. Let y, z be arbitrary interior points of the connected manifold N. Then there exists a smooth diffeomorphism $h: N \rightarrow N$, isotopic to the identity (that is, homotopic to the identity via maps which are diffeomoprhisms), so that $h(y)=z$.

Theorem. Let X, Y be manifolds of the same dimension, with X compact, without boundary, and Y connected. Then if y, z are regular values of f, we have:

$$
\# f^{-1}(y) \equiv \# f^{-1}(z) \bmod 2
$$

This common residue class mod 2 , called the mod 2 degree of $f, \operatorname{deg}_{2}(f)$, depends only on the homotopy class of f.

Proof. Let h be a diffeomorphism of Y isotopic to the identity, with $h(y)=z$.

Then z is a regular value of $h \circ f$, which is homotopic to f. Thus:

$$
\#(h \circ f)^{-1}(z) \equiv \# f^{-1}(z) \bmod 2
$$

But since $(h \circ f)^{-1}(z)=f^{-1}\left(h^{-1}(z)\right)=f^{-1}(y)$, we have $\#(h \circ f)^{-1}(z)=$ $\# f^{-1}(y)$, and therefore:

$$
\# f^{-1}(y) \equiv \# f^{-1}(z) \bmod 2
$$

Define $d e g_{2} f$ to be this common cardinality of the preimage of a regular value, $\bmod 2$.

If f is (smoothly) homotopic to g, let $y \in Y$ be a regular value for both f and g (using Sard's theorem). Then $\# f^{-1}(z) \equiv \# g^{-1}(z)$ (from the fact one-dimensional compact manifolds with boundary have an even number of boundary points). Hence $d e g_{2} f=d e g_{2} g$.

Proof of the homogeneity lemma (outline).
(i) Let $B \subset R^{n}$ be the open unit ball, $\varphi: R^{n} \rightarrow[0, \infty)$ a smooth function, positive on B and zero on $R^{n} \backslash B$. For a unit vector $c \in S^{n-1}$, consider the smooth, bounded vector field on $R^{n}: X_{c}(x)=\varphi(x) c$ (which vanishes outside of $B)$. Let $\left\{F_{t}\right\}_{t \in R}$ be the flow of X_{c}, a one-parameter group of smooth diffeomorphisms of R^{n}, all isotopic to the identity $F_{0}=I d$, and equal to the identity outside of $B .\left(F_{t}(x)\right.$ is the value at time t of the solution of the system of ODE defined by X_{c}, with initial condition $x \in R^{n}$.) Given $z_{0} \in B$, we may find c and t so that $F_{t}(0)=z_{0}$.
(ii) Define an equivalence relation in the interior of $N: y \sim z$ if there exists a diffeomorphism isotopic to the identity taking y to z. Since each point $y \in N$ has a neighborhood diffeomorphic to $B \subset R^{n}$ (via a chart taking y to 0), part (i) shows the equivalence classes are open sets. Since N is connected, there is only one equivalence class.

