REMARKS ON THE MOD 2 DEGREE.

Let f : X — Y be a smooth map, where dim X = dimY’; X is compact (with
empty boundary) and Y is connected, without boundary. If y € Y is a regular
value for f (equivalently, f is transversal to the 0-dim submanifold {y} of Y),
let dega(f,y) = #f~1(y) mod 2. This makes sense, since in this case f~1(y) is
a finite set (since f is a local diffeomorphism at each point of the preimage of
y, and X is compact.) If y € Y is not a regular value, find g : Y — X smooth
and homotopic to f, so that y is a regular value for g; then g=1(y) is finite, and
its cardinality mod 2 is independent of the particular g chosen (by homotopy
invariance of the mod 2 intersection number; or directly, since one-dimensional
compact manifolds with boundary have an even number of boundary points.)
So we set dega(f,y) = #g~1(y) for any such g. The theorem on p. 80 of [G-P]
states, in equivalent form:

Theorem. degs(f,y) is independent (mod 2) of the point y € Y chosen.

This result is true, but the proof given on p.81 of [G-P] is slightly misleading:
it may appear to be based on connectedness of Y and the fact that #f~1(y)
is (finite and) locally constant, which is true only for y in the set of regular
values, a set which is not always connected, even if Y is. And it is not true that
#f~1(y) is constant over all y € Y, even mod 2. Consider the example:

Example. X = S CRYEY =R, f: X = Y, f(z1,22) = 71. Any y # +1
is a regular value. But #f~1(+1) = 1, while #f 1(y) = 2 if |y| < 1 and
#fYy)=0ify < —1ory > 1 (soit’s true that #f~(y) = 0 mod 2, if y is a
regular value.) Here we have dega(f) = 0.

In fact it is easy to find examples of f : S — R smooth, so that for some
y € R, f~!(y) contains countably many nondegenerate intervals (so it is very
much an infinite set.)

A better proof is given in J. Milnor’s Topology from the differentiable view-
point, p.20-25. Tt leads to a different (but equivalent) definition of the mod 2
degree. Here is an outline. The proof relies on the following lemma:

Homogeneity Lemma. Let y, z be arbitrary interior points of the connected
manifold N. Then there exists a smooth diffeomorphism A : N — N, isotopic
to the identity (that is, homotopic to the identity via maps which are diffeomo-
prhisms), so that h(y) = z.

Theorem. Let X,Y be manifolds of the same dimension, with X compact,
without boundary, and Y connected. Then if y, z are regular values of f, we
have:

#F y) = #f(2) mod 2.

This common residue class mod 2, called the mod 2 degree of f, dega(f), depends
only on the homotopy class of f.

Proof. Let h be a diffeomorphism of Y isotopic to the identity, with h(y) = z.



Then z is a regular value of h o f, which is homotopic to f. Thus:
#(ho f)7'(z) = #f'(2) mod 2.

But since (ho f)~(z) = f~Hh1(z)) = f~'(y), we have #(h o f)~1(z) =
#f71(y), and therefore:

#f7Hy) = #71(2) mod 2.

Define degs f to be this common cardinality of the preimage of a regular
value, mod 2.

If f is (smoothly) homotopic to g, let y € Y be a regular value for both
f and g (using Sard’s theorem). Then #f~1(2) = #g¢ !(2) (from the fact
one-dimensional compact manifolds with boundary have an even number of
boundary points). Hence degs f = degag. O

Proof of the homogeneity lemma (outline).

(i) Let B C R™ be the open unit ball, ¢ : R — [0,00) a smooth function,
positive on B and zero on R™ \ B. For a unit vector ¢ € S"~!, consider the
smooth, bounded vector field on R™: X, (z) = ¢(x)c (which vanishes outside of
B). Let {F;}tcr be the flow of X., a one-parameter group of smooth diffeo-
morphisms of R™, all isotopic to the identity Fy = Id, and equal to the identity
outside of B. (Fi(x) is the value at time ¢ of the solution of the system of ODE
defined by X., with initial condition = € R™.) Given zy € B, we may find ¢ and
t so that F;(0) = zo.

(ii) Define an equivalence relation in the interior of N: y ~ z if there exists
a diffeomorphism isotopic to the identity taking y to z. Since each point y € N
has a neighborhood diffeomorphic to B C R™ (via a chart taking y to 0), part
(i) shows the equivalence classes are open sets. Since N is connected, there is
only one equivalence class. O



