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Lemma 0.1. Let y1, y2 ∈ Y be such that y1 ∼ y2. Then y1 = y2.

Proof. Note that if y1 ∈ f(A), then there is some a ∈ A such that y1 = f(a). Thus

y2 ∼ y1 ∼ a.

But the only element of Y that a shares an equivalence class with is f(a). Thus y2 = f(a) = y1 and so
we may assume y1, y2 /∈ f(A). But then [yi] = {yi} so if y1 ∼ y2 it must be the case that y1 = y2.

Lemma 0.2. Let x1, x2 be distinct elements of X. Then x1 ∼ x2 if and only if x1, x2 ∈ A and
f(x1) = f(x2).

Proof. The reverse direction is clear as this means x1, x2 share an equivalence class with some
y = f(xi), thus share an equivalence class with one another. The forward direction we prove by
contrapositive. Assume x1 or x2 /∈ A or they map to distinct y1, y2. By the above lemma, if
f(x1) = y1 6= y2 = f(x2), then y1 6∼ y2 and thus x1 6∼ x2. Thus we may assume without loss of
generality that x1 /∈ A. But then [x1] = {x1}, and thus does not contain x2. Thus x1 6∼ x2. Thus if
it is the case x1 ∼ x2 it must be the case that x1, x2 ∈ A and f(x1) = f(x2).

8.12) Let X,Y be spaces and A ⊂ X an nonempty closed subset. Let f : A → Y be continuous and
ν : X t Y → X tf Y the natural map.

i) Assume C ⊂ X t Y is such that C ∩X is closed in X. Show ν(C) is closed in X tf Y iff
(C ∩ Y ) ∪ f(C ∩A) is closed in Y .

Proof. =⇒ :

To begin, assume that ν(C) ⊂ X tf Y is closed. Then since ν is a continuous map,
we have ν−1(ν(C)) is a closed subset of X t Y . For notational convenience, we now adopt
the following notation

CX := C ∩X CY := C ∩ Y CA := C ∩A

We now show that this closed subset is equal to

C ∪ f(CA) ∪ f−1f(CA) ∪ f−1(CY ).

We show the forward containment in cases:

– If t ∈ C, then ν(t) ∈ ν(C).

– If t ∈ f(CA), then there is some s ∈ CA ⊂ C such that f(s) = t. Since s ∼ t and
ν(s) ∈ ν(C) we have ν(t) ∈ ν(C).

– If t ∈ f−1f(CA), then f(t) = r ∈ f(CA). By the above example, ν(r) ∈ ν(C). Since
t ∼ r and ν(r) ∈ ν(C) we have ν(t) ∈ ν(C).
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– If t ∈ f−1(CY ), then f(t) = r ∈ CY ⊂ C. By the above example, ν(r) ∈ ν(C). Since
t ∼ r and ν(r) ∈ ν(C) we have ν(t) ∈ ν(C).

Thus
ν−1ν(C) ⊃ C ∪ f(CA) ∪ f−1f(CA) ∪ f−1(CY ).

To see the reverse inclusion, let s ∈ ν−1ν(C) ⊂ X t Y . Note if s ∈ C, then we are
done so we may assume not. Thus we have s ∈ (X \ CX) t (Y \ CY ). Since ν(s) ∈ ν(C),
there is some t ∈ C such that ν(s) = ν(t). Thus t ∈ CX t CY .

– Assume s ∈ (X \ CX) and t ∈ CX . Note that if x, x′ ∈ X, then x ∼ x′ iff x, x′ ∈ A
and f(x) = f(x′) as the relation ∼ associates elements of A with elements Y and
does not (directly) associate elements of X with other elements of X (relations on
elements of X only come from transitivity). Thus s, t ∈ A, and so t ∈ CA. As such
f(t) = r ∈ f(CA). Note that we now have s ∼ t ∼ r. Since we have s ∼ t, we must
have f(s) = f(t) = r =⇒ s ∈ f−1f(CA)

– Assume s ∈ X \ CX and t ∈ CY . Then there is some r ∈ f−1(CY ) ⊂ X such that
f(r) = t. Thus we again have s ∼ t ∼ r so s, r ∈ A and thus it must be the case that
r ∈ CA and f(s) = f(r) = t ∈ CY so we see s ∈ f−1(CY ).

– Assume s ∈ Y \ CY . If t ∈ CX , then it must be the case that f(t) = s (as this is
the only relation between elements of X and Y ) which in turn would mean t ∈ A and
thus t ∈ CA =⇒ s ∈ f(CA). Thus we may assume t ∈ CY . We claim this will give
a contradiction. To this end, note that as with elements of X, any relation between
elements of Y is deduced from transitivity. Thus elements y, y′ ∈ Y are such that
y ∼ y′ iff y = y′. Since we assume that s ∈ Y \ CY and t ∈ CY , this obviously cannot
occur.

We have now shown that s ∈ C ∪ f(CA) ∪ f−1f(CA) ∪ f−1(CY ) thus establishing the
equality of the above sets. Since they are closed, it follows that

Y ∩ ν−1ν(C) = (Y ∩ C) ∪ f(CA)

is a closed subset of Y . Since CA := C ∩A, this gives us the desired result.

⇐= :

Note that
ν−1ν(C) = C ∪ f(CA) ∪ f−1f(CA) ∪ f−1(CY )

can also be written as

(CX) ∪ (CY ) ∪ f(CA) ∪ f−1 (f(CA) ∪ CY ) .

By assumption we have f(CA) ∪ CY is a closed subset of Y and CX is a closed subset of
X. Further, since f is continuous and A is closed f−1 (f(CA) ∪ CY ) (which is closed in A)
is closed in X. Thus we have a finite union of closed sets, thus it is closed.

ii) Show the composite
Y ↪→ X t Y → X tf Y

is a homeomorphism from Y to a subspace of X tf Y .
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Proof. Since the composition map is continuous (being composition of continuous maps)
and bijective, we show it is a closed map and conclude it is a homeomorphism. Let C ⊂ Y
be a closed set. Then the inclusion of C into X t Y , call it Ĉ is a closed subset of X t Y
satisfying (Ĉ ∩ Y ) ∪ f(Ĉ ∩A) is closed in Y , thus ν(Ĉ) is a closed subset of X tf Y . But

ν(Ĉ) = ν ◦ ι(C), thus the composition is a closed map and so it is a homeomorphism.

iii) Show the composite
Φ : X ↪→ X t Y → X tf Y

maps X \A homeomorphically onto an open subset of X tf Y .

Proof. To begin, we see the composite map is a bijection by the second lemma above. We
thus show it is an open map to conclude it is a homeomorphism. To this end, let U ⊂ X \A
be an open set. Let Û be the image of U be the inclusion of U in X t Y , which we see is
an open subset. Observe that it is an open set and that

ν(Û) = {[x] : x ∈ Û} =⇒ ν−1ν(Û) = Û

But since Û is an open subset of X t Y , ν(Û) is an open subset in X tf Y , as the open
subset are exactly those whose preimage is an open subset of Xtf Y . Since the composition
is clearly continuous (being composition of continuous maps) and a bijective open map, it
is a homeomorphism.

iv) Under the identification map in (ii), show one may regard Φ|A as the attaching map f .

Proof. Firstly, let Ψ be the composition map from (ii). We show the following diagram
commutes

A
f
//

!!

f(A)

Φ(A)

Ψ−1

OO
.

To this end, let a ∈ A and s = f(a). Then a ∼ s so Φ(a) = ν(a) = ν(s) = Ψ(s). Thus
f(a) = s = Ψ−1 ◦ Φ(a) so the diagram commutes and we may regard f as being equal to
Ψ−1◦Φ(a). But since Ψ is a homeomorphism that identifies s and [s], it makes just as much
sense to consider f as just being equal to Φ|A, as the value of Φ(a) uniquely determines
the value of Ψ−1 ◦ Φ(a), thus determines f .

8.13) Suppose that in exercise 8.12 that A is compact and X,Y are Hausdorff.

i) Show that the natural map ν is a closed map.

Proof. Let C ⊂ X t Y be a closed set. Then C ∩A is a closed subset of A, a compact set,
thus is compact. Thus f(C ∩ A) is a compact subset of a Hausdorff space, thus is closed.
Thus (Y ∩ C) ∪ f(C ∩ A) ⊂ Y is a finite union of closed sets, thus is closed. By 8.12, this
means ν(C) is closed, thus ν is a closed map.

ii) If z ∈ X tf Y , show the fiber ν−1(z) is a non-empty compact subset of X t Y .

Proof. To begin, note that ν is surjective, thus ν−1(z) is a non-empty set. Note that
if ν−1(z) is a subset of X \ A or Y \ f(A), then ν−1(z) = {w} for some singleton set.
Singleton sets are always compact so we may assume this is not the case and ν−1(z)
intersects A or f(A). By our initial lemmas this also guarentees that ν−1(z) ∩ (X \ A) =
∅ = ν−1(z)∩ (Y \f(A)). Also by our initial lemmas, we see ν−1(z)∩Y is a singleton set, as
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no two elements of Y share an equivalence class. Thus ν−1(z) ∩ Y = {y} for some y ∈ Y .
Singleton sets are closed and compact in Y as it is Hausdorff, thus f−1(Y ) ⊂ A is a closed
subset in a compact set. Further, we have

ν−1(z) = (ν−1(z) ∩ Y ) ∪ (ν−1(z) ∩X) = (ν−1(z) ∩ Y ) ∪ (ν−1(z) ∩A)

but ν−1(z) ∩ A is all those a such that ν(a) = z = ν(y), thus it is all those a such that
f(a) = y, which in turn is just f−1(y). Thus

ν−1(z) = {y} ∪ f−1(y)

which is the finite union of compact sets and thus is compact.
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