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Lemma 0.1. Let y1,y2 € Y be such that y; ~ y2. Then y; = ys.

Proof. Note that if y; € f(A), then there is some a € A such that y; = f(a). Thus

Ya2 ~ Y1 ~ a.

But the only element of Y that a shares an equivalence class with is f(a). Thus yo = f(a) = y1 and so
we may assume y1,y2 ¢ f(A). But then [y;] = {y;} so if y1 ~ yo it must be the case that y; = yo. O

Lemma 0.2. Let x1,z9 be distinct elements of X. Then x1 ~ xo if and only if v1,290 € A and

f(x1) = f(w2).

Proof. The reverse direction is clear as this means xi,xs share an equivalence class with some
y = f(x;), thus share an equivalence class with one another. The forward direction we prove by
contrapositive. Assume x; or 22 ¢ A or they map to distinct yi,y2. By the above lemma, if
f(z1) = y1 # y2 = f(z2), then y; £ yo and thus z1 % x9. Thus we may assume without loss of
generality that x; ¢ A. But then [z1] = {1}, and thus does not contain z3. Thus x; 7 x2. Thus if
it is the case x1 ~ x5 it must be the case that z1, 29 € A and f(x1) = f(x2). O

8.12) Let X,Y be spaces and A C X an nonempty closed subset. Let f : A — Y be continuous and
v: XUY — XUy Y the natural map.

i) Assume C' C X UY is such that C N X is closed in X. Show v(C) is closed in X Uy Y iff
CNY)Uf(CNA)isclosed in Y.

Proof. —:

To begin, assume that v(C) C X Uy Y is closed. Then since v is a continuous map,
we have v~ (v(C)) is a closed subset of X LI'Y. For notational convenience, we now adopt
the following notation

Cx =CnNnX Cy =CnY Ch:=CnA
We now show that this closed subset is equal to
CUf(Ca)U fTHf(Ca) U fH(Cy).

We show the forward containment in cases:
— Ift € C, then v(t) € v(C).
— If t € f(Cy), then there is some s € C4 C C such that f(s) = ¢. Since s ~ ¢ and
v(s) € v(C) we have v(t) € v(C).
— Ift € f~1f(Ca), then f(t) =r € f(Ca). By the above example, v(r) € v(C). Since
t ~ 7 and v(r) € v(C) we have v(t) € v(C).



ii)

If t € f~1(Cy), then f(t) =r € Cy C C. By the above example, v(r) € v(C). Since
t ~r and v(r) € v(C) we have v(t) € v(C).

Thus

v Iw(C) D CUf(Ca) U fTH(Ca) U f7H(Cy).

To see the reverse inclusion, let s € v 1v(C) C X UY. Note if s € C, then we are
done so we may assume not. Thus we have s € (X \ Cx) U (Y \ Cy). Since v(s) € v(C),
there is some ¢t € C' such that v(s) = v(t). Thus t € Cx UCy.

We

Assume s € (X \ Cx) and t € Cx. Note that if z,2’ € X, then ¢ ~ 2’ iff z,2" € A
and f(xz) = f(2') as the relation ~ associates elements of A with elements Y and
does not (directly) associate elements of X with other elements of X (relations on
elements of X only come from transitivity). Thus s, € A, and so t € C4. As such
f(t) =r € f(Ca). Note that we now have s ~ t ~ r. Since we have s ~ t, we must

have f(s) = f(t) =r = s€ f~1f(Ca)

Assume s € X \ Cx and t € Cy. Then there is some r € f~}(Cy) C X such that
f(r) =t. Thus we again have s ~t ~ r so s, € A and thus it must be the case that
r € Cy and f(s) = f(r) =t € Cy so we see s € f~1(Cy).

Assume s € Y\ Cy. If t € Cx, then it must be the case that f(t) = s (as this is
the only relation between elements of X and Y) which in turn would mean ¢ € A and
thus t € Cy = s € f(Ca). Thus we may assume t € Cy. We claim this will give
a contradiction. To this end, note that as with elements of X, any relation between
elements of Y is deduced from transitivity. Thus elements y,y’ € Y are such that
y ~ vy iff y =1y'. Since we assume that s € Y \ Cy and ¢ € Cy, this obviously cannot
occur.

have now shown that s € C'U f(C4) U f~1f(Ca) U f~1(Cy) thus establishing the

equality of the above sets. Since they are closed, it follows that

is a

Y Nnv v(0) = (Y NC)U f(Ca)

closed subset of Y. Since C4 := C' N A, this gives us the desired result.

—:

Note that

can

vw(C) = CUf(CA)U ST (Ca) U FH(Cy)

also be written as

(Cx)U(Cy)U f(CaA)U fH(F(Ca)UCYy).

By assumption we have f(C4) U Cy is a closed subset of Y and Cx is a closed subset of
X. Further, since f is continuous and A is closed f~1 (f(C4) U Cy) (which is closed in A)
is closed in X. Thus we have a finite union of closed sets, thus it is closed. O

Show the composite

is a

Y XUuY - XU;Y

homeomorphism from Y to a subspace of X Lif Y.



iii)

iv)

Proof. Since the composition map is continuous (being composition of continuous maps)
and bijective, we show it is a closed map and conclude it is a homeomorphism. Let C C Y
be a closed set. Then the inclusion of C' into X LY, call it C' is a closed subset of X LY
satisfying (C'NY)U f(C N A) is closed in Y, thus v(C) is a closed subset of X Li; Y. But

v(C) = v o(C), thus the composition is a closed map and so it is a homeomorphism. [

Show the composite
P X > XUY > XUpY

maps X \ A homeomorphically onto an open subset of X Li; Y.

Proof. To begin, we see the composite map is a bijection by the second lemma above. We
thus show it is an open map to conclude it is a homeomorphism. To this end, let U C X\ A
be an open set. Let U be the image of U be the inclusion of U in X LY, which we see is
an open subset. Observe that it is an open set and that

v(0)={z]:2 €U} = v (0)=U

But since U is an open subset of X UY, V(U) is an open subset in X Uy Y, as the open
subset are exactly those whose preimage is an open subset of X ;Y. Since the composition
is clearly continuous (being composition of continuous maps) and a bijective open map, it
is a homeomorphism. O

Under the identification map in (i7), show one may regard ®|4 as the attaching map f.

Proof. Firstly, let ¥ be the composition map from (ii). We show the following diagram
commutes

A—L5 pa)

N

B(A)

To this end, let a € A and s = f(a). Then a ~ s so ®(a) = v(a) = v(s) = ¥(s). Thus
f(a) = s = ¥~ o®(a) so the diagram commutes and we may regard f as being equal to
U~lo®(a). But since ¥ is a homeomorphism that identifies s and [s], it makes just as much
sense to consider f as just being equal to ®|4, as the value of ®(a) uniquely determines
the value of ¥~! o ®(a), thus determines f. O

8.13) Suppose that in exercise 8.12 that A is compact and X,Y are Hausdorff.

i)

ii)

Show that the natural map v is a closed map.

Proof. Let C C X UY be a closed set. Then C'N A is a closed subset of A, a compact set,
thus is compact. Thus f(C' N A) is a compact subset of a Hausdorff space, thus is closed.
Thus (Y NC)U f(CNA)CY is a finite union of closed sets, thus is closed. By 8.12, this
means v(C) is closed, thus v is a closed map. O

If z € X Uy Y, show the fiber v7!(2) is a non-empty compact subset of X LY.

Proof. To begin, note that v is surjective, thus v~!(z) is a non-empty set. Note that
if v71(z) is a subset of X \ A or Y \ f(A), then v~!(z2) = {w} for some singleton set.
Singleton sets are always compact so we may assume this is not the case and v~!(z)
intersects A or f(A). By our initial lemmas this also guarentees that v=1(z) N (X \ 4) =
0 =v=1(z)N(Y\ f(A)). Also by our initial lemmas, we see v~1(2)NY is a singleton set, as



no two elements of ¥ share an equivalence class. Thus v~ !(2)NY = {y} for some y € Y.
Singleton sets are closed and compact in Y as it is Hausdorff, thus f~(Y) C A is a closed
subset in a compact set. Further, we have

vl =t )N Y) Ut )N X)= v ) nY)u (v i z) N A)

but ¥~ 1(2) N A is all those a such that v(a) = z = v(y), thus it is all those a such that
f(a) =y, which in turn is just f~!(y). Thus

v () ={ytuf )

which is the finite union of compact sets and thus is compact. O



