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We start with the definition of the Grassmann Manifold 𝐺𝑛
(

ℝ𝑛+𝑘) and its topology.

Definition. The Grassmann Manifold 𝐺𝑛
(

ℝ𝑛+𝑘) is the set of all 𝑛-dimensional planes through the origin of ℝ𝑛+𝑘 (or
all 𝑛-dimensional subspaces of ℝ𝑛+𝑘).

Definition. An 𝑛-frame in ℝ𝑛+𝑘 is an 𝑛-tuple of linearly independent vectors of ℝ𝑛+𝑘. The collection of all 𝑛-frames
in ℝ𝑛+𝑘 is an open subset of ℝ𝑛+𝑘×⋯×ℝ𝑛+𝑘 (where the product is over 𝑛 terms) called the Steifel Manifold 𝑉𝑛

(

ℝ𝑛+𝑘).

We will view 𝐺𝑛
(

ℝ𝑛+𝑘) as a quotient space of 𝑉𝑛
(

ℝ𝑛+𝑘). Define the function

𝑞 ∶ 𝑉𝑛
(

ℝ𝑛+𝑘
)

→ 𝐺𝑛

(

ℝ𝑛+𝑘
)

by the rule
𝑞({𝑣1,… , 𝑣𝑛}) ↦ span{𝑣1,… , 𝑣𝑛}

and give 𝐺𝑛
(

ℝ𝑛+𝑘) the quotient topology, where 𝑈 ⊂ 𝐺𝑛
(

ℝ𝑛+𝑘) is open if and only if 𝑞−1(𝑈 ) is open in 𝑉𝑛
(

ℝ𝑛+𝑘).

Note that if 𝑉 0
𝑛
(

ℝ𝑛+𝑘) ⊂ 𝑉𝑛
(

ℝ𝑛+𝑘) is the set of all orthonormal 𝑛-frames, we can restrict the above quotient map
to this subspace and view 𝐺𝑛

(

ℝ𝑛+𝑘) as a quotient space of 𝑉 0
𝑛
(

ℝ𝑛+𝑘).

We note without proof that the Grassman Manifold is a compact topological manifold of dimension 𝑛𝑘.

We now define the Schubert Symbol, which is a method of capturing ‘when a subspace gains its dimensions’.

Given ℝ𝑚, we identify lower dimensional Euclidean spaces in the the obvious way, that is we have

ℝ0 ⊂ ℝ1 ⊂ ⋯ ⊂ ℝ𝑚−1 ⊂ ℝ𝑚

where
ℝ𝑘 = {𝑣 ∈ ℝ𝑚 ∶ 𝑣 = (𝑣1,… , 𝑣𝑘, 0,… , 0)}.

Given any 𝑛-plane 𝑋 ⊂ ℝ𝑚 we have a sequence of integers

0 ≤ dim
(

𝑋 ∩ℝ1
)

≤ dim
(

𝑋 ∩ℝ2
)

≤ ⋯ ≤ dim
(

𝑋 ∩ℝ𝑚−1
)

≤ dim
(

𝑋 ∩ℝ𝑚) = 𝑛.

Note that two consectuive integers in such a sequnce differs by at most 1. To see this, consider the sequence of
maps

𝑋 ∩ℝ𝑘−1 ↪ 𝑋 ∩ℝ𝑘 𝑘−coordinate
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ℝ.

This is an exact sequence of maps (in that the kernel of the second map is exactly the image of the first), and are
also linear maps. Note that the image of the second map has dimension at most one while the kernel has dimension
equal to dim

(

𝑋 ∩ℝ𝑘−1
)

. The claim then follows by the rank-nullity theorem.
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Definition. A Schubert symbol 𝜎 = (𝜎1,… , 𝜎𝑛) is a sequence of 𝑛 integers satisfying

1 ≤ 𝜎1 < 𝜎2 < ⋯ < 𝜎𝑛−1 < 𝜎𝑛 ≤ 𝑚.

We want to view a given Schubert symbol as a possible way for an 𝑛-plane to ‘gain dimensions’. For instance,
suppose we are interested in 3-planes in ℝ5. If 𝜎 = (2, 3, 5), this will correspond 3-planes such that

dim(𝑋 ∩ℝ1) = 0

dim(𝑋 ∩ℝ2) = 1

dim(𝑋 ∩ℝ3) = 2

dim(𝑋 ∩ℝ4) = 2

dim(𝑋 ∩ℝ5) = 3.

For each Schubert symbol 𝜎, we will denote by 𝑒(𝜎) ⊂ 𝐺𝑛 (ℝ𝑚) the set of all 𝑛-planes 𝑋 such that

dim
(

𝑋 ∩ℝ𝜎𝑖
)

= 𝑖, and dim
(

𝑋 ∩ℝ𝜎𝑖−1
)

= 𝑖 − 1.

(It is worth taking the time to verify that this matches the above example, and does in fact capture the information we
seek.)

Note that this construction forms a partition of 𝐺𝑛 (ℝ𝑚), as each 𝑛-plane 𝑋 ∈ 𝐺𝑛 (ℝ𝑚) is contained in precisely
one of the sets 𝑒(𝜎). The different sets of this partition will be the cells of our CW-complex.

We will denote by ℝ𝑘
+ ⊂ ℝ𝑚 the ‘open’ half-space

ℝ𝑘
+ = {(𝑣1,… , 𝑣𝑘, 0,… , 0) ∈ ℝ𝑚 ∶ 𝑣𝑘 > 0}.

Lemma. Let 𝜎 = (𝜎1,… 𝜎𝑛) be a Schubert symbol. Each 𝑛-plane𝑋 ∈ 𝑒(𝜎)has a unique orthonormal basis {𝑥1,… , 𝑥𝑛}
such that 𝑥𝑖 ∈ ℝ𝜎𝑖

+ for 𝑖 = 1,… , 𝑛.

Proof. This is by construction (and induction). Suppose 𝑋 ∈ 𝑒(𝜎). Then we have that dim(𝑋 ∩ℝ𝜎1 ) = 1 and
dim

(

𝑋 ∩ℝ𝜎1−1
)

= 0. We select a basis vector 𝑥1 for 𝑋 ∩ℝ𝜎1 , and note that if we require it to be of unit length there
are two choices. One of them has a positive entry in the 𝜎1 component, and one has a negative entry. (Note that it
cannot be 0 by the dimensionality statements above). We choose the positive one, which is in ℝ𝜎1

+ .

Continuing on, we have that dim(𝑋 ∩ℝ𝜎2 ) = 2 and dim
(

𝑋 ∩ℝ𝜎2−1
)

= 0. We have 𝑥1 as our first basis vector, and
if we require 𝑥2 to be unit length and orthogonal to 𝑥1, we again have two choices. One of them has a positive entry in
the 𝜎2 component, and one has a negative entry. Again, we choose the positive on, which is in ℝ𝜎2

+ . Continuing in this
manner,we find that there exists an orthonormal basis {𝑥1,… , 𝑥𝑛} with 𝑥𝑖 ∈ ℝ𝜎𝑖

+ for 𝑖 = 1,… , 𝑛. Since each vector in
the basis is uniquely determined at each step, this is the unique orthonormal basis satsifying this condition.

We will define the set 𝑒′(𝜎) to be the set of all orthonormal 𝑛-frames {𝑥1,… , 𝑥𝑛} such that 𝑥𝑖 ∈ ℝ𝜎1
+ for 𝑖 = 1,… , 𝑛.

The set 𝑒′(𝜎) will denote the set of all orthonormal 𝑛-frames {𝑥1,… , 𝑥𝑛} such that 𝑥𝑖 ∈ ℝ𝜎𝑖
+ = ℝ𝜎𝑖

≥0 for 𝑖 = 1,… , 𝑛.

Lemma. Let 𝜎 = (𝜎1,… 𝜎𝑛). The set 𝑒′(𝜎) is homeomorphic to the closed disc 𝐷𝑑(𝜎) where 𝑑(𝜎) = (𝜎1 − 1) + (𝜎2 −
2) +⋯ + (𝜎𝑛 − 𝑛). Furthermore, the quotient map 𝑞, maps the interior 𝑒′(𝜎) homeomorphically onto 𝑞(𝜎).

Proof. This is done using induction on the Schubert symbol. Suppose 𝑛 = 1, that is, 𝜎 = (𝜎1). Note that the set 𝑒′(𝜎)
is

𝑒′(𝜎) = {(𝑥1, 𝑥2,… , 𝑥𝜎1 , 0,… , 0) ∶
∑

𝑥2𝑖 = 1, 𝑥𝜎1 ≥ 0}.

Thus, 𝑒′(𝜎) is a closed hemisphere of dimension 𝜎1 − 1, and is therefore homeomorphic to the closed disc 𝐷𝜎1−1.
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To prove the inductive step, we define a linear transformation.

Give two unit vectors 𝑢, 𝑣 ∈ ℝ𝑚, with 𝑢 ≠ −𝑣, let 𝑇 (𝑢, 𝑣) denote the rotation of ℝ𝑚 sending 𝑢 to 𝑣, and keeping
fixed all vectors orthogonal to both 𝑢 and 𝑣. The following are easily (though not necessarily quickly) verified, and are
given without proof:

1. 𝑇 (𝑢, 𝑣)𝑥 is continuous over 𝑢, 𝑣, and 𝑥.

2. If 𝑢, 𝑣 ∈ ℝ𝑘, then 𝑇 (𝑢, 𝑣)𝑥 ≡ 𝑥 (mod ℝ𝑘)

3. 𝑇 (𝑢, 𝑣) ∈ 𝑆𝑂(ℝ𝑚).

Now, given an orthonormal 𝑛-frame (𝑥1,… , 𝑥𝑛) ∈ 𝑒′(𝜎) we consider transformation

𝑇 = 𝑇 (𝑒𝜎𝑛 , 𝑥𝑛)◦𝑇 (𝑒𝜎𝑛−1 , 𝑥𝑛−1)◦⋯◦𝑇 (𝑒𝜎1 , 𝑥1),

where 𝑒𝜎𝑖 is the 𝜎𝑖 standard basis vector (with a 1 in the 𝜎𝑖 component and 0 in all other components). Note that since
𝑒𝜎𝑗 is orthogonal to 𝑥𝑖 for 𝑗 > 𝑖, (and the sets {𝑒𝜎𝑖} and {𝑥𝑖} are orthonormal), the result of this transformation is to
take the standard basis vectors 𝑒𝜎𝑖 to the given vectors 𝑥𝑖 for 𝑖 = 1,… , 𝑛.

Suppose inductively that we have that 𝑒′(𝜎1,… , 𝜎𝑛) is homeomorphic to 𝐷𝑑𝑛 where 𝑑𝑛 = (𝜎1 − 1) + (𝜎2 − 2) +
⋯ + (𝜎𝑛 − 𝑛). Given 𝜎𝑛+1 > 𝜎𝑛, we define the set

𝐷 = {𝑢 ∈ ℝ𝜎𝑛+1
≥0 ∶ |𝑢| = 1, 𝑒𝜎𝑖 ⋅ 𝑢 = 0 for 𝑖 = 1,… , 𝑛}.

Note that 𝐷 is a closed hemisphere of dimension 𝜎𝑛+1 − (𝑛 + 1). (One way to see this is to note that without the
condition that 𝑒𝜎𝑖 ⋅ 𝑢 = 0, 𝐷 would be a closed hemisphere of dimension 𝜎𝑛+1 −1. Then note that for each basis vector
to which you require orthogonality, you reduce the space by one dimension.)

Define the function
𝑓 ∶ 𝑒′(𝜎1,… , 𝜎𝑛) ×𝐷 → 𝑒′(𝜎1,… , 𝜎𝑛, 𝜎𝑛+1)

by the rule
𝑓 ((𝑥1,… , 𝑥𝑛), 𝑢) = (𝑥1,… , 𝑥𝑛, 𝑇 𝑢)

where 𝑇 is the transformation defined above, depending continuously on 𝑥1,… , 𝑥𝑛.

We first note that (𝑥1,… , 𝑥𝑛, 𝑇 𝑢) is in fact in the set 𝑒′(𝜎1,… , 𝜎𝑛, 𝜎𝑛1 ). To do this, we note that since 𝑇 is the
composition of transformations in𝑆𝑂(ℝ𝑚), it is itself in𝑆𝑂(ℝ𝑚). The important upshot of this is that we have 𝑇 𝑣⋅𝑇 𝑣 =
𝑣 ⋅ 𝑣 for all vectors 𝑣. Thus we have by the definition of 𝐷, that

𝑥𝑖 ⋅ 𝑇 𝑢 = 𝑇 𝑒𝜎𝑖 ⋅ 𝑇 𝑢 = 𝑒𝜎𝑜 ⋅ 𝑢 = 0

and
𝑇 𝑢 ⋅ 𝑇 𝑢 = 𝑢 ⋅ 𝑢 = 1.

We also have that 𝑇 𝑢 ∈ ℝ𝜎𝑛+1
≥0 since 𝑇 𝑢 ≡ 𝑢 (mod ℝ𝜎𝑛 ) (the transformation 𝑇 does not change the 𝜎𝑛+1 component of

𝑢, which is nonnegative by definition of 𝐷).

We know that this map is continuous since 𝑇 is continuous. It also has a continuous inverse where given an
orthonormal set 𝑥1,… , 𝑥𝑛, 𝑥𝑛+1 in 𝑒′(𝜎1,… , 𝜎𝑛, 𝜎𝑛+1) we have

𝑓−1((𝑥1,… , 𝑥𝑛, 𝑥𝑛+1)) = ((𝑥1,… , 𝑥𝑛), 𝑇 −1𝑥𝑛+1)

where 𝑇 −1 is defined as

𝑇 −1 = 𝑇 (𝑥1, 𝑒𝜎1 )◦𝑇 (𝑥2, 𝑒𝜎2 )◦⋯◦𝑇 (𝑥𝑛, 𝑒𝜎𝑛 ).
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Note that 𝑇 −1𝑥𝑛+1 is in 𝐷 since 𝑇 −1 is also in 𝑆𝑂(ℝ𝑚) and maps orthonormal sets to orthonormal set and therfore
𝑇 −1 maps the orthonormal set (𝑥1,… , 𝑥𝑛, 𝑥𝑛+1) to the orthonormal set (𝑒𝜎1 ,… , 𝑒𝜎𝑛 , 𝑇

−1𝑥𝑛+1).

Thus 𝑒′(𝜎1,… , 𝜎𝑛) × 𝐷 is homeomorphic to 𝑒′(𝜎1,… , 𝜎𝑛, 𝜎𝑛+1), and by the inductive hypthosis, we have that
𝑒′(𝜎1,… , 𝜎𝑛, 𝜎𝑛+1) is homeomorphic to the closed disc 𝐷𝑑𝑛+1 where 𝑐𝑛+1 = (𝜎1 − 1) +… + (𝜎𝑛+1 − (𝑛 + 1).

It then remains only to note that the defined homeomorphism 𝑓 maps 𝑒′(𝜎1,… , 𝜎𝑛) × int𝐷 to 𝑒′(𝜎1,… , 𝜎𝑛, 𝜎𝑛+1).
To see this, note that if an 𝑛-frame is in the boundary of 𝑒′(𝜎1,… , 𝜎𝑛, 𝜎𝑛+1), then we must have that dim(𝑋∩ℝ𝜎𝑖 ) < 𝑖 for
some 𝑖 = 1,… , 𝑛+1. If this is true for 𝑖 = 1,… , 𝑛, then its preimage under 𝑓 must be in the boundary of 𝑒′(𝜎1,… , 𝜎𝑛).
If this is true for 𝑛 + 1, then the 𝑛 + 1 of the final basis vector is 0, and its preimage is in the boundary of 𝐷.

Finally, we show that 𝑞 maps 𝑒′(𝜎) homeomorphically onto 𝑒(𝜎).

We know that 𝑞 is continuous, being a quotient map.By the previous Lemma, we know that restricting 𝑞 to 𝑒′(𝜎)
gives us a bijective map. We now show that it is a closed map, and therefore a homeomorphism.

Let 𝐴 ⊂ 𝑒′(𝜎) be a closed map in the subspace topology. Then 𝐴 = 𝐴 ∩ 𝑒′(𝜎), where 𝐴 is the closure of 𝐴 in
𝑉 0
𝑛 (ℝ𝑚). Note also that 𝐴 ⊆ 𝑒′(𝜎) since 𝑒′(𝜎) is a closed set containing 𝐴.

Since 𝑒′(𝜎) is homeomorphic to a closed disc, it is compact, so 𝐴 ⊆ 𝑒′(𝜎) is also compact.

Thus 𝑞(𝐴) is compact, being the continuous image of a compact set, and as 𝐺𝑛(ℝ𝑚) is Hausdorff (being a topo-
logical manifold), we have that 𝑞(𝐴) is closed in 𝐺𝑛(ℝ𝑚). It then follows that 𝑞(𝐴) ∩ 𝑒(𝜎) is closed in the subspace
topology in 𝑒(𝜎).

We show that 𝑞(𝐴)∩𝑒(𝜎) = 𝑞(𝐴) by noting that if (𝑥1,… , 𝑥𝑛) ∈ 𝐴⧵𝐴, then (𝑥1,… , 𝑥𝑛) ∈ 𝑒′(𝜎)⧵𝑒′(𝜎). Thus, one
of the vectors 𝑥𝑖 lies in the boundary of ℝ𝜎𝑖

+ , which is ℝ𝜎𝑖−1. This impiles that dim
(

𝑋 ∩ℝ𝜎𝑖−1
)

≥ 𝑖, and so 𝑋 ∉ 𝑒(𝜎),
where 𝑋 is the 𝑛-planed spanned by (𝑥1,… , 𝑥𝑛).

We are now prepared to prove that the sets 𝑒(𝜎) are a CW-complex on 𝐺𝑛(ℝ𝑚).

Theorem. The
(𝑚
𝑛

)

sets 𝑒(𝜎) form the cells of a CW-complex on the space 𝐺𝑛(ℝ𝑚). Taking the direct limit as 𝑚 → ∞
you can obtain an infinite CW-complex over 𝐺𝑛(ℝ∞).

Proof. By the second Lemma above, we have that 𝐺𝑛(ℝ𝑚) is a disjoint union of open cells 𝑒(𝜎) with varying dimen-
sions. We need only show that any point in the boundary of a cell 𝑒(𝜎) belongs to a cell 𝑒(𝜏) of lower dimension.

We first note that 𝑞(𝑒′(𝜎) = 𝑒(𝜎). We already have that 𝑞(𝑒′(𝜎)) ⊂ 𝑞(𝑒′(𝜎)) = 𝑒(𝜎) by continuity. Since 𝑒′(𝜎) is
compact, 𝑞(𝑒′(𝜎)) is closed and we have 𝑒(𝜎) = 𝑞(𝑒′(𝜎)) ⊂ 𝑞(𝑒′(𝜎)), so 𝑒(𝜎) ⊆ (𝑒′(𝜎)).

This implies that any 𝑛-plane 𝑥 ∈ 𝑒(𝜎) ⧵ 𝑒(𝜎) has a basis (𝑥1,… , 𝑥𝑛) ∈ 𝑒′(𝜎) ⧵ 𝑒′(𝜎). This basis is orthonormal by
definition of 𝑒′(𝜎), and we have 𝑥𝑖 ∈ ℝ𝜎𝑖 for 𝑖 = 1,… , 𝑛, since taking the closure of 𝑒′(𝜎) won’t ‘add coordinates’ to
the basis vectors. Thus we have that dim(𝑋 ∩ℝ𝜎𝑖 ) ≥ 𝑖 for 𝑖 = 1,… , 𝑛, and so the Schubert symbol 𝜏 = (𝜏1,… , 𝜏𝑛)
corresponding to 𝑋 satisfies 𝜏𝑖 ≤ 𝜎𝑖 for 𝑖 = 1,… , 𝑛.

Since (𝑥1,… , 𝑥𝑛) ∉ 𝑒(𝜎), at least one of the vectors 𝑥𝑗 must actually be in ℝ𝜎𝑗−1, and so we have 𝜏𝑗 < 𝜎𝑗 . This
strict inequality gives us that 𝑑(𝜏) < 𝑑(𝜎) where 𝑑 is the dimension of 𝑒(𝜎) define above.

The final claim about 𝐺𝑛(ℝ∞) follows immediately from the process of taking direct limits and the definition of
the CW topology.
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