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Definition. If X and Y are CW complexes, then f: X — Y is a cellular map
if for every n-skeleton X™ < X, f(X™) c Y™

Theorem. FEvery map f : X — Y of CW compleres X and Y is homotopic
to a cellular map. If [ is already cellular on a subcomplexr A — X, then this
homotopy may be taken to be constant on A.

To prove the theorem, we will appeal to the following Lemma:

Lemma. If Z is a CW complex obtained by attaching a cell eF to subspace W,
then for any map f : I™ — Z there exists a homotopy

fo (I F7HER)) = (Z,€¥) rel f7H(W)
from fo = f to map f1 for which there is a polyhedron K < I™ so that

(1) fi(K) < e* and fi|x is piecewise linear with respect to an identification of
ek with RF.

(2) f7H(U) € K for some nonempty open set U < e*.

Proof of Lemma. Identify e* with R* and consider the closed balls By, By of
radius 1 and 2, centered at 0 € R*. Note that since B, is compact in R¥,
f7H(Bs) < I" will be compact and thus f|;-1(p,) is uniformly continuous.
There then exists e > 0 so that |z —y| < e = |f(z)— f(y)| < 3 for all
x,y € f~1(By). Further, we wish to restrict ourselves to values

€< %dist(ffl(Bl),I”\ffl(int By)).

Next, subdivide I™ into cubes each contained in some open ball of radius less
than e. We now define two sets:

K, = union of all cubes meeting f~*(B,),

K5 = union of all cubes meeting K;.

We then have
fﬁl(Bl) c Kl c Kg c fﬁl(BQ)



by construction of the sets K7, Ko and by choice of e. Now, we subdivide each
cube in K> into simplices inductively: assuming the faces of a cube in K5 are
already subdivided into simplices, add the center point of this cube as a vertex
to each simplex.

Next, define the map ¢ : K2 — e* which is equal to f on vertices and
extended linearly on each simplex. Additionally, define another map ¢ : K2 —
[0,1] so that ¢ = 1 on vertices in Kj, ¢ = 0 on vertices in K3\K7, and ¢ is
extended linearly in each simplex. Note that for a simplex ¢ contained in K7,

S tivi) = D tid(vi) = Dt =1
i=0 i=0 i=0

for each point »} ,t;v; € 0. Since K; is subdivided into simplices, ¢(K7) = 1.
However, if we now let o be a simplex contained in Ko\Kj, then

(> twi) = Dt 0=0 = ¢(c) = 0.
i=0 i=0
Finally, we define a homotopy
fri Ky —e* fi=(1—¢t)f + (¢t)g

from fy = f to some map f1. We see that fi|x, = g|x, and f; is the constant
homotopy on simplices contained in Ko\K;. Because K; c int(Ks3), we may
then extend f; to be constant on I™\Ks, giving a homotopy

fo: I — Z rel f~Y(Z\int €¥)

from fo = f to fi. Note that f; maps f~!(e¥) into e* by construction, so we
have a homotopy

foo (I f7HER) — (Z,€") vel f7HW).

We now claim that f;(I™\K;) is disjoint form a neighborhood U of 0 in e*. This
will involve two steps.

e Since f~1(By) c K, f(I™\K3) must be disjoint from Bj.

e Let o be a simplex in K5 not entirely contained in K;. Since Ky <
f71(Bz), f(c) must be contained in some ball B, of radius 3. Since g is
linear on each simplex, g(o) is convex. Because the vertices of g(o) are
contained in B, and B, is also convex, we must have g(c) € B,. Since f;
is an affine combination of f and g on Ky, it follows that f;(c) < B, as
well and, in particular, fi(0) = B,. Because f~1(B1) = K; but o ¢ Kj,
f(o) contains points outside By, so B, has points outside By. Since the
radius of B, is %, this implies that 0 ¢ B, and thus 0 ¢ f1(0).

The two facts together imply that f;([,\K1) does not contain 0. Because f;
must be continuous and I,\K; is compact, f1(I™\K;) must be disjoint from
some open set U containing 0. The claim is then proven. Setting K = K, the
lemma is then proven since the claim implies that f; '(U) c K; = K. O




Now, we prove the theorem.

Proof of Theorem. We will work by induction on the dimension n of the skeleton
X" If n = 0, then f(X°) is a discrete set of points in Y. Note that by
construction of CW complexes, each path-component of Y must contain some
O-cell in Y. Thus, each image f(p) of a point p € X° may be joined by a path
in Y to some 0-cell g € Y.

Now, assume that f(X"~!) < Y"1 and consider an n-cell e® = X. Then
e < X is compact, so f(e”) < Y is as well. By Proposition A.1 from the
Appendix, then f(e") < f(e™) meets a finite number of cells in Y. Let e*
be the cell of largest dimension in Y that f(e™) meets. We may assume k >
n, otherwise f is already cellular on e”. We now wish to apply the Lemma,
considering Z = Y* W = Y*\(int €*) and composing f with the characteristic
map ® : I — X"~L e of e" (we may choose I" as our domain instead of D"
since the spaces are homeomorphic). We then obtain a homotopy

gr (I”,f_l(ek)) — (Yk,ek) rel 0I™,

since

dI") c X" e Ay e YR,

Note that we have ¢ piecewise linear on some polyhedron K < I"™, so g1 (K)
is convex and is thus contained in the union of finitely many hyperplanes of
dimension n < k. Because U < €* is open and g7 '(U) K, there must be
points in U that g; misses. We then have an induced homotopy

fo: X" 1ouem > Yk el Xt

so that f; misses points in U. We may let p € ¥ be one of these points and
compose a deformation retraction of Y*\{p} onto Y*\e* with our homotopy f;.
Since f(e™) intersects finitely many cells, we may iterate this process a finite
number of times, until fi(e™) does meet meet any cells of dimension greater
than n.

We now simultaneously apply this process on each n-cell e” < X, except
those contained in A. Note that these maps are compatible, so this gives a
homotopy of f|x» rel X"~1 U A" to a cellular map, where A" is the n-skeleton
of A. Using Proposition 0.16, we may then extend the homotopy to all of X,
constant on X\ X"™. We may apply each homotopy f; : X™ — Y on the interval

[1— 5,1 — 5+], since each X™ is stationary after the n-th interval. O



