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Definition. If X and Y are CW complexes, then f : X Ñ Y is a cellular map
if for every n-skeleton Xn Ă X, fpXnq Ă Y n.

Theorem. Every map f : X Ñ Y of CW complexes X and Y is homotopic
to a cellular map. If f is already cellular on a subcomplex A Ă X, then this
homotopy may be taken to be constant on A.

To prove the theorem, we will appeal to the following Lemma:

Lemma. If Z is a CW complex obtained by attaching a cell ek to subspace W ,
then for any map f : In Ñ Z there exists a homotopy

ft : pIn, f´1pekqq Ñ pZ, ekq rel f´1pW q

from f0 “ f to map f1 for which there is a polyhedron K Ă In so that

(1) f1pKq Ă ek and f1|K is piecewise linear with respect to an identification of
ek with Rk.

(2) f´1
1 pUq Ă K for some nonempty open set U Ă ek.

Proof of Lemma. Identify ek with Rk and consider the closed balls B1, B2 of
radius 1 and 2, centered at 0 P Rk. Note that since B2 is compact in Rk,
f´1pB2q Ă In will be compact and thus f |f´1pB2q is uniformly continuous.

There then exists ϵ ą 0 so that |x ´ y| ă ϵ ùñ |fpxq ´ fpyq| ă 1
2 for all

x, y P f´1pB2q. Further, we wish to restrict ourselves to values

ϵ ă
1

2
distpf´1pB1q, Inzf´1pint B2qq.

Next, subdivide In into cubes each contained in some open ball of radius less
than ϵ. We now define two sets:

K1 “ union of all cubes meeting f´1pB1q,

K2 “ union of all cubes meeting K1.

We then have
f´1pB1q Ă K1 Ă K2 Ă f´1pB2q
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by construction of the sets K1,K2 and by choice of ϵ. Now, we subdivide each
cube in K2 into simplices inductively: assuming the faces of a cube in K2 are
already subdivided into simplices, add the center point of this cube as a vertex
to each simplex.

Next, define the map g : K2 Ñ ek which is equal to f on vertices and
extended linearly on each simplex. Additionally, define another map ϕ : K2 Ñ

r0, 1s so that ϕ “ 1 on vertices in K1, ϕ “ 0 on vertices in K2zK1, and ϕ is
extended linearly in each simplex. Note that for a simplex σ contained in K1,

ϕp

n
ÿ

i“0

tiviq “

n
ÿ

i“0

tiϕpviq “

n
ÿ

i“0

tk “ 1

for each point
řn

i“0 tivi P σ. Since K1 is subdivided into simplices, ϕpK1q “ 1.
However, if we now let σ be a simplex contained in K2zK1, then

ϕp

n
ÿ

i“0

tiviq “

n
ÿ

i“0

ti ¨ 0 “ 0 ùñ ϕpσq “ 0.

Finally, we define a homotopy

ft : K2 Ñ ek, ft “ p1 ´ ϕtqf ` pϕtqg

from f0 “ f to some map f1. We see that f1|K1 ” g|K1 and ft is the constant
homotopy on simplices contained in K2zK1. Because K1 Ă intpK2q, we may
then extend ft to be constant on InzK2, giving a homotopy

ft : I
n Ñ Z rel f´1pZzint ekq

from f0 “ f to f1. Note that ft maps f´1pekq into ek by construction, so we
have a homotopy

ft : pIn, f´1pekqq Ñ pZ, ekq rel f´1pW q.

We now claim that f1pInzK1q is disjoint form a neighborhood U of 0 in ek. This
will involve two steps.

• Since f´1pB1q Ă K2, fpInzK2q must be disjoint from B1.

• Let σ be a simplex in K2 not entirely contained in K1. Since K2 Ă

f´1pB2q, fpσq must be contained in some ball Bσ of radius 1
2 . Since g is

linear on each simplex, gpσq is convex. Because the vertices of gpσq are
contained in Bσ and Bσ is also convex, we must have gpσq Ă Bσ. Since ft
is an affine combination of f and g on K2, it follows that ftpσq Ă Bσ as
well and, in particular, f1pσq Ă Bσ. Because f´1pB1q Ă K1 but σ Ć K1,
fpσq contains points outside B1, so Bσ has points outside B1. Since the
radius of Bσ is 1

2 , this implies that 0 R Bσ and thus 0 R f1pσq.

The two facts together imply that f1pInzK1q does not contain 0. Because f1
must be continuous and InzK1 is compact, f1pInzK1q must be disjoint from
some open set U containing 0. The claim is then proven. Setting K “ K1, the
lemma is then proven since the claim implies that f´1

1 pUq Ă K1 “ K.
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Now, we prove the theorem.

Proof of Theorem. We will work by induction on the dimension n of the skeleton
Xn. If n “ 0, then fpX0q is a discrete set of points in Y . Note that by
construction of CW complexes, each path-component of Y must contain some
0-cell in Y . Thus, each image fppq of a point p P X0 may be joined by a path
in Y to some 0-cell q P Y 0.

Now, assume that fpXn´1q Ă Y n´1 and consider an n-cell en Ă X. Then
en Ă X is compact, so fpenq Ă Y is as well. By Proposition A.1 from the
Appendix, then fpenq Ă fpenq meets a finite number of cells in Y . Let ek

be the cell of largest dimension in Y that fpenq meets. We may assume k ą

n, otherwise f is already cellular on en. We now wish to apply the Lemma,
considering Z “ Y k, W “ Y kzpint ekq and composing f with the characteristic
map Φ : In Ñ Xn´1 Y en of en (we may choose In as our domain instead of Dn

since the spaces are homeomorphic). We then obtain a homotopy

gt : pIn, f´1pekqq Ñ pY k, ekq rel BIn,

since
ΦpBInq Ă Xn´1 Ă f´1pY n´1q Ă f´1pY kzekq.

Note that we have g1 piecewise linear on some polyhedron K Ă In, so g1pKq

is convex and is thus contained in the union of finitely many hyperplanes of
dimension n ă k. Because U Ă ek is open and g´1

1 pUq Ă K, there must be
points in U that g1 misses. We then have an induced homotopy

ft : X
n´1 Y en Ñ Y k rel Xn´1

so that f1 misses points in U . We may let p P ek be one of these points and
compose a deformation retraction of Y kztpu onto Y kzek with our homotopy ft.
Since fpenq intersects finitely many cells, we may iterate this process a finite
number of times, until f1penq does meet meet any cells of dimension greater
than n.

We now simultaneously apply this process on each n-cell en Ă X, except
those contained in A. Note that these maps are compatible, so this gives a
homotopy of f |Xn rel Xn´1 Y An to a cellular map, where An is the n-skeleton
of A. Using Proposition 0.16, we may then extend the homotopy to all of X,
constant on XzXn. We may apply each homotopy ft : X

n Ñ Y on the interval
r1 ´ 1

2n , 1 ´ 1
2n`1 s, since each Xn is stationary after the n-th interval.
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