Cellular approximation theorem

Jeffrey Utley

November 15, 2021

Definition. If X and Y are CW complexes, then $f : X \to Y$ is a cellular map if for every n-skeleton $X^n \subset X$, $f(X^n) \subset Y^n$.

Theorem. Every map $f : X \to Y$ of CW complexes X and Y is homotopic to a cellular map. If f is already cellular on a subcomplex $A \subset X$, then this homotopy may be taken to be constant on A.

To prove the theorem, we will appeal to the following Lemma:

Lemma. If Z is a CW complex obtained by attaching a cell e^k to subspace W, then for any map $f: I^n \to Z$ there exists a homotopy

$$f_t: (I^n, f^{-1}(e^k)) \to (Z, e^k) \ rel \ f^{-1}(W)$$

from $f_0 = f$ to map f_1 for which there is a polyhedron $K \subset I^n$ so that

- (1) $f_1(K) \subset e^k$ and $f_1|_K$ is piecewise linear with respect to an identification of e^k with \mathbb{R}^k .
- (2) $f_1^{-1}(U) \subset K$ for some nonempty open set $U \subset e^k$.

Proof of Lemma. Identify e^k with \mathbb{R}^k and consider the closed balls B_1, B_2 of radius 1 and 2, centered at $0 \in \mathbb{R}^k$. Note that since B_2 is compact in \mathbb{R}^k , $f^{-1}(B_2) \subset I^n$ will be compact and thus $f|_{f^{-1}(B_2)}$ is uniformly continuous. There then exists $\epsilon > 0$ so that $|x - y| < \epsilon \implies |f(x) - f(y)| < \frac{1}{2}$ for all $x, y \in f^{-1}(B_2)$. Further, we wish to restrict ourselves to values

$$\epsilon < \frac{1}{2} \operatorname{dist}(f^{-1}(B_1), I^n \setminus f^{-1}(\operatorname{int} B_2)).$$

Next, subdivide I^n into cubes each contained in some open ball of radius less than ϵ . We now define two sets:

 K_1 = union of all cubes meeting $f^{-1}(B_1)$,

 K_2 = union of all cubes meeting K_1 .

We then have

$$f^{-1}(B_1) \subset K_1 \subset K_2 \subset f^{-1}(B_2)$$

by construction of the sets K_1, K_2 and by choice of ϵ . Now, we subdivide each cube in K_2 into simplices inductively: assuming the faces of a cube in K_2 are already subdivided into simplices, add the center point of this cube as a vertex to each simplex.

Next, define the map $g: K^2 \to e^k$ which is equal to f on vertices and extended linearly on each simplex. Additionally, define another map $\phi: K^2 \to [0,1]$ so that $\phi = 1$ on vertices in K_1 , $\phi = 0$ on vertices in $K_2 \setminus K_1$, and ϕ is extended linearly in each simplex. Note that for a simplex σ contained in K_1 ,

$$\phi(\sum_{i=0}^{n} t_i v_i) = \sum_{i=0}^{n} t_i \phi(v_i) = \sum_{i=0}^{n} t_k = 1$$

for each point $\sum_{i=0}^{n} t_i v_i \in \sigma$. Since K_1 is subdivided into simplices, $\phi(K_1) = 1$. However, if we now let σ be a simplex contained in $K_2 \setminus K_1$, then

$$\phi(\sum_{i=0}^{n} t_i v_i) = \sum_{i=0}^{n} t_i \cdot 0 = 0 \implies \phi(\sigma) = 0.$$

Finally, we define a homotopy

$$f_t: K_2 \to e^k, \quad f_t = (1 - \phi t)f + (\phi t)g$$

from $f_0 = f$ to some map f_1 . We see that $f_1|_{K_1} \equiv g|_{K_1}$ and f_t is the constant homotopy on simplices contained in $K_2 \setminus K_1$. Because $K_1 \subset int(K_2)$, we may then extend f_t to be constant on $\overline{I^n \setminus K_2}$, giving a homotopy

$$f_t: I^n \to Z \text{ rel } f^{-1}(Z \setminus \text{int } e^k)$$

from $f_0 = f$ to f_1 . Note that f_t maps $f^{-1}(e^k)$ into e^k by construction, so we have a homotopy

$$f_t: (I^n, f^{-1}(e^k)) \to (Z, e^k) \text{ rel } f^{-1}(W).$$

We now claim that $f_1(\overline{I^n \setminus K_1})$ is disjoint form a neighborhood U of 0 in e^k . This will involve two steps.

- Since $f^{-1}(B_1) \subset K_2$, $f(I^n \setminus K_2)$ must be disjoint from B_1 .
- Let σ be a simplex in K_2 not entirely contained in K_1 . Since $K_2 \subset f^{-1}(B_2)$, $f(\sigma)$ must be contained in some ball B_{σ} of radius $\frac{1}{2}$. Since g is linear on each simplex, $g(\sigma)$ is convex. Because the vertices of $g(\sigma)$ are contained in B_{σ} and B_{σ} is also convex, we must have $g(\sigma) \subset B_{\sigma}$. Since f_t is an affine combination of f and g on K_2 , it follows that $f_t(\sigma) \subset B_{\sigma}$ as well and, in particular, $f_1(\sigma) \subset B_{\sigma}$. Because $f^{-1}(B_1) \subset K_1$ but $\sigma \notin K_1$, $f(\sigma)$ contains points outside B_1 , so B_{σ} has points outside B_1 . Since the radius of B_{σ} is $\frac{1}{2}$, this implies that $0 \notin B_{\sigma}$ and thus $0 \notin f_1(\sigma)$.

The two facts together imply that $f_1(\overline{I_n \setminus K_1})$ does not contain 0. Because f_1 must be continuous and $\overline{I_n \setminus K_1}$ is compact, $f_1(\overline{I^n \setminus K_1})$ must be disjoint from some open set U containing 0. The claim is then proven. Setting $K = K_1$, the lemma is then proven since the claim implies that $f_1^{-1}(U) \subset K_1 = K$.

Now, we prove the theorem.

Proof of Theorem. We will work by induction on the dimension n of the skeleton X^n . If n = 0, then $f(X^0)$ is a discrete set of points in Y. Note that by construction of CW complexes, each path-component of Y must contain some 0-cell in Y. Thus, each image f(p) of a point $p \in X^0$ may be joined by a path in Y to some 0-cell $q \in Y^0$.

Now, assume that $f(X^{n-1}) \subset Y^{n-1}$ and consider an *n*-cell $e^n \subset X$. Then $\overline{e^n} \subset X$ is compact, so $f(\overline{e^n}) \subset Y$ is as well. By Proposition A.1 from the Appendix, then $f(e^n) \subset f(\overline{e^n})$ meets a finite number of cells in Y. Let e^k be the cell of largest dimension in Y that $f(e^n)$ meets. We may assume k > n, otherwise f is already cellular on e^n . We now wish to apply the Lemma, considering $Z = Y^k$, $W = Y^k \setminus (\text{int } e^k)$ and composing f with the characteristic map $\Phi: I^n \to X^{n-1} \cup e^n$ of e^n (we may choose I^n as our domain instead of D^n since the spaces are homeomorphic). We then obtain a homotopy

$$g_t: (I^n, f^{-1}(e^k)) \to (Y^k, e^k) \text{ rel } \partial I^n,$$

since

$$\Phi(\partial I^n) \subset X^{n-1} \subset f^{-1}(Y^{n-1}) \subset f^{-1}(Y^k \backslash e^k).$$

Note that we have g_1 piecewise linear on some polyhedron $K \subset I^n$, so $g_1(K)$ is convex and is thus contained in the union of finitely many hyperplanes of dimension n < k. Because $U \subset e^k$ is open and $g_1^{-1}(U) \subset K$, there must be points in U that g_1 misses. We then have an induced homotopy

$$f_t: X^{n-1} \cup e^n \to Y^k \text{ rel } X^{n-1}$$

so that f_1 misses points in U. We may let $p \in e^k$ be one of these points and compose a deformation retraction of $Y^k \setminus \{p\}$ onto $Y^k \setminus e^k$ with our homotopy f_t . Since $f(e^n)$ intersects finitely many cells, we may iterate this process a finite number of times, until $f_1(e^n)$ does meet meet any cells of dimension greater than n.

We now simultaneously apply this process on each *n*-cell $e^n \subset X$, except those contained in A. Note that these maps are compatible, so this gives a homotopy of $f|_{X^n}$ rel $X^{n-1} \cup A^n$ to a cellular map, where A^n is the *n*-skeleton of A. Using Proposition 0.16, we may then extend the homotopy to all of X, constant on $X \setminus X^n$. We may apply each homotopy $f_t : X^n \to Y$ on the interval $\left[1 - \frac{1}{2^n}, 1 - \frac{1}{2^{n+1}}\right]$, since each X^n is stationary after the *n*-th interval. \Box