
TWO DEFINITIONS OF THE HOPF INVARIANT

Let X = S2n−1, Y = Sn. The Hopf invariant of a map f : X → Y , an integer
depending only on the homotopy class of f , can be defined in two different ways,
both using the cohomology cup product. The purpose of this note is to explain
why they’re equivalent.

1. The first definition appeals to the attachment exact sequence for f , in
singular cohomology. Namely, denote by Yf = Y tf D2n the attachment space
defined by attaching a 2n-cell to Sn, with f as attachment map:

· · · → Hp−1(X)
∆−→ Hp(Yf )

j∗−−→ Hp(Y )
f∗−−→ Hp(X)→ · · ·

Here j : Y ↪→ Yf is the inclusion map, so on the level of cochains j∗ : Cp(Yf )→
Cp(Y ) may be thought of as restriction of cochains (to chains taking values in
the subspace Y of Yf .)

For p = n, this exact sequence and the cohomology of X and Y implies

Hn(Yf )
j∗−−→ Hn(Y ) = Z is iso; let [α] ∈ Hn(Yf ) be a generator, for a cocycle

α ∈ Cn(Yf ).

For p = 2n, again from the cohomology of X,Y we find ∆ : H2n−1(X) →
H2n(Yf ) is iso, so let [β] be a generator, β ∈ C2n(Yf ). We have:

[α ∪ α] = H1
f [β] in H2n(Yf ),

for some H1
f ∈ Z. This is the first (‘geometric’) definition of the Hopf invariant

H1
f .

2. The second definition uses the action of f in the cohomology of X and
Y directly. Let a ∈ Cn(Y ), b ∈ C2n−1 be cocycles whose classes [a], [b] gen-
erate the cyclic abelian groups Hn(Y ), H2n−1(X) resp. (We use Z coefficients
throughout.)

The cohomology ofX and Y implies the existence of cochains c ∈ C2n−1(Y ), e ∈
Cn−1(X) so that:

δc = a ∪ a and δe = f∗a.

One checks easily that z = f∗c− e ∪ f∗a ∈ C2n−1(X) is a cocycle. Then define
H2
f ∈ Z via:

[z] = H2
f [b] in H2n−1(X).

3. Since ∆ : H2n−1(X) → H2n(Yf ) is iso, we may assume ∆[b] = [β].
And we may also assume j∗[α] = [a]; as cocycles, this means a ∈ Cn(Y ) is
α ∈ Cn(Yf ) restricted to n-chains taking values in Y ⊂ Yf .

Thus H1
f = H2

f iff ∆[z] = [α ∪ α] in H2n(Yf ). To show this we need to
understand how the connection map ∆ in the attachment exact sequence of f
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is defined, on the level of cocycles. This requires consideration of the mapping
cylinder of f :

Mf = Y tf (X × [0, 1]).

(Here (x, 0) and f(x) ∈ Y are identified in the quotient space Mf ). We have
i : X ↪→ Mf (inclusion, as t = 1) and k : Y ↪→ Mf included as a deformation
retract, via r : Mf → Y (so r∗ and k∗ are inverse maps in cohomology) :

r(x, t) = f(x), t ∈ [0, 1]; r(y) = y, y ∈ Y.

In general there is a natural map p : Mf → Cf from the mapping cylinder
to the mapping cone of f , which maps X × 1 to the basepoint p0 ∈ Cf . In the
present case where X is a sphere, Cf is just the attachment space Yf , and we
may think of p0 as the center of the disk D with boundary X. We have:

Proposition: [Massey p. 245]. The map p : (Mf , X) → (Yf , p0) induces
isomorphisms in cohomology:

p∗ : Hq(Yf )→ Hq(Mf , X), q ≥ 1;

where we implicitly used the isomorphism Hq(Yf , p0) ∼ Hq(Yf ), q ≥ 1. In
cohomology in dimension n, we can combine this information into a commutative
square of isomorphisms:

Hn(Yf ) Hn(Y )

Hn(Mf , X) Hn(Mf )

j∗

p∗ r∗k∗

On the level of cocycles, the top row is restriction to Y ⊂ Yf the bottom
row can be regarded as inclusion:

Cn(Mf , X) = {w ∈ Cn(Mf );w(c) = 0 if c ∈ Cn(Mf ) and im(c) ⊂ X};

The fact it is an isomorphism (in cohomology) follows from considering the
cohomology long exact sequence for the pair (Mf , X).

4. Now move the cocycles a and c from Y to Mf , using the retraction
r : Mf → Y :

r∗a = af ∈ Cn(Mf ), r∗c = cf ∈ C2n−1(Mf ).

Claim: f∗a is the restriction of the cocycle af to X ↪→ Mf , that is, for
i∗ : Cn(Mf ) → Cn(X) the restriction, we have i∗(af ) = f∗(a). And likewise,
i∗(cf ) = f∗(c).

Recall that i∗(af ) is the restriction, i∗(af ) = af |X . To verify the claim, note

that af (c) = a(r ◦ c), for any c ∈ Cn(Mf ). So suppose c ∈ Cn(Mf ) maps to
X ⊂Mf , im(c) ⊂ X. The claim is:

a(r ◦ c) = f∗a(c) = a(f ◦ c)
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for any n-chain c ∈ Cn(Mf ) with im(c) ⊂ X. This holds if im(c) ⊂ X implies
r ◦ c = f ◦ c. But this follows from the fact that r|X = f (since on Mf ,
(x, 0) ∼ f(x), and r fixes Y pointwise.)

5. Consider now the commutative triangle of isomorphisms in cohomology
of dimension 2n:

H2n(Yf )

H2n−1(X) H2n(Mf , X)

p∗

δX

∆

(See [Massey], p. 246. The bottom row comes from the long exact sequence
in cohomology for the pair (Mf , X).)

The connection homomorphism ∆ : H2n−1(X) → H2n(Yf ) of the attach-
ment exact sequence of f is given by (see [Massey], p.246):

∆ = (p∗)−1 ◦ δX ,

where δX : H2n−1(X) → H2n(Mf , X) is the connection homomorphism of the
cohomology exact sequence for the pair (Mf , X).

On the level of cocycles, how does δX operate on a cocycle w ∈ Cp(X)?
Answer (see [Hatcher], p. 200/201): extend w to w′ ∈ Cp(Mf ), and then the
cocycle you want is δw′ ∈ Cp+1(Mf , X). So first we need to find a suitable
extension of z ∈ C2n−1(X) to Mf .

6. We have i∗(af ) = f∗a = δe ∈ Cn(X). Let e′ be an extension of e from X
to Mf (for example by zero), so i∗(e′) = e. Then af−δe′ is a cocycle in Cn(Mf ),
vanishing on Cn(X); so we may regard it as a cocycle in the relative cochain
group Cn(Mf , X). Its cohomology class [af − δe′] ∈ Hn(Mf , X) corresponds
(via the commutative square in 3.) to [a] ∈ Hn(Y ) and to [α] ∈ Hn(Yf ).

Note that:

i∗(cf − e′ ∪ af ) = i∗cf − (i∗e′) ∪ (i∗af ) = f∗c− e ∪ f∗a = z.

Thus cf − e′ ∪ af ∈ C2n−1(Mf ) is an extension of z ∈ C2n−1(X) to Mf . This
is the key step in the proof.

The codifferential of this extension of z is (since δcf = af ∪ af ):

δ(cf − e′ ∪ af ) = af ∪ af − (δe′) ∪ af = (af − δe′) ∪ af ∈ C2n(Mf , X).

Now consider that, in C2n(Mf , X):

(af − δe′) ∪ af ∼ (af − δe′) ∪ (af − δe′) (cohomologous),

since the difference is a coboundary:

(af − δe′) ∪ δe′ = ±δ((af − δe′) ∪ e′).
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We conclude:

δX [z] = [(af − δe′) ∪ af ] = [(af − δe′) ∪ (af − δe′)] ∈ H2n(Mf , X).

This cohomology class inH2n(Mf , X) is the image under p∗ of [α∪α] ∈ H2n(Yf ).
Thus:

∆[z] = (p∗)−1([(af − δe′) ∪ (af − δe′)] = [α ∪ α] ∈ H2n(Yf ),

as we wished to show.

Sources: This argument is based on [Prasolov], p.219, where it is given
without much detail. Most of the background needed in the proof appears in
the discussion of the mapping cylinder and cohomology exact sequence of an
attachment map given in [Massey], p. 244-247. The equivalence of definitions
is proposed as an exercise in [Vick], p. 136 and in [Greenberg-Harper], p. 207.
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