ALGEBRAIC TOPOLOGY II: Alternative proofs.

1. Homotopy groups of products and wedges. (following [Hilton])

For products, we have (suppressing basepoints x_{0}, y_{0} in the notation):

$$
\pi_{n}(X \times Y) \approx \pi_{n}(X) \oplus \pi_{n}(Y)
$$

This is easy to see: we have injections (meaning: maps induced by inclusion) $i_{X}: \pi_{n}(X) \rightarrow \pi_{n}(X \times Y), i_{Y}: \pi_{n}(Y) \rightarrow \pi_{n}(X \times Y)$, which are in fact mono: given $g:\left(D^{n}, \partial D^{n}\right) \rightarrow\left(X, x_{0}\right)$, if $i_{X}[g]_{X}=\left[\left(g, y_{0}\right)\right]_{(X \times Y)}=0$, compose the homotopy in the product with the projection $p_{X}: X \times Y \rightarrow X$ to conclude $[g]_{X}=0$. So define a hom from $\pi_{n}(X \times Y)$ to the direct sum by:
$\varphi:[f] \mapsto[g]_{X}+[h]_{Y}$, if $f:\left(D^{n}, \partial D^{n}\right) \rightarrow\left(X \times Y,\left(x_{0}, y_{0}\right)\right), \quad f(x)=(g(x), h(x))$,
in other words, $\varphi=p_{X} \oplus p_{Y}$. Then φ is epi, since $\varphi\left(i_{X}[g]_{X}+i_{Y}[h]_{Y}\right)=$ $[g]_{X}+[h]_{Y}$. And it is also mono, since $[g]_{X}+[h]_{Y}=0$ gives homotopies g_{t} from g to x_{0}, h_{t} from h to y_{0}, and thus also $\left(g_{t}, h_{t}\right)$ from f to $\left(x_{0}, y_{0}\right)$.

Now consider $X \vee Y$ where X and Y have a single common point z_{0}. We regard this as a subspace of the product:

$$
X \vee Y \sim X \times\left\{z_{0}\right\} \cup\left\{z_{0}\right\} \times Y \subset X \times Y
$$

Consider the injections (of based spaces and maps):
$j_{X}: \pi_{n}(X) \rightarrow \pi_{n}(X \vee Y), \quad j_{Y}: \pi_{n}(Y) \rightarrow \pi_{n}(X \vee Y), \quad k: \pi_{n}(X \vee Y) \rightarrow \pi_{n}(X \times Y)$.
Then $k \circ j_{X}=i_{X}$ and $k \circ j_{Y}=i_{Y}$, and since i_{X}, i_{Y} are mono, so are j_{X}, j_{Y}. In general k is not mono. Consider also the hom:

$$
\tau: \pi_{n}(X \times Y) \rightarrow \pi_{n}(X \vee Y), \quad \tau(\alpha)=j_{X} p_{X}(\alpha)+j_{Y} p_{Y}(\alpha)
$$

Note $\tau \circ i_{X}=j_{X}, \tau \circ i_{Y}=j_{Y}$, and also, for any $\alpha \in \pi_{n}(X \times Y)$:
$k \tau(\alpha)=k\left(i_{X} p_{X}\right)(\alpha)+k\left(j_{Y} p_{Y}\right)(\alpha)=\left(k j_{X}\right) p_{X}(\alpha)+\left(k j_{Y}\right) p_{Y}(\alpha)=i_{X} p_{X}(\alpha)+i_{Y} p_{Y}(\alpha)=\alpha$.
So τ is a right inverse to k, and thus k is epi, τ is mono, and τ embeds $\pi_{n}(X \times Y)$ into $\pi_{n}(X \vee Y)$:
$\tau \pi_{n}(X \times Y)=\tau i_{X} \pi_{n}(X) \oplus \tau i_{Y} \pi_{n}(Y)=j_{X} \pi_{n}(X) \oplus j_{Y} \pi_{n}(Y) \approx \pi_{n}(X) \oplus \pi_{n}(Y)$.
We claim: $\pi_{n}(X \vee Y)=\operatorname{im}(\tau) \oplus \operatorname{ker}(k)$. Indeed the fact $k \tau=i d$ shows these subgroups intersect at $\{0\}$, and note any $\gamma \in \pi_{n}(X \vee Y)$ decomposes as:

$$
\gamma=\tau k(\gamma)+(\gamma-(\tau k)(\gamma)) \in \operatorname{im}(\tau) \oplus \operatorname{ker}(k)
$$

We conclude:

$$
\pi_{n}(X \vee Y) \approx \pi_{n}(X) \oplus \pi_{n}(Y) \oplus \operatorname{ker}(k)
$$

To identify $\operatorname{ker}(k)$, consider the homotopy exact sequence for the pair ($X \times$ $Y, X \vee Y)$:
$\ldots \xrightarrow{\mu} \pi_{n+1}(X \times Y, X \vee Y) \xrightarrow{\partial} \pi_{n}(X \vee Y) \xrightarrow{k} \pi_{n}(X \times Y) \xrightarrow{\mu} \pi_{n}(X \times Y, X \vee Y) \xrightarrow{\partial} \pi_{n-1}(X \vee Y) \rightarrow \ldots$
We have: k is epi, so μ is the zero map and $\operatorname{ker}(\partial)=\operatorname{im}(\mu)=0$, so ∂ is mono and $\operatorname{ker}(k)=\operatorname{im}(\partial) \approx \pi_{n+1}(X \times Y, X \vee Y)$. We conclude, finally;

$$
\pi_{n}(X \vee Y) \approx \pi_{n}(X) \oplus \pi_{n}(Y) \oplus \pi_{n+1}(X \times Y, X \vee Y)
$$

Example. Consider the wedge of two n-spheres, $X=S_{1}^{n} \vee S_{2}^{n}$. With a standard cell decomposition of S^{n} (one n-cell, one 0 -cell), X has the product cell decomposition: one 0-cell (the basepoint), two n-cells (which combined give the decomposition of the wedge) and one $2 n$-cell. Thus the pair ($X, S_{1}^{n} \vee S_{2}^{n}$) is $(n+1)$-connected, its relative homotopy group π_{n+1} vanishes and we have: $\pi_{n}(X) \approx \pi_{n}\left(S_{1}^{n}\right) \oplus \pi_{n}\left(S_{2}^{n}\right) \approx \mathbb{Z}^{2}$.

A similar reasoning applies to give for $\pi_{n}(X) \approx \mathbb{Z}^{N}$, if X is a 'bouquet'(!) of $N n$-spheres. (Since its cell decomposition only has cells with dimensions a multiple of n.)

2. Freudenthal suspension theorem.

Denote by $S: \pi_{q}\left(S^{n}\right) \rightarrow \pi_{q+1}\left(S^{n+1}\right)$ the suspension homomorphism. (In the sphere case, $S[f]$ is represented by any extension of $f: S^{q} \rightarrow S^{n}$-regarded as the equators of S^{q+1}, S^{n+1} - to a map $S^{q+1} \rightarrow S^{n+1}$ preserving meridians.) Note that in the theorem the equatorial S^{q}, S^{n} are chosen once and for all.

Theorem: The suspension hom S is an epimorphism if $n \leq q \leq 2 n-1$, an isomorphism if $n \leq q<2 n-1$.

Remark: More generally, the suspension hom $S: \pi_{q}(X) \rightarrow \pi_{q+1}(S(X))$ is epi (resp. iso) in the same range of dimensions, if X is an ($n-1$)-connected CW complex.

Proof (outline) We present essentially the geometric proof described in [FomenkoFuchs, p. 121], where you'll find all the helpful pictures. By approximation within the same homotopy class, we may assume the maps and homotopies that occur are smooth, which simplifies things a bit. The proof is based on the geometric fact that, in this range of dimensions, preimages of points are unlinked submanifolds.

Recall two compact, embedded, disjoint submanifolds $P, Q \subset \mathbb{R}^{N}$ are unlinked if one may find an isotopy of \mathbb{R}^{n} (for example an orientation-preserving isometry) φ so that $\varphi(P)$ and Q can be separated by a hyperplane. For instance, it is easy to draw linked embeddings of S^{1} in \mathbb{R}^{3}. More simply, two Jordan curves in the plane, one inside the other (or a point inside a Jordan curve) are linked (=not unlinked), but become unlinked as submanifolds of \mathbb{R}^{3}.

The following is well-known: two compact embedded disjoint submanifolds $P, Q \subset \mathbb{R}^{N}$ are unlinked if $\operatorname{dim}(P)+\operatorname{dim}(Q)<N-1$. To see this, consider the embeddings $f: P \rightarrow R^{N}, g: Q \rightarrow R^{N}$ and the smooth map $F: P \times Q \rightarrow S^{N-1}$ obtained by normalizing the vector $f(p)-g(q)$. Let $n_{0} \in S^{N-1}$ be a regular value of F. Due to the dimension condition, this can only mean $F^{-1}\left(n_{0}\right)=\emptyset$. Hence no line in \mathbb{R}^{N} with direction vector n_{0} meets both P and Q. Now move P by a translation φ with direction n_{0} sufficiently far (never meeting Q), so that some hyperplane \mathcal{H} normal to n_{0} will have $\varphi(P)$ and Q on opposite sides. (In general, the linking number of two disjoint, embedded compact oriented submanifolds $P, Q \subset \mathbb{R}^{N}$ with $\operatorname{dim}(P)+\operatorname{dim}(Q)=N-1$ may be defined (following Gauss) as the degree of this map F.)

The suspension homomorphism is surjective if $n \leq q \leq 2 n-1$. This means: given $f: S^{q+1} \rightarrow S^{n+1}$, we may deform f by successive homotopies and find a map $g: S^{q} \rightarrow S^{n}$ so that $f \simeq S g$ (for the new f). Model $S^{q+1}=\mathbb{R}^{q+1} \cup\{\infty\}$, and let N, S be the north and south poles of S^{n+1}. We may assume N, S are regular values of f (and that $f(\infty) \notin\{N, S\}$), so their preimages are disjoint submanifolds $P, Q \subset \mathbb{R}^{q+1}$ (maybe disconnected), both of dimension $q-n$. Select also neighborhoods U, V of N, S, whose preimages are neighborhoods U_{1}, V_{1} of P, Q.

Now, the dimension condition implies $\operatorname{dim}(P)+\operatorname{dim}(Q)=2(q-n)<q$, hence P, Q are unlinked, and we may find an isotopy φ of S^{q+1} so that P, Q are in opposite hemispheres (relative to some equator), and furthermore (by shrinking U, V if needed) so that each of U_{1}, V_{1} is contained in the same hemisphere as the new P, Q (resp.) Now find a rotation (element of $S O(q+1)$) that moves this equator to the original one, $S^{q} \subset S^{q+1}$, so that U_{1}, V_{1} are now contained in the northern (resp. southern) hemisphere of S^{q+1}, and map (by the new f) to $U, V \subset S^{n+1}$ (resp.)

From this point on the proof of surjectivity proceeds as in [F-F].
The suspension homomorphism is injective if $n \leq q<2 n-1$. This means: given $f, g: S^{q} \rightarrow S^{n}$, if $S f \simeq S g$ we have $f \simeq g$. Naturally, if $h_{t}: S^{q+1} \rightarrow S^{n+1}$ is a homotopy from $S f$ to $S g$, we seek to deform h_{t} to a homotopy of the form $S\left(f_{t}\right)$, where f_{t} is a homotopy from f to g. Thinking of the h_{t} as $H: S^{q+1} \times I \rightarrow$ S^{n+1}, we seek to deform H to another homotopy $H_{1}: S^{q+1} \times I \rightarrow S^{n+1}$, which on each fiber $t=$ const is the suspension of a map $S^{q} \rightarrow S^{n}$. As before we assume N, S are regular values of H and consider their preimages P, Q under H, each a submanifold of $R^{q+1} \times R=R^{q+2}$ of dimension $q-n+1$. And now the unlinking criterion (with separation by a fixed hyperplane in R^{q+2}) is:

$$
2(q-n+1)<q+2-1, \text { or } q<2 n-1 .
$$

From this point on, the proof of injectivity proceeds as in [F-F].
Remark: The kernel of the suspension map $S: \pi_{2 n-1}\left(S^{n}\right) \rightarrow \pi_{2 n}\left(S^{n+1}\right)$ can be described in terms of the Whitehead product (see [F=F, p. 127 ff .):

$$
\alpha \in \pi_{m}\left(X, x_{0}\right), \beta \in \pi_{n}\left(X, x_{0}\right) \mapsto[\alpha, \beta] \in \pi_{m+n-1}\left(X, x_{0}\right) .
$$

The kernel is the cyclic group generated by $\left[I_{n}, I_{n}\right] \in \pi_{2 n-1}\left(S^{n}\right)$, where $I_{n} \in$ $\pi_{n}\left(S^{n}\right)$ is the homotopy class of the identity map.

3. Proof of the Hurewicz theorem.

Hurewicz Theorem. Let X be a connected CW complex. Assume X is $(n-1)$-connected, where $n \geq 1\left(\pi_{p}(X)=0, p=1, \ldots, n-1\right.$.) Then $\tilde{H}_{p}(X)=0$ for $p=1, \ldots, n-1$ (reduced homology) and the Hurewicz homomorphism h : $\pi_{n}(X) \rightarrow \tilde{H}_{n}(X)$ is an isomorphism.

Proof. (Based on cellular homology.)

1. Reduction. Using $(n-1)$-connectivity, we may replace X by a homotopically equivalent complex with a single 0 -cell x_{0} and no other cells of dimension $<n$; that is, the $(n-1)$ skeleton $X^{n-1}=\left\{x_{0}\right\}$. This already implies (via cellular homology) the reduced homology vanishes in dimensions $0, \ldots, n-1$.

Additionally, note that $\pi_{n}(X)$ depends only on the $(n+1)$-skeleton (by cellular approximation of maps) and likewise for $\tilde{H}_{n}(X)$ (by cellular homology). So we might as well assume $X=X^{n+1}$-there are no cells of dimension $>n+1-$ and we do.

This reduces the proof to the following special situation:

$$
X^{n}=\bigvee_{k \in K} S_{k}^{n}, \quad X=X^{n} \sqcup_{l \in L} e_{l}^{n+1}
$$

That is, the n-skeleton is a wedge of n-spheres and X is obtained from it by attaching $(n+1)$-cells e_{l}^{n+1}, via attaching maps $\varphi_{l}: S^{n} \rightarrow X^{n}$ (with corresponding characteristic maps $\Phi_{l}: D^{n+1} \rightarrow X$, restricting to φ_{l} on $\left.\partial D^{n+1}\right)$.

In this particular case, π_{n} is easy to describe: it is the quotient of the free abelian group $\pi_{n}\left(X^{n}\right) \approx \bigoplus_{k \in K} \pi_{n}\left(S_{k}^{n}\right)$ on K generators (represented by $i_{k *}\left[i d_{n}\right]$, where $\left[i d_{n}\right] \in \pi_{n}\left(S^{n}\right)$ is the class of the identity map of S^{n} and i_{k} : $S^{n} \rightarrow X^{n}$ is the inclusion map of the $k^{t h}$ sphere of the wedge) by the subgroup of $\pi_{n}\left(X^{n}\right)$ generated by the attachment maps $\varphi_{l}: S^{n} \rightarrow X^{n}$ of the $(n+1)$-cells:

$$
\left.\pi_{n}(X)=\pi_{n}\left(X^{n}\right) /\left\langle\left[\varphi_{l}\right]_{X^{n}} ; l \in L\right\}\right\rangle
$$

(See Example 4.29 in [Hatcher], which unfortunately ultimately relies on the 'homotopy excision theorem'. Alternatively, use the 'homotopy addition theorem', as described in sections 11.1, 11.2, 11.3 of [Fomenko-Fuchs].)
2. Reminder of cellular homology facts. To understand the homology side of things, we appeal to cellular homology. Recall the cellular chain complex $\left(C_{n}(X), d_{n}\right)_{n \geq 0}$ of a CW complex is given (in terms of singular homology) by:
$C_{n}(X)=H_{n}\left(X^{n}, X^{n-1}\right), \quad d_{n}=j_{*} \circ \partial_{n}: C_{n}(X) \rightarrow C_{n-1}(X)=H_{n-1}\left(X^{n-1}, X^{n-2}\right)$,
where $\partial_{n}: H_{n}\left(X^{n}, X^{n-1}\right) \rightarrow H_{n-1}\left(X^{n-1}\right)$ is the connection homomorphism of the homology exact sequence of the pair $\left(X^{n}, X^{n-1}\right)$ and $j_{*}: H_{n-1}\left(X^{n-1}\right) \rightarrow$ $H_{n-1}\left(X^{n-1}, X^{n-2}\right)$ is induced by inclusion of pairs. Recall $C_{n}(X)$ is free abelian, with generators in bijective correspondence with the set of n-cells of X.

In our case, $X^{n-1}=\left\{x_{0}\right\}$, so $H_{n}\left(X^{n}, X^{n-1}\right)=\tilde{H}\left(X^{n}\right)$, and we may identify j_{*} with the identity in $\tilde{H}_{n}\left(X^{n}\right)$ and d_{n+1} with $\partial_{n+1}: C_{n+1}(X) \rightarrow \tilde{H}_{n}(X)$ (since $n \geq 2$, homology and reduced homology coincide in these dimensions.) Also, since $C_{n-1}(X)=0$ all chains in $C_{n}(X)$ are cycles, and thus:

$$
H_{n}^{c e l l}(X)=C_{n}(X) / i m\left(d_{n+1}\right)
$$

(And $H_{n}^{\text {cell }}(X) \approx H_{n}(X)$.)
3. The Hurewicz map of a wedge of spheres of the same dimension. Here we consider $h: \pi_{n}\left(X^{n}\right) \rightarrow \tilde{H}_{n}\left(X^{n}\right)=\tilde{H}_{n}(X)$. Note that $C_{n+1}\left(X^{n}\right)=0$, since X^{n} is a wedge of n-spheres and has no $(n+1)$-cells. So we have:

$$
h: \pi_{n}\left(X^{n}\right) \rightarrow C_{n}\left(X^{n}\right)=\tilde{H}_{n}\left(X^{n}\right) \approx \bigoplus_{k \in K} \tilde{H}_{n}\left(S_{k}^{n}\right)
$$

(reduced singular homology on the right) where both groups are isomorphic to $\oplus_{K} \mathbb{Z}$.

As we recalled above, $\pi_{n}\left(X^{n}\right)$ has a basis $\left\{i_{k_{*}}\left[i d_{n}\right]=\left[i_{k}\right]_{X^{n}}\right\}_{k \in K}$, where $i_{k}: S^{n} \rightarrow X^{n}$ is inclusion as the $k^{t h}$ sphere. What is the image of the $k^{t h}$ basis element under h ? By definition, it is $\left(i_{k}\right)_{\#}\left(s_{n}\right) \in \tilde{H}_{n}\left(X^{n}\right)$ (induced hom in homology), where $s_{n} \in H_{n}\left(S^{n}\right)$ is a fixed generator:

$$
h\left(\left[i_{k}\right]_{X^{n}}\right)=\left(i_{k}\right)_{\#}\left(s_{n}\right)
$$

Note $\left(i_{k}\right)_{\#}: \tilde{H}_{n}\left(S^{n}\right) \rightarrow \tilde{H}_{n}\left(X^{n}\right)$ is inclusion of the $k^{t h}$ summand into a direct sum. Hence $\left(i_{k}\right)_{\#}\left(s_{n}\right)$ is a basis element of $\tilde{H}_{n}\left(X^{n}\right)$.This shows the map h : $\pi_{n}\left(X^{n}\right) \rightarrow \tilde{H}_{n}\left(X^{n}\right)$ is an isomorphism, which of course is the Hurewicz theorem for a wedge of n-spheres.
4. Conclusion of the proof. Given the above descriptions of $\pi_{n}(X)$ and $\tilde{H}_{n}(X)$ as quotient groups, all that is left to show is that the Hurewicz homomorphism h satisfies the mapping condition of subgroups (of $\pi_{n}(X)$ and $\left.\tilde{H}_{n}(X)\right)$:

$$
h\left(\left\langle\left[\varphi_{l}\right]_{X^{n}} ; l \in L\right\rangle\right)=i m\left(d_{n+1}\right),
$$

where on the left we have the subgroup of $\pi_{n}(X)$ generated by attachment maps $\varphi_{l}: S^{n} \rightarrow X^{n}$ of the cells e_{l}^{n+1}, and on the right the image of the connection homomorphism $d_{n+1}=j_{*} \partial_{n+1}: C_{n+1}(X)=H_{n+1}\left(X^{n+1}, X^{n}\right) \rightarrow \tilde{H}_{n}\left(X^{n}\right)=$ $C_{n}(X)$ (composition of a connecting hom ∂_{n+1} in an exact sequence of pairs and an injection operator $\left.j_{*}: H_{n}\left(X^{n}\right) \rightarrow H_{n}\left(X^{n}, X^{n-1}\right) \approx \tilde{H}_{n}\left(X^{n}\right)=C_{n}(X)\right)$.

Note that the attaching map φ_{l} of e_{l}^{n+1} extends to the characteristic map $\Phi_{l}:\left(D^{n+1}, S^{n}\right) \rightarrow\left(X, X^{n}\right)=\left(X^{n+1}, X^{n}\right)$, inducing in homology the hom
$\left(\Phi_{l}\right)_{\#}: H_{n+1}\left(D^{n+1}, S^{n}\right) \rightarrow H_{n+1}\left(X^{n+1}, X^{n}\right)=C_{n+1}(X)$. By naturality of connection homomorphisms, we have the commutative diagram:

Note ∂_{n+1} (top row) is an isomorphism, and $\left(\partial_{n+1}\right)^{-1}$ maps the generator s_{n} of $H_{n}\left(S_{n}\right)$ used to define h to a generator r_{n+1} of the infinite cyclic abelian group $H_{n+1}\left(D^{n+1}, S^{n}\right)$. Commutativity of the diagram implies:

$$
h\left(\left[\varphi_{l}\right]_{X}\right)=\left(\varphi_{l}\right)_{\#}\left(s_{n}\right)=\partial_{n+1}\left(\Phi_{l}\right)_{\#}\left(r_{n+1}\right),
$$

and therefore $h\left(\left[\varphi_{l}\right]_{X}\right) \in i m\left(d_{n+1}\right)$, since we're identifying ∂_{n+1} (with image in $H_{n}\left(X^{n}\right)$) and $d_{n+1}\left(\right.$ with image in $\left.\tilde{H}_{n}\left(X_{n}\right) \approx C_{n}(X)\right)$.

Now recall $C_{n+1}(X)=H_{n+1}\left(X^{n+1}, X^{n}\right)$, and since $\left(X^{n+1}, X^{n}\right)$ is a CW pair, we have $H_{n+1}\left(X^{n+1}, X_{n}\right) \approx \tilde{H}_{n+1}\left(X^{n+1} / X^{n}\right)$, while $X^{n+1} / X^{n}=\bigvee_{l \in L} S_{l}^{n+1}$, a wedge of spheres with \tilde{H}_{n+1} given by the direct sum of individual \tilde{H}_{n+1} 's. Thus the $\left(\Phi_{l}\right)_{\#}\left(r_{n+1}\right)$ form a basis of $C_{n+1}(X)$, and we have in fact established the equality of the subgroups $h\left(\left\langle\left[\varphi_{l}\right]_{X^{n}} ; l \in L\right\rangle\right)$ and $i m\left(d_{n+1}\right)$, concluding the proof.

Sources: This proof follows the idea outlined in [Hatcher, section 4.2], which emphasizes the relative case, but I've included more detail. The main reason to choose a proof based on cellular homology is that it ties in with the existence/uniqueness (up to homotopy type) of Eilenberg-MacLane spaces.

A reasonably concise and understandable proof based on simplicial homology is found in S-T Hu, Homotopy Theory (1959), Theorem 4.4 (Chapter V, section 4).

Classification of vector bundles.

1. Vector bundle morphisms and isomorphism.

Let ξ, η be k, l-vector bundles over base spaces $B(\xi), B(\eta)$. A vector bundle morphism is a pair (u, f) of continuous maps, where $u: E(\xi) \rightarrow E(\eta)$ preserves fibers and is linear in each fiber, and $f: B(\xi) \rightarrow B(\eta)$ is the induced map of base spaces.

If ξ, η have the same base space B, u is a linear isomorphism on fibers (so $k=l$) and the induced map $f=i d_{B}$, we say ξ and η are (strongly) isomorphic (Notation: $\xi \approx \eta$). It is easy to show [M-S Lemma 3.1] this implies $u: E(\xi) \rightarrow$ $E(\eta)$ is a homeomorphism.

Let $f: B \rightarrow X, \eta$ a k-vector bundle over X. Recall the pullback $f^{*} \eta$ has total space and projection:

$$
E\left(f^{*} \eta\right)=\left\{(b, v) \in B \times E(\eta) ; f(b)=p_{\eta}(v) \in X\right\}, \quad p(b, v)=b
$$

We have the following easy but useful fact:

Proposition. Suppose $(u, f): \xi \rightarrow \eta$ is a vector bundle morphism and an isomorphism on each fiber. Then $\xi \approx f^{*} \eta$ (as vector bundles over B.)

For the proof we define $h: E(\xi) \rightarrow E\left(f^{*} \eta\right)$ via: $h(e)=\left(p_{\xi}(e), u(e)\right.$) (note $p_{\eta}(u(e))=f\left(p_{\xi}(e)\right)$, so this makes sense.) Then h is continuous and maps each fiber $V_{b}(\xi)$ isomorphically onto $V_{b}\left(f^{*} \eta\right)$ (since on each fiber $V_{b}(\xi)$, h coincides with u.)
2. Canonical and universal k-vector bundles.

We denote by γ_{k}^{n} the canonical k-plane bundle over the real Grassmannian $G_{k}\left(R^{n}\right)(n \geq k)$, with total space and projection:

$$
\left.E\left(\gamma_{k}^{n}\right)=\left\{(X, v) \in G_{k}\left(R^{n}\right) \times R^{n} ; v \in X .\right\}, \quad p(X, v)=X .\right\}
$$

The universal k-vector bundle γ_{k} has as base space the $G_{k}\left(R^{\infty}\right)$, the infinite increasing union of the $G_{k}\left(R^{n}\right)$, an inifnite-dimensional CW complex given the 'weak topology', with total space:

$$
E\left(\gamma_{k}\right)=\left\{(X, v) \in G_{k}\left(R^{\infty}\right) \times R^{\infty} ; v \in X\right\}, \quad p(X, v)=X
$$

Note $E\left(\gamma_{k}\right)$ is the infinite increasing union of the $E\left(\gamma_{k}^{n}\right)$, with compatible projection maps.

The canonical bundle γ_{k}^{n} over $G_{k}\left(R^{n}\right)$ is associated with an equally canonical ($n-k$)-vector bundle over the same base, its orthogonal complement $\gamma_{k}^{n \perp}$, with total space and projection:

$$
E\left(\gamma_{k}^{m \perp}\right)=\left\{(X, v) \in G_{k}\left(R^{n}\right) \times R^{n} ; v \in X^{\perp}\right\}, \quad q(X, v)=X
$$

Note that their Whitney sum is the trivial n-bundle over $G_{k}\left(R^{n}\right)$:

$$
\gamma_{k}^{n} \oplus \gamma_{k}^{n \perp}=\epsilon^{n}:=G_{k}\left(R^{n}\right) \times R^{n}
$$

This implies that if ξ is a k-vector bundle over B and $\xi \approx f^{*} \gamma_{k}^{n}$, for some n and some $f: B \rightarrow G_{k}\left(R^{n}\right)$, then ξ admits a 'complement', a $n-k$-vector bundle η over B so that:

$$
\xi \oplus \eta \approx \epsilon_{B}^{n}:=B \times R^{n},
$$

the trivial n-bundle over B. (Just let $\eta=f^{*}\left(\gamma_{k}^{n \perp}\right)$.)
3. Existence theorem.

Theorem 1. Let ξ be a k-plane bundle over a compact manifold B. Then there exists n and $f: B \rightarrow G_{k}\left(R^{n}\right)$ so that $\xi \approx f^{*} \gamma_{k}^{n}$.

Proof. See [M-S, Lemma 5.3] (extended to paracompact base spaces in Theorem 5.6 , with maps to $G_{k}\left(R^{\infty}\right)$.) In the compact case, we have an open cover of B by finitely many (say N) open sets, over each of which ξ is trivial. The proof gives a map $B \rightarrow G_{k}\left(R^{k N}\right)$, using partitions of unity in the same way as the proof that (compact) manifolds embed in euclidean spaces of sufficiently large dimension.

4. Homotopy implies isomorphism.

Theorem 2. Suppose $f_{0}, f_{1}: B \rightarrow G_{k}\left(R^{n}\right)$ are homotopic maps (B compact.) Then the pullback bundles are isomorphic: $f_{0}^{*} \gamma_{k}^{n} \approx f_{1}^{*} \gamma_{k}^{n}$.

Proof. (Adapted from [Benedetti, p. 100].) Consider the simple linear algebra fact: suppose we have two direct sum decompositions

$$
R^{n}=V^{\prime} \oplus V=V^{\prime \prime} \oplus V
$$

Then we have a canonical isomorphism $\phi: V^{\prime} \rightarrow V^{\prime \prime}, \phi\left(v^{\prime}\right)=v^{\prime \prime}$ where $v^{\prime}=$ $v^{\prime \prime}+v$ (unique decomposition.)

Let $F: B \times[0,1] \rightarrow G_{k}\left(R^{n}\right)$ be the homotopy from f_{0} to f_{1}, and consider $F^{*}\left(\gamma_{k}^{n}\right)$, a k-vector bundle over $B \times[0,1]$. Denote by $V_{p, t}$ its fiber over (p, t), a k-dimensional subspace of R^{n} depending continuously on (p, t). Observe the following. For any given $t \in[0,1]$, we have:

$$
V_{p, t} \cap V_{p, 0}^{\perp}=\{0\}, \forall p \in B \Leftrightarrow R^{n}=V_{p, t} \oplus V_{p, 0}^{\perp}, \forall p \in B \Leftrightarrow f_{t}^{*}\left(\gamma_{k}^{n}\right) \approx f_{0}^{*}\left(\gamma_{k}^{n}\right)
$$

Indeed it suffices to consider that the linear algebra fact implies the existence of a continuous field of linear isomorphisms:

$$
\phi_{p}: V_{p, t} \rightarrow V_{p, 0}, \quad p \in B
$$

that is, of a bundle isomorphism $\phi: f_{t}^{*}\left(\gamma_{k}^{n}\right) \approx f_{0}^{*}\left(\gamma_{k}^{n}\right)$. Clearly the set of $t \in[0,1]$ such that $V_{p, t} \cap V_{p, 0}^{\perp}=\{0\}, \forall p \in B$ is open in [0,1]. (This condition is equivalent to the orthogonal projection in R^{n} mapping $V_{p, t}^{\perp}$ isomorphically onto $V_{p, 0}^{\perp}$.)

Claim. $\exists \varepsilon>0$ such that $\forall 0 \leq t \leq \epsilon, \forall p \in B, V_{p, t} \oplus V_{p, 0}^{\perp}=R^{n}$.
Proof. Otherwise we have a sequence $\left(p_{n}, t_{n}\right) \rightarrow\left(p_{0}, 0\right)$ in $B \times[0,1]$, such that $\operatorname{dim}\left(V_{p_{n}, t_{n}} \cap V_{p_{0}, 0}^{\perp}\right)>0$, which in the limit gives $\operatorname{dim}\left(V_{p_{0}, 0} \cap V_{p_{0}, 0}^{\perp}\right)>0$, contradiction.

Thus if we consider the set:
$\mathcal{G}=\left\{\varepsilon \in[0, t] ; V_{p, t} \cap V_{p, 0}^{\perp}=\{0\}, \forall p \in B, \forall 0 \leq t \leq \varepsilon\right\}=\left\{t \in[0,1] ; f_{t}^{*} \gamma_{k}^{n} \approx f_{0}^{*} \gamma_{k}^{n}, \forall 0 \leq t \leq \varepsilon\right\}$,
we see that \mathcal{G} is a an interval $\left[0, \epsilon_{0}\right)$, open on the right unless $\epsilon_{0}=\sup \mathcal{G}=1$.
But in fact $\epsilon_{0} \in \mathcal{G}$: let $t_{m} \in \mathcal{G}, t_{m} \uparrow \epsilon_{0}$. Since $R^{n}=V_{p \epsilon_{0}} \oplus V_{p \epsilon_{0}}^{\perp} \forall p$, we have $V_{p t_{m}} \cap V_{\epsilon_{0} p}=\{0\}^{\perp} \forall p$ for m sufficiently large (due to openness of the condition), hence $f_{t_{m}}^{*} \gamma_{k}^{n} \approx f_{\epsilon_{0}}^{*} \gamma_{k}^{n}$ for m large, and since $t_{m} \in \mathcal{G}$ also $f_{0}^{*} \gamma_{k}^{n} \approx f_{\epsilon_{0}}^{*} \gamma_{k}^{n}$, so $\epsilon_{0} \in \mathcal{G}$. This implies $\epsilon_{0}=1$, or $f_{0}^{*} \gamma_{k}^{n} \approx f_{1}^{*} \gamma_{k}^{n}$, as we wished to show.
5. Gauss maps. [Husemoller p.31.] Definition: a Gauss map to R^{m} for a k-vector bundle ξ is a continuous map $g: E(\xi) \rightarrow R^{m}$ which is a linear monomorphism on each fiber of ξ (so $m \geq k$.)

For example, $q: E\left(\gamma_{k}^{n}\right) \rightarrow R^{n}, q(X, v)=v$ is a Gauss map. If $(u, f):$ $\xi^{k} \rightarrow \gamma_{k}^{n}$ is a bundle morphism which is isomorphic on fibers, the composition $q \circ u: E(\xi) \rightarrow R^{n}$ is a Gauss map.

Conversely, if ξ is a k-vector bundle $p: E(\xi) \rightarrow B$ and $g: E(\xi) \rightarrow R^{m}$ is a Gauss map for ξ, there exists a bundle morphism $(u, f): \xi \rightarrow \gamma_{k}^{m}$ such that $q \circ u=g$.

To see this, for $b \in B$ let $f(b)=g\left(p^{-1} b\right)$, the image under g of the fiber of ξ over b, a k-dimensional subspace of R^{m} and hence a point of $G_{k}\left(R^{m}\right)$; and for $e \in E(\xi)$, let $u(e)=(f(p(e)), g(e)) \in E\left(\gamma_{k}^{m}\right)$. Using local trivializations, one sees that u and f are continuous and u is isomorphic on fibers. Thus we have the following simple but useful observation, for an arbitrary k-vector bundle $\xi(E, p, B)$:

$$
\left[\exists f: B \rightarrow G_{k}\left(R^{m}\right), \xi \approx f^{*}\left(\gamma_{k}^{m}\right)\right] \Leftrightarrow\left[\exists g: E \rightarrow R^{m} \text { Gauss map }\right]
$$

In particular, it follows from Theorem 1 that any vector bundle over a compact (or paracompact) base admits a Gauss map.

6. The even-odd trick. [Husemoller p. 33, M-S p. 67, Thm 5.7]

To finish the classification theorem, it remains to prove that isomorphism implies homotopy: if $f_{0}, f_{1}: B \rightarrow G_{k}\left(R^{n}\right)$ yield isomorphic vector bundles under pullback: $f_{0}^{*} \gamma_{k}^{n} \approx f_{1}^{*} \gamma_{k}^{n}$, then they are homotopic: $f_{0} \simeq f_{1}$ as maps to $G_{k}\left(R^{n}\right)$ (that is, with the homotopy taking values in $G_{k}\left(R^{n}\right)$). Unfortunately this is not what is proved, and here is the problem: say $f_{0}^{*} \gamma_{k}^{n} \approx f_{1}^{*} \gamma_{k}^{n} \approx \xi$ a k-vector bundle over B, the isomorphisms being given by $u_{0}, u_{1}: E(\xi) \rightarrow E\left(\gamma_{k}^{n}\right)$, inducing f_{0}, f_{1}. It would be enough to produce a homotopy between the corresponding Gauss maps $g_{0}=q \circ u_{0}, g_{1}=q \circ u_{1}$, an easier problem since we may try the linear homotopy in R^{n} :

$$
g_{t}(e)=(1-t) g_{0}(e)+t g_{1}(e) \in R^{n}, \quad e \in E(\xi), t \in[0,1] .
$$

Unfortunately there is no way to guarantee this always gives a nonzero vector if $e \neq 0$; that is, that each g_{t} is itself a Gauss map.

Thus a tricky detour is necessary, which in the end results in a homotopy from f_{0} to f_{1}, but taking values in $G_{k}\left(R^{2 n}\right)$, not $G_{k}\left(R^{n}\right)$.

Consider the 'even and odd subspaces' of R^{∞} :

$$
R^{e v}=\left\{x \in R^{\infty} ; x_{2 i+1}=0 \forall i \geq 0\right\} ; \quad R^{o d}=\left\{x \in R^{\infty} ; x_{2 i}=0 \forall i \geq 0\right\}
$$

For each $t \in[0,1]$, consider the linear embeddings:

$$
\begin{gathered}
k_{t}^{e}: R^{n} \rightarrow R^{2 n}, k_{t}^{o}: R^{n} \rightarrow R^{2 n}: \\
k_{t}^{e}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=(1-t)\left(x_{0}, x_{1}, \ldots, x_{n-1}, 0, \ldots, 0\right)+t\left(x_{0}, 0, x_{1}, 0, \ldots, x_{n-1}, 0\right) . \\
k_{t}^{o}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=(1-t)\left(x_{0}, x_{1}, \ldots, x_{n-1}, 0, \ldots, 0\right)+t\left(0, x_{0}, 0, x_{1}, \ldots, 0, x_{n-1}\right) .
\end{gathered}
$$

We see that each $k_{t}^{e}, k_{t}^{o}(t \in[0,1])$ is a linear embedding and:
(1) $k_{0}^{e}=k_{0}^{o}$ is the standard inclusion $R^{n} \rightarrow R^{2 n}$ (set the last n coordinates equal to 0).
(2) $k_{1}^{e}\left(R^{n}\right)=R^{2 n} \cap R^{e v}, k_{1}^{0}\left(R^{n}\right)=R^{2 n} \cap R^{\text {odd }}$.
(3) Denote by $q_{n}: E\left(\gamma_{k}^{n}\right) \rightarrow R^{n}, q_{2 n}: E\left(\gamma_{k}^{2 n}\right) \rightarrow R^{2 n}$ the canonical Gauss maps. Then $k_{1}^{e} \circ q_{n}, k_{1}^{o} \circ q_{n}$ are Gauss maps for γ_{k}^{n}, taking values in $R^{2 n}$. Thus, as seen above, there exist vector bundle morphisms (injective on fibers):

$$
\left(u^{e}, f^{e}\right): \gamma_{k}^{n} \rightarrow \gamma_{k}^{2 n}, \quad\left(u^{o}, f^{o}\right): \gamma_{k}^{n} \rightarrow \gamma_{k}^{2 n}
$$

such that:

$$
k_{1}^{e} \circ q_{n}=q_{2 n} \circ u^{e}, \quad k_{1}^{o} \circ q_{n}=q_{2 n} \circ u^{o} .
$$

(4) $f^{e}, f^{o}: G_{k}\left(R^{n}\right) \rightarrow G_{k}\left(R^{2 n}\right)$ are homotopic to the standard inclusion maps $j: G_{k}\left(R^{n}\right) \rightarrow G_{k}\left(R^{2 n}\right)$. Namely,

$$
\begin{aligned}
& X \mapsto k_{t}^{e}(X) \in G_{k}\left(R^{2 n}\right), X \in G_{k}\left(R^{n}\right) \text { joins } j \text { at } t=0 \text { to } f^{e} \text { at } t=1 ; \\
& X \mapsto k_{t}^{o}(X) \in G_{k}\left(R^{2 n}\right), X \in G_{k}\left(R^{n}\right) \text { joins } j \text { at } t=0 \text { to } f^{o} \text { at } t=1 .
\end{aligned}
$$

7. From isomorphism to homotopy.

Theorem 3. Let $f_{0}, f_{1}: B \rightarrow G_{k}\left(R^{n}\right)$ such that $f_{0}^{*}\left(\gamma_{k}^{n}\right) \approx f_{1}^{*}\left(\gamma_{k}^{n}\right)$. Then $j \circ f_{0} \simeq j \circ f_{1}$ (homotopic), where $j: G_{k}\left(R^{n}\right) \rightarrow G_{k}\left(R^{2 n}\right)$ is the standard inclusion.

Proof. (cp. [Husemoller, p. 35].) By hypothesis there exists a k-vector bundle ξ over B and bundle morphisms (isomorphic on fibers):

$$
\left(u_{0}, f_{0}\right): \xi \rightarrow \gamma_{k}^{n}, \quad\left(u_{1}, f_{1}\right): \xi \rightarrow \gamma_{k}^{n}
$$

and Gauss maps:

$$
h_{0}=q_{n} \circ u_{0}: E(\xi) \rightarrow R^{n}, \quad h_{1}=q_{n} \circ u_{1}: E(\xi) \rightarrow R^{n} .
$$

Composing with the maps obtained in the previous subsection, we have:

$$
\begin{aligned}
& \left(u^{e} \circ u_{0}, f^{e} \circ f_{0}\right): \xi \rightarrow \gamma_{k}^{2 n} \text { with Gauss map } k_{1}^{e} \circ h_{0}: E(\xi) \rightarrow R^{2 n} \cap R^{e v} \\
& \left(u^{o} \circ u_{1}, f^{o} \circ f_{1}\right): \xi \rightarrow \gamma_{k}^{2 n} \text { with Gauss map } k_{1}^{o} \circ h_{1}: E(\xi) \rightarrow R^{2 n} \cap R^{o d d}
\end{aligned}
$$

Define the map $h_{t}: E(\xi) \rightarrow R^{2 n}, t \in[0,1]:$

$$
h_{t}(e)=(1-t)\left(k_{1}^{e} \circ h_{0}\right)(e)+t\left(k_{1}^{o} \circ h_{1}\right)(e), \quad e \in E(\xi)
$$

Then h_{t} is a Gauss map for ξ, for each t : in each fiber $V_{b}(\xi), k_{1}^{e} \circ h_{0}: V_{b}(\xi) \rightarrow$ $R^{e v}, k_{1}^{e} \circ h_{1}: V_{b}(\xi) \rightarrow R^{o d d}$ are both injective, taking values in subspaces intersecting only at 0 ; thus h_{t} is also injective.

This implies there exists a continuous one-parameter family of bundle morphisms:

$$
\left(w_{t}, \phi_{t}\right): \xi \rightarrow \gamma_{k}^{2 n}
$$

where $\phi_{t}: B \rightarrow G_{k}\left(R^{2 n}\right)$ is a homotopy $f^{e} \circ f_{0} \simeq f^{o} \circ f_{1}$.
Now recall (from point (4) above): $j \circ f_{0} \simeq f^{e} \circ f_{0}, j \circ f_{1} \simeq f^{o} \circ f_{1}$. Thus $j \circ f_{0} \simeq j \circ f_{1}$, as we wished to show.
8. Summary. Theorems $1,2,3$ may be summarized as the classification theorem:

Any real k-vector bundle ξ over a compact (or paracompact) base space B is the pullback $f^{*}\left(\gamma_{k}^{n}\right)$ under a map $f: B \rightarrow G_{k}\left(R^{n}\right)$, for some n. Homotopic maps $B \rightarrow G_{k}\left(R^{n}\right)$ induce isomorphic bundles; conversely, if $f^{*} \gamma_{k}^{n} \approx g^{*} \gamma_{k}^{n}$, then f is homotopic to g (as maps to $G_{k}\left(R^{2 n}\right)$). In symbols, the pullback of γ_{k} over $G_{k}\left(R^{\infty}\right)$ establishes a bijection:

$$
\operatorname{Vect}_{k}(B) \leftrightarrow\left[B, G_{k}\left(R^{\infty}\right)\right] .
$$

(Isomorphism classes of k-vector bundles over B on the left, homotopy classes of maps on the right.)

The same is true for complex vector bundles:

$$
V e c t_{k}^{\mathbb{C}}(B) \leftrightarrow\left[B, G_{k}\left(\mathbb{C}^{\infty}\right)\right]
$$

In particular for line bundles:

$$
\begin{aligned}
& \operatorname{Vect}_{1}(B)\leftrightarrow[B, R P(\infty))] \\
&=\left[B, K\left(\mathbb{Z}_{2}, 1\right)\right] . \\
& \operatorname{Vect}_{1}^{\mathbb{C}}(B) \leftrightarrow[B, \mathbb{C} P(\infty)]=[B, K(\mathbb{Z}, 2)] .
\end{aligned}
$$

