
ALGEBRAIC TOPOLOGY II: Alternative proofs.

1. Homotopy groups of products and wedges. (following [Hilton])

For products, we have (suppressing basepoints x0, y0 in the notation):

πn(X × Y ) ≈ πn(X)⊕ πn(Y ).

This is easy to see: we have injections (meaning: maps induced by inclusion)
iX : πn(X) → πn(X × Y ), iY : πn(Y ) → πn(X × Y ), which are in fact mono:
given g : (Dn, ∂Dn) → (X,x0), if iX [g]X = [(g, y0)](X×Y ) = 0, compose the
homotopy in the product with the projection pX : X × Y → X to conclude
[g]X = 0. So define a hom from πn(X × Y ) to the direct sum by:

ϕ : [f ] 7→ [g]X+[h]Y , if f : (Dn, ∂Dn)→ (X×Y, (x0, y0)), f(x) = (g(x), h(x)),

in other words, ϕ = pX ⊕ pY . Then ϕ is epi, since ϕ(iX [g]X + iY [h]Y ) =
[g]X + [h]Y . And it is also mono, since [g]X + [h]Y = 0 gives homotopies gt from
g to x0, ht from h to y0, and thus also (gt, ht) from f to (x0, y0).

Now consider X ∨ Y where X and Y have a single common point z0. We
regard this as a subspace of the product:

X ∨ Y ∼ X × {z0} ∪ {z0} × Y ⊂ X × Y.

Consider the injections (of based spaces and maps):

jX : πn(X)→ πn(X∨Y ), jY : πn(Y )→ πn(X∨Y ), k : πn(X∨Y )→ πn(X×Y ).

Then k ◦ jX = iX and k ◦ jY = iY , and since iX , iY are mono, so are jX , jY . In
general k is not mono. Consider also the hom:

τ : πn(X × Y )→ πn(X ∨ Y ), τ(α) = jXpX(α) + jY pY (α).

Note τ ◦ iX = jX , τ ◦ iY = jY , and also, for any α ∈ πn(X × Y ):

kτ(α) = k(iXpX)(α)+k(jY pY )(α) = (kjX)pX(α)+(kjY )pY (α) = iXpX(α)+iY pY (α) = α.

So τ is a right inverse to k, and thus k is epi, τ is mono, and τ embeds πn(X×Y )
into πn(X ∨ Y ):

τπn(X×Y ) = τiXπn(X)⊕τiY πn(Y ) = jXπn(X)⊕jY πn(Y ) ≈ πn(X)⊕πn(Y ).

We claim: πn(X ∨ Y ) = im(τ) ⊕ ker(k). Indeed the fact kτ = id shows these
subgroups intersect at {0}, and note any γ ∈ πn(X ∨ Y ) decomposes as:

γ = τk(γ) + (γ − (τk)(γ)) ∈ im(τ)⊕ ker(k).

We conclude:
πn(X ∨ Y ) ≈ πn(X)⊕ πn(Y )⊕ ker(k).
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To identify ker(k), consider the homotopy exact sequence for the pair (X ×
Y,X ∨ Y ):

. . .
µ−→ πn+1(X×Y,X∨Y )

∂−→ πn(X∨Y )
k−→ πn(X×Y )

µ−→ πn(X×Y,X∨Y )
∂−→ πn−1(X∨Y )→ . . .

We have: k is epi, so µ is the zero map and ker(∂) = im(µ) = 0, so ∂ is mono
and ker(k) = im(∂) ≈ πn+1(X × Y,X ∨ Y ). We conclude, finally;

πn(X ∨ Y ) ≈ πn(X)⊕ πn(Y )⊕ πn+1(X × Y,X ∨ Y ).

Example. Consider the wedge of two n-spheres, X = Sn1 ∨ Sn2 . With a
standard cell decomposition of Sn (one n-cell, one 0-cell), X has the product
cell decomposition: one 0-cell (the basepoint), two n-cells (which combined give
the decomposition of the wedge) and one 2n-cell. Thus the pair (X,Sn1 ∨ Sn2 )
is (n + 1)-connected, its relative homotopy group πn+1 vanishes and we have:
πn(X) ≈ πn(Sn1 )⊕ πn(Sn2 ) ≈ Z2.

A similar reasoning applies to give for πn(X) ≈ ZN , if X is a ‘bouquet’(!)
of N n-spheres. (Since its cell decomposition only has cells with dimensions a
multiple of n.)

2. Freudenthal suspension theorem.

Denote by S : πq(S
n) → πq+1(Sn+1) the suspension homomorphism. (In

the sphere case, S[f ] is represented by any extension of f : Sq → Sn–regarded
as the equators of Sq+1, Sn+1– to a map Sq+1 → Sn+1 preserving meridians.)
Note that in the theorem the equatorial Sq, Sn are chosen once and for all.

Theorem: The suspension hom S is an epimorphism if n ≤ q ≤ 2n − 1, an
isomorphism if n ≤ q < 2n− 1.

Remark: More generally, the suspension hom S : πq(X) → πq+1(S(X)) is
epi (resp. iso) in the same range of dimensions, if X is an (n − 1)-connected
CW complex.

Proof (outline) We present essentially the geometric proof described in [Fomenko-
Fuchs, p. 121], where you’ll find all the helpful pictures. By approximation
within the same homotopy class, we may assume the maps and homotopies that
occur are smooth, which simplifies things a bit. The proof is based on the geo-
metric fact that, in this range of dimensions, preimages of points are unlinked
submanifolds.

Recall two compact, embedded, disjoint submanifolds P,Q ⊂ RN are un-
linked if one may find an isotopy of Rn (for example an orientation-preserving
isometry) ϕ so that ϕ(P ) and Q can be separated by a hyperplane. For in-
stance, it is easy to draw linked embeddings of S1 in R3. More simply, two
Jordan curves in the plane, one inside the other (or a point inside a Jordan
curve) are linked (=not unlinked), but become unlinked as submanifolds of R3.
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The following is well-known: two compact embedded disjoint submanifolds
P,Q ⊂ RN are unlinked if dim(P ) + dim(Q) < N − 1. To see this, consider the
embeddings f : P → RN , g : Q→ RN and the smooth map F : P ×Q→ SN−1

obtained by normalizing the vector f(p) − g(q). Let n0 ∈ SN−1 be a regular
value of F . Due to the dimension condition, this can only mean F−1(n0) = ∅.
Hence no line in RN with direction vector n0 meets both P and Q. Now move
P by a translation ϕ with direction n0 sufficiently far (never meeting Q), so
that some hyperplane H normal to n0 will have ϕ(P ) and Q on opposite sides.
(In general, the linking number of two disjoint, embedded compact oriented
submanifolds P,Q ⊂ RN with dim(P ) + dim(Q) = N − 1 may be defined
(following Gauss) as the degree of this map F .)

The suspension homomorphism is surjective if n ≤ q ≤ 2n− 1. This means:
given f : Sq+1 → Sn+1, we may deform f by successive homotopies and find a
map g : Sq → Sn so that f ' Sg (for the new f). Model Sq+1 = Rq+1 ∪ {∞},
and let N,S be the north and south poles of Sn+1. We may assume N,S are
regular values of f (and that f(∞) 6∈ {N,S}), so their preimages are disjoint
submanifolds P,Q ⊂ Rq+1 (maybe disconnected), both of dimension q − n.
Select also neighborhoods U, V of N,S, whose preimages are neighborhoods
U1, V1 of P,Q.

Now, the dimension condition implies dim(P )+dim(Q) = 2(q−n) < q, hence
P,Q are unlinked, and we may find an isotopy ϕ of Sq+1 so that P,Q are in
opposite hemispheres (relative to some equator), and furthermore (by shrinking
U, V if needed) so that each of U1, V1 is contained in the same hemisphere as
the new P,Q (resp.) Now find a rotation (element of SO(q + 1)) that moves
this equator to the original one, Sq ⊂ Sq+1, so that U1, V1 are now contained in
the northern (resp. southern) hemisphere of Sq+1, and map (by the new f) to
U, V ⊂ Sn+1 (resp.)

From this point on the proof of surjectivity proceeds as in [F-F].

The suspension homomorphism is injective if n ≤ q < 2n − 1. This means:
given f, g : Sq → Sn, if Sf ' Sg we have f ' g. Naturally, if ht : Sq+1 → Sn+1

is a homotopy from Sf to Sg, we seek to deform ht to a homotopy of the form
S(ft), where ft is a homotopy from f to g. Thinking of the ht as H : Sq+1×I →
Sn+1, we seek to deform H to another homotopy H1 : Sq+1 × I → Sn+1, which
on each fiber t = const is the suspension of a map Sq → Sn. As before we
assume N,S are regular values of H and consider their preimages P,Q under
H, each a submanifold of Rq+1 × R = Rq+2 of dimension q − n + 1. And now
the unlinking criterion (with separation by a fixed hyperplane in Rq+2) is:

2(q − n+ 1) < q + 2− 1, or q < 2n− 1.

From this point on, the proof of injectivity proceeds as in [F-F].

Remark: The kernel of the suspension map S : π2n−1(Sn)→ π2n(Sn+1) can
be described in terms of the Whitehead product (see [F=F, p.127 ff.):

α ∈ πm(X,x0), β ∈ πn(X,x0) 7→ [α, β] ∈ πm+n−1(X,x0).
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The kernel is the cyclic group generated by [In, In] ∈ π2n−1(Sn), where In ∈
πn(Sn) is the homotopy class of the identity map.

3. Proof of the Hurewicz theorem.

Hurewicz Theorem. Let X be a connected CW complex. Assume X is
(n− 1)-connected, where n ≥ 1 (πp(X) = 0, p = 1, . . . , n− 1.) Then H̃p(X) = 0
for p = 1, . . . , n − 1 (reduced homology) and the Hurewicz homomorphism h :
πn(X)→ H̃n(X) is an isomorphism.

Proof. (Based on cellular homology.)

1. Reduction. Using (n− 1)-connectivity, we may replace X by a homotopi-
cally equivalent complex with a single 0-cell x0 and no other cells of dimension
< n; that is, the (n − 1) skeleton Xn−1 = {x0}. This already implies (via
cellular homology) the reduced homology vanishes in dimensions 0, . . . , n− 1.

Additionally, note that πn(X) depends only on the (n + 1)-skeleton (by
cellular approximation of maps) and likewise for H̃n(X) (by cellular homology).
So we might as well assume X = Xn+1–there are no cells of dimension > n+1–
and we do.

This reduces the proof to the following special situation:

Xn =
∨
k∈K

Snk , X = Xn tl∈L en+1
l .

That is, the n-skeleton is a wedge of n-spheres and X is obtained from it by
attaching (n + 1)-cells en+1

l , via attaching maps ϕl : Sn → Xn (with corre-
sponding characteristic maps Φl : Dn+1 → X, restricting to ϕl on ∂Dn+1).

In this particular case, πn is easy to describe: it is the quotient of the
free abelian group πn(Xn) ≈

⊕
k∈K πn(Snk ) on K generators (represented by

ik∗[idn], where [idn] ∈ πn(Sn) is the class of the identity map of Sn and ik :
Sn → Xn is the inclusion map of the kth sphere of the wedge) by the subgroup
of πn(Xn) generated by the attachment maps ϕl : Sn → Xn of the (n+1)-cells:

πn(X) = πn(Xn)/〈[ϕl]Xn ; l ∈ L}〉

(See Example 4.29 in [Hatcher], which unfortunately ultimately relies on
the ‘homotopy excision theorem’. Alternatively, use the ‘homotopy addition
theorem’, as described in sections 11.1, 11.2, 11.3 of [Fomenko-Fuchs].)

2. Reminder of cellular homology facts. To understand the homology side
of things, we appeal to cellular homology. Recall the cellular chain complex
(Cn(X), dn)n≥0 of a CW complex is given (in terms of singular homology) by:

Cn(X) = Hn(Xn, Xn−1), dn = j∗◦∂n : Cn(X)→ Cn−1(X) = Hn−1(Xn−1, Xn−2),
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where ∂n : Hn(Xn, Xn−1)→ Hn−1(Xn−1) is the connection homomorphism of
the homology exact sequence of the pair (Xn, Xn−1) and j∗ : Hn−1(Xn−1) →
Hn−1(Xn−1, Xn−2) is induced by inclusion of pairs. Recall Cn(X) is free
abelian, with generators in bijective correspondence with the set of n-cells of X.

In our case, Xn−1 = {x0}, so Hn(Xn, Xn−1) = H̃(Xn), and we may identify
j∗ with the identity in H̃n(Xn) and dn+1 with ∂n+1 : Cn+1(X)→ H̃n(X) (since
n ≥ 2, homology and reduced homology coincide in these dimensions.) Also,
since Cn−1(X) = 0 all chains in Cn(X) are cycles, and thus:

Hcell
n (X) = Cn(X)/im(dn+1).

(And Hcell
n (X) ≈ Hn(X).)

3. The Hurewicz map of a wedge of spheres of the same dimension. Here we
consider h : πn(Xn)→ H̃n(Xn) = H̃n(X). Note that Cn+1(Xn) = 0, since Xn

is a wedge of n-spheres and has no (n+ 1)-cells. So we have:

h : πn(Xn)→ Cn(Xn) = H̃n(Xn) ≈
⊕
k∈K

H̃n(Snk ),

(reduced singular homology on the right) where both groups are isomorphic to
⊕KZ.

As we recalled above, πn(Xn) has a basis {ik∗ [idn] = [ik]Xn}k∈K , where
ik : Sn → Xn is inclusion as the kth sphere. What is the image of the kth

basis element under h? By definition, it is (ik)#(sn) ∈ H̃n(Xn) (induced hom
in homology), where sn ∈ Hn(Sn) is a fixed generator:

h([ik]Xn) = (ik)#(sn).

Note (ik)# : H̃n(Sn) → H̃n(Xn) is inclusion of the kth summand into a direct

sum. Hence (ik)#(sn) is a basis element of H̃n(Xn).This shows the map h :

πn(Xn)→ H̃n(Xn) is an isomorphism, which of course is the Hurewicz theorem
for a wedge of n-spheres.

4. Conclusion of the proof. Given the above descriptions of πn(X) and
H̃n(X) as quotient groups, all that is left to show is that the Hurewicz ho-
momorphism h satisfies the mapping condition of subgroups (of πn(X) and
H̃n(X)):

h(〈[ϕl]Xn ; l ∈ L〉) = im(dn+1),

where on the left we have the subgroup of πn(X) generated by attachment maps
ϕl : Sn → Xn of the cells en+1

l , and on the right the image of the connection

homomorphism dn+1 = j∗∂n+1 : Cn+1(X) = Hn+1(Xn+1, Xn) → H̃n(Xn) =
Cn(X) (composition of a connecting hom ∂n+1 in an exact sequence of pairs
and an injection operator j∗ : Hn(Xn)→ Hn(Xn, Xn−1) ≈ H̃n(Xn) = Cn(X)).

Note that the attaching map ϕl of en+1
l extends to the characteristic map

Φl : (Dn+1, Sn) → (X,Xn) = (Xn+1, Xn), inducing in homology the hom
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(Φl)# : Hn+1(Dn+1, Sn) → Hn+1(Xn+1, Xn) = Cn+1(X). By naturality of
connection homomorphisms, we have the commutative diagram:

Hn+1(Dn+1, Sn) Hn(Sn)

Cn+1(X) Cn(X)

∂n+1

Φl# ϕl#

∂n+1

Note ∂n+1 (top row) is an isomorphism, and (∂n+1)−1maps the generator
sn of Hn(Sn) used to define h to a generator rn+1 of the infinite cyclic abelian
group Hn+1(Dn+1, Sn). Commutativity of the diagram implies:

h([ϕl]X) = (ϕl)#(sn) = ∂n+1(Φl)#(rn+1),

and therefore h([ϕl]X) ∈ im(dn+1), since we’re identifying ∂n+1 (with image in
Hn(Xn)) and dn+1 (with image in H̃n(Xn) ≈ Cn(X)).

Now recall Cn+1(X) = Hn+1(Xn+1, Xn), and since (Xn+1, Xn) is a CW
pair, we haveHn+1(Xn+1, Xn) ≈ H̃n+1(Xn+1/Xn), whileXn+1/Xn =

∨
l∈L S

n+1
l ,

a wedge of spheres with H̃n+1 given by the direct sum of individual H̃n+1’s.
Thus the (Φl)#(rn+1) form a basis of Cn+1(X), and we have in fact established
the equality of the subgroups h(〈[ϕl]Xn ; l ∈ L〉) and im(dn+1), concluding the
proof.

Sources: This proof follows the idea outlined in [Hatcher, section 4.2], which
emphasizes the relative case, but I’ve included more detail. The main reason
to choose a proof based on cellular homology is that it ties in with the exis-
tence/uniqueness (up to homotopy type) of Eilenberg-MacLane spaces.

A reasonably concise and understandable proof based on simplicial homology
is found in S-T Hu, Homotopy Theory (1959), Theorem 4.4 (Chapter V, section
4).

Classification of vector bundles.

1. Vector bundle morphisms and isomorphism.
Let ξ, η be k, l-vector bundles over base spaces B(ξ), B(η). A vector bundle

morphism is a pair (u, f) of continuous maps, where u : E(ξ)→ E(η) preserves
fibers and is linear in each fiber, and f : B(ξ) → B(η) is the induced map of
base spaces.

If ξ, η have the same base space B, u is a linear isomorphism on fibers (so
k = l) and the induced map f = idB , we say ξ and η are (strongly) isomorphic
(Notation: ξ ≈ η). It is easy to show [M-S Lemma 3.1] this implies u : E(ξ)→
E(η) is a homeomorphism.

Let f : B → X, η a k-vector bundle over X. Recall the pullback f∗η has
total space and projection:

E(f∗η) = {(b, v) ∈ B × E(η); f(b) = pη(v) ∈ X}, p(b, v) = b.

We have the following easy but useful fact:
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Proposition. Suppose (u, f) : ξ → η is a vector bundle morphism and an
isomorphism on each fiber. Then ξ ≈ f∗η (as vector bundles over B.)

For the proof we define h : E(ξ) → E(f∗η) via: h(e) = (pξ(e), u(e)) (note
pη(u(e)) = f(pξ(e)), so this makes sense.) Then h is continuous and maps each
fiber Vb(ξ) isomorphically onto Vb(f

∗η) (since on each fiber Vb(ξ), h coincides
with u.)

2. Canonical and universal k-vector bundles.

We denote by γnk the canonical k-plane bundle over the real Grassmannian
Gk(Rn) (n ≥ k), with total space and projection:

E(γnk ) = {(X, v) ∈ Gk(Rn)×Rn; v ∈ X.}, p(X, v) = X.}

The universal k-vector bundle γk has as base space the Gk(R∞), the infinite
increasing union of the Gk(Rn), an inifnite-dimensional CW complex given the
‘weak topology’, with total space:

E(γk) = {(X, v) ∈ Gk(R∞)×R∞; v ∈ X}, p(X, v) = X.

Note E(γk) is the infinite increasing union of the E(γnk ), with compatible pro-
jection maps.

The canonical bundle γnk over Gk(Rn) is associated with an equally canonical
(n− k)-vector bundle over the same base, its orthogonal complement γn⊥k , with
total space and projection:

E(γm⊥k ) = {(X, v) ∈ Gk(Rn)×Rn; v ∈ X⊥}, q(X, v) = X.

Note that their Whitney sum is the trivial n-bundle over Gk(Rn):

γnk ⊕ γn⊥k = εn := Gk(Rn)×Rn.

This implies that if ξ is a k-vector bundle over B and ξ ≈ f∗γnk , for some n and
some f : B → Gk(Rn), then ξ admits a ‘complement’, a n− k-vector bundle η
over B so that:

ξ ⊕ η ≈ εnB := B ×Rn,

the trivial n-bundle over B. (Just let η = f∗(γn⊥k ).)

3. Existence theorem.
Theorem 1. Let ξ be a k-plane bundle over a compact manifold B. Then

there exists n and f : B → Gk(Rn) so that ξ ≈ f∗γnk .

Proof. See [M-S, Lemma 5.3] (extended to paracompact base spaces in The-
orem 5.6, with maps to Gk(R∞).) In the compact case, we have an open cover
of B by finitely many (say N) open sets, over each of which ξ is trivial. The
proof gives a map B → Gk(RkN ), using partitions of unity in the same way
as the proof that (compact) manifolds embed in euclidean spaces of sufficiently
large dimension.
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4. Homotopy implies isomorphism.

Theorem 2. Suppose f0, f1 : B → Gk(Rn) are homotopic maps (B compact.)
Then the pullback bundles are isomorphic: f∗0 γ

n
k ≈ f∗1 γnk .

Proof. (Adapted from [Benedetti, p. 100].) Consider the simple linear
algebra fact: suppose we have two direct sum decompositions

Rn = V ′ ⊕ V = V ′′ ⊕ V.

Then we have a canonical isomorphism φ : V ′ → V ′′, φ(v′) = v′′ where v′ =
v′′ + v (unique decomposition.)

Let F : B × [0, 1] → Gk(Rn) be the homotopy from f0 to f1, and consider
F ∗(γnk ), a k-vector bundle over B × [0, 1]. Denote by Vp,t its fiber over (p, t),
a k-dimensional subspace of Rn depending continuously on (p, t). Observe the
following. For any given t ∈ [0, 1], we have:

Vp,t ∩ V ⊥p,0 = {0},∀p ∈ B ⇔ Rn = Vp,t ⊕ V ⊥p,0,∀p ∈ B ⇔ f∗t (γnk ) ≈ f∗0 (γnk ).

Indeed it suffices to consider that the linear algebra fact implies the existence
of a continuous field of linear isomorphisms:

φp : Vp,t → Vp,0, p ∈ B,

that is, of a bundle isomorphism φ : f∗t (γnk ) ≈ f∗0 (γnk ). Clearly the set of t ∈ [0, 1]
such that Vp,t∩V ⊥p,0 = {0},∀p ∈ B is open in [0,1]. (This condition is equivalent

to the orthogonal projection in Rn mapping V ⊥p,t isomorphically onto V ⊥p,0.)

Claim. ∃ε > 0 such that ∀0 ≤ t ≤ ε,∀p ∈ B, Vp,t ⊕ V ⊥p,0 = Rn.
Proof. Otherwise we have a sequence (pn, tn) → (p0, 0) in B × [0, 1], such

that dim(Vpn,tn ∩ V ⊥p0,0) > 0, which in the limit gives dim(Vp0,0 ∩ V ⊥p0,0) > 0,
contradiction.

Thus if we consider the set:

G = {ε ∈ [0, t];Vp,t∩V ⊥p,0 = {0},∀p ∈ B, ∀0 ≤ t ≤ ε} = {t ∈ [0, 1]; f∗t γ
n
k ≈ f∗0 γnk ,∀0 ≤ t ≤ ε},

we see that G is a an interval [0, ε0), open on the right unless ε0 = supG = 1.

But in fact ε0 ∈ G: let tm ∈ G, tm ↑ ε0. Since Rn = Vpε0 ⊕ V ⊥pε0∀p, we have

Vptm ∩Vε0p = {0}⊥∀p for m sufficiently large (due to openness of the condition),
hence f∗tmγ

n
k ≈ f∗ε0γ

n
k for m large, and since tm ∈ G also f∗0 γ

n
k ≈ f∗ε0γ

n
k , so

ε0 ∈ G. This implies ε0 = 1, or f∗0 γ
n
k ≈ f∗1 γnk , as we wished to show.

5. Gauss maps. [Husemoller p.31.] Definition: a Gauss map to Rm for
a k-vector bundle ξ is a continuous map g : E(ξ) → Rm which is a linear
monomorphism on each fiber of ξ (so m ≥ k.)

For example, q : E(γnk ) → Rn, q(X, v) = v is a Gauss map. If (u, f) :
ξk → γnk is a bundle morphism which is isomorphic on fibers, the composition
q ◦ u : E(ξ)→ Rn is a Gauss map.
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Conversely, if ξ is a k-vector bundle p : E(ξ) → B and g : E(ξ) → Rm is
a Gauss map for ξ, there exists a bundle morphism (u, f) : ξ → γmk such that
q ◦ u = g.

To see this, for b ∈ B let f(b) = g(p−1b), the image under g of the fiber of ξ
over b, a k-dimensional subspace of Rm and hence a point of Gk(Rm); and for
e ∈ E(ξ), let u(e) = (f(p(e)), g(e)) ∈ E(γmk ). Using local trivializations, one
sees that u and f are continuous and u is isomorphic on fibers. Thus we have
the following simple but useful observation, for an arbitrary k-vector bundle
ξ(E, p,B):

[∃f : B → Gk(Rm), ξ ≈ f∗(γmk )]⇔ [∃g : E → Rm Gauss map].

In particular, it follows from Theorem 1 that any vector bundle over a compact
(or paracompact) base admits a Gauss map.

6. The even-odd trick. [Husemoller p. 33, M-S p. 67, Thm 5.7]

To finish the classification theorem, it remains to prove that isomorphism
implies homotopy: if f0, f1 : B → Gk(Rn) yield isomorphic vector bundles under
pullback: f∗0 γ

n
k ≈ f∗1 γ

n
k , then they are homotopic: f0 ' f1 as maps to Gk(Rn)

(that is, with the homotopy taking values in Gk(Rn)). Unfortunately this is not
what is proved, and here is the problem: say f∗0 γ

n
k ≈ f∗1 γnk ≈ ξ a k-vector bundle

over B, the isomorphisms being given by u0, u1 : E(ξ)→ E(γnk ), inducing f0, f1.
It would be enough to produce a homotopy between the corresponding Gauss
maps g0 = q ◦ u0, g1 = q ◦ u1, an easier problem since we may try the linear
homotopy in Rn:

gt(e) = (1− t)g0(e) + tg1(e) ∈ Rn, e ∈ E(ξ), t ∈ [0, 1].

Unfortunately there is no way to guarantee this always gives a nonzero vector
if e 6= 0; that is, that each gt is itself a Gauss map.

Thus a tricky detour is necessary, which in the end results in a homotopy
from f0 to f1, but taking values in Gk(R2n), not Gk(Rn).

Consider the ‘even and odd subspaces’ of R∞:

Rev = {x ∈ R∞;x2i+1 = 0∀i ≥ 0}; Rod = {x ∈ R∞;x2i = 0∀i ≥ 0}.

For each t ∈ [0, 1], consider the linear embeddings:

ket : Rn → R2n, kot : Rn → R2n :

ket (x0, x1, . . . , xn−1) = (1−t)(x0, x1, . . . , xn−1, 0, . . . , 0)+t(x0, 0, x1, 0, . . . , xn−1, 0).

kot (x0, x1, . . . , xn−1) = (1−t)(x0, x1, . . . , xn−1, 0, . . . , 0)+t(0, x0, 0, x1, . . . , 0, xn−1).

We see that each ket , k
o
t (t ∈ [0, 1]) is a linear embedding and:

(1) ke0 = ko0 is the standard inclusion Rn → R2n (set the last n coordinates
equal to 0).
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(2) ke1(Rn) = R2n ∩Rev, k0
1(Rn) = R2n ∩Rodd.

(3) Denote by qn : E(γnk ) → Rn, q2n : E(γ2n
k ) → R2n the canonical Gauss

maps. Then ke1 ◦ qn, ko1 ◦ qn are Gauss maps for γnk , taking values in R2n. Thus,
as seen above, there exist vector bundle morphisms (injective on fibers):

(ue, fe) : γnk → γ2n
k , (uo, fo) : γnk → γ2n

k ,

such that:
ke1 ◦ qn = q2n ◦ ue, ko1 ◦ qn = q2n ◦ uo.

(4) fe, fo : Gk(Rn) → Gk(R2n) are homotopic to the standard inclusion
maps j : Gk(Rn)→ Gk(R2n). Namely,

X 7→ ket (X) ∈ Gk(R2n), X ∈ Gk(Rn) joins j at t = 0 tofe at t = 1;

X 7→ kot (X) ∈ Gk(R2n), X ∈ Gk(Rn) joins j at t = 0 tofo at t = 1.

7. From isomorphism to homotopy.

Theorem 3. Let f0, f1 : B → Gk(Rn) such that f∗0 (γnk ) ≈ f∗1 (γnk ). Then
j ◦ f0 ' j ◦ f1 (homotopic), where j : Gk(Rn) → Gk(R2n) is the standard
inclusion.

Proof. (cp. [Husemoller, p. 35].) By hypothesis there exists a k-vector
bundle ξ over B and bundle morphisms (isomorphic on fibers):

(u0, f0) : ξ → γnk , (u1, f1) : ξ → γnk

and Gauss maps:

h0 = qn ◦ u0 : E(ξ)→ Rn, h1 = qn ◦ u1 : E(ξ)→ Rn.

Composing with the maps obtained in the previous subsection, we have:

(ue ◦ u0, f
e ◦ f0) : ξ → γ2n

k with Gauss map ke1 ◦ h0 : E(ξ)→ R2n ∩Rev,

(uo ◦ u1, f
o ◦ f1) : ξ → γ2n

k with Gauss map ko1 ◦ h1 : E(ξ)→ R2n ∩Rodd.

Define the map ht : E(ξ)→ R2n, t ∈ [0, 1]:

ht(e) = (1− t)(ke1 ◦ h0)(e) + t(ko1 ◦ h1)(e), e ∈ E(ξ).

Then ht is a Gauss map for ξ, for each t: in each fiber Vb(ξ), k
e
1 ◦ h0 : Vb(ξ)→

Rev, ke1 ◦ h1 : Vb(ξ)→ Rodd are both injective, taking values in subspaces inter-
secting only at 0; thus ht is also injective.

This implies there exists a continuous one-parameter family of bundle mor-
phisms:

(wt, φt) : ξ → γ2n
k ,
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where φt : B → Gk(R2n) is a homotopy fe ◦ f0 ' fo ◦ f1.
Now recall (from point (4) above): j ◦ f0 ' fe ◦ f0, j ◦ f1 ' fo ◦ f1. Thus

j ◦ f0 ' j ◦ f1, as we wished to show.

8. Summary. Theorems 1,2,3 may be summarized as the classification the-
orem:

Any real k-vector bundle ξ over a compact (or paracompact) base space B
is the pullback f∗(γnk ) under a map f : B → Gk(Rn), for some n. Homotopic
maps B → Gk(Rn) induce isomorphic bundles; conversely, if f∗γnk ≈ g∗γnk , then
f is homotopic to g (as maps to Gk(R2n)). In symbols, the pullback of γk over
Gk(R∞) establishes a bijection:

V ectk(B)↔ [B,Gk(R∞)].

(Isomorphism classes of k-vector bundles over B on the left, homotopy classes
of maps on the right.)

The same is true for complex vector bundles:

V ectCk (B)↔ [B,Gk(C∞)].

In particular for line bundles:

V ect1(B)↔ [B,RP (∞))] = [B,K(Z2, 1)].

V ectC1 (B)↔ [B,CP (∞)] = [B,K(Z, 2)].
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