ALGEBRAIC TOPOLOGY II: Alternative proofs.

1. Homotopy groups of products and wedges. (following [Hilton)])

For products, we have (suppressing basepoints g, yo in the notation):
Tn(X X Y) & mp(X) @ mp (V).

This is easy to see: we have injections (meaning: maps induced by inclusion)
ix (X)) = m(X X Y),iy : mp(Y) = m (X x Y), which are in fact mono:
given g : (D™,0D") — (X, x0), if ix[g]lx = [(9,%0)](xxy) = 0, compose the
homotopy in the product with the projection px : X x Y — X to conclude
[9]x = 0. So define a hom from 7, (X x Y') to the direct sum by:

@ [f1= lglx+hly, if f: (D",0D") = (XXY, (z0,%0)), [f(x) = (9(x), h(x)),

in other words, ¢ = px @ py. Then ¢ is epi, since p(ix[g]x + iv[h]y) =
[9]x + [h]y. And it is also mono, since [g]x + [h]y = 0 gives homotopies ¢; from
g to xg, ht from h to yo, and thus also (g4, hy) from f to (xo,yo).

Now consider X VY where X and Y have a single common point z5. We
regard this as a subspace of the product:

XVY ~X x{ztU{z}xY CXxY.
Consider the injections (of based spaces and maps):
Jx (X)) = m(XVY), gy i (Y) = m(XVY), k:m(XVY) — 1, (X XY).

Then ko jx =ix and ko jy = iy, and since ix, 7y are mono, so are jx,jy. In
general k is not mono. Consider also the hom:

T:m (X xY) > m(XVY), 7(a)=jxpx(a)+ jypy(a).
Note T oix = jx,T o iy = jy, and also, for any o € 7, (X x Y):
kt(a) = k(ixpx)(a)+k(jypy)(a) = (kjx)px (a)+(kjy)py (@) = ixpx (o) +iypy () = a.

So 7 is a right inverse to k, and thus k& is epi, 7 is mono, and 7 embeds 7, (X xY")
into m, (X VY):

T (X XY) = 7ixm (X)) ®7iy o (V) = jx 70 (X) ®jymn (V) = 71, (X) @7, (V).

We claim: 7, (X VY) = im(7) @ ker(k). Indeed the fact kT = id shows these
subgroups intersect at {0}, and note any v € 7, (X VY) decomposes as:

v =1k(Y) + (v = (Tk) (7)) € im(7) @ ker(k).

We conclude:
Tn(XVY) =71, (X) ® 1, (V) ® ker(k).



To identify ker(k), consider the homotopy exact sequence for the pair (X x
Y, XVY):
H 0 k H 0
coe 2 T 1 (X XY, XVY) S 1 (XVY) = 1 (X XY) — mp (X XY, XVY) = 11 (XVY) — L
We have: k is epi, so u is the zero map and ker(9) = im(u) = 0, so d is mono
and ker(k) = im(0) =~ mp11(X X Y, X VY). We conclude, finally;

Tn(XVY)mmp(X) @ m (V)@ m1 (X x Y, X VY).

Example. Consider the wedge of two n-spheres, X = ST Vv S§. With a
standard cell decomposition of S™ (one n-cell, one 0-cell), X has the product
cell decomposition: one 0-cell (the basepoint), two n-cells (which combined give
the decomposition of the wedge) and one 2n-cell. Thus the pair (X, ST V ST)
is (n + 1)-connected, its relative homotopy group 7,11 vanishes and we have:
70 (X) = 7, (ST) ® 7, (SH) = Z2.

A similar reasoning applies to give for m,(X) ~ Z~, if X is a ‘bouquet’(!)
of N n-spheres. (Since its cell decomposition only has cells with dimensions a
multiple of n.)

2. Freudenthal suspension theorem.

Denote by S : m,(S™) — m,41(S™"1) the suspension homomorphism. (In
the sphere case, S[f] is represented by any extension of f : S — S™-regarded
as the equators of S9t1 STl to a map S9!t — S"*H! preserving meridians.)
Note that in the theorem the equatorial S, S™ are chosen once and for all.

Theorem: The suspension hom S is an epimorphism if n < ¢ < 2n — 1, an
isomorphism if n < ¢ < 2n — 1.

Remark: More generally, the suspension hom S : my(X) — mg41(S(X)) is
epi (resp. iso) in the same range of dimensions, if X is an (n — 1)-connected
CW complex.

Proof (outline) We present essentially the geometric proof described in [Fomenko-
Fuchs, p. 121], where you’ll find all the helpful pictures. By approximation
within the same homotopy class, we may assume the maps and homotopies that
occur are smooth, which simplifies things a bit. The proof is based on the geo-
metric fact that, in this range of dimensions, preimages of points are unlinked
submanifolds.

Recall two compact, embedded, disjoint submanifolds P,Q C RY are un-
linked if one may find an isotopy of R™ (for example an orientation-preserving
isometry) ¢ so that ¢(P) and @ can be separated by a hyperplane. For in-
stance, it is easy to draw linked embeddings of S! in R3. More simply, two
Jordan curves in the plane, one inside the other (or a point inside a Jordan
curve) are linked (=not unlinked), but become unlinked as submanifolds of R3.



The following is well-known: two compact embedded disjoint submanifolds
P,Q C RY are unlinked if dim(P) + dim(Q) < N — 1. To see this, consider the
embeddings f: P — RY,g:Q — R" and the smooth map F: P x Q — SN—1
obtained by normalizing the vector f(p) — g(q). Let ng € S¥~! be a regular
value of F. Due to the dimension condition, this can only mean F~1(ng) = ().
Hence no line in RN with direction vector ng meets both P and ). Now move
P by a translation ¢ with direction ng sufficiently far (never meeting @), so
that some hyperplane H normal to ng will have ¢(P) and @ on opposite sides.
(In general, the linking number of two disjoint, embedded compact oriented
submanifolds P,Q C RY with dim(P) + dim(Q) = N — 1 may be defined
(following Gauss) as the degree of this map F'.)

The suspension homomorphism is surjective if n < g < 2n — 1. This means:
given f : S9! — S"*t1 we may deform f by successive homotopies and find a
map g : S — S™ so that f ~ Sg (for the new f). Model S7*! = R+ U {0},
and let N, S be the north and south poles of S"*!. We may assume N, S are
regular values of f (and that f(oco) € {N, S}), so their preimages are disjoint
submanifolds P,Q C R?*! (maybe disconnected), both of dimension ¢ — n.
Select also neighborhoods U,V of N,S, whose preimages are neighborhoods
Ul, Vl of P, Q

Now, the dimension condition implies dim(P)+dim(Q) = 2(¢—n) < g, hence
P,Q are unlinked, and we may find an isotopy ¢ of S9t! so that P,Q are in
opposite hemispheres (relative to some equator), and furthermore (by shrinking
U,V if needed) so that each of Uy, V; is contained in the same hemisphere as
the new P,Q (resp.) Now find a rotation (element of SO(g + 1)) that moves
this equator to the original one, S C S9!, so that Uy, Vi are now contained in
the northern (resp. southern) hemisphere of S9t1, and map (by the new f) to
U,V .C S" (resp.)

From this point on the proof of surjectivity proceeds as in [F-F].

The suspension homomorphism is injective if n < ¢ < 2n — 1. This means:
given f,g: 8% — S™ if Sf ~ Sg we have f ~ g. Naturally, if h; : STt — §+!
is a homotopy from Sf to Sg, we seek to deform h; to a homotopy of the form
S(f:), where f; is a homotopy from f to g. Thinking of the h; as H : ST x T —
S™HL we seek to deform H to another homotopy Hy : S9! x I — S™*! which
on each fiber t = const is the suspension of a map S9 — S™. As before we
assume NN, S are regular values of H and consider their preimages P, under
H, each a submanifold of RIt! x R = RI%2 of dimension ¢ — n + 1. And now
the unlinking criterion (with separation by a fized hyperplane in R%+?) is:

20g—n+1)<g+2—-1,0org<2n—1.
From this point on, the proof of injectivity proceeds as in [F-F].

Remark: The kernel of the suspension map S : ma,,—1(S™) — T2, (S™T1) can
be described in terms of the Whitehead product (see [F=F, p.127 ff.):

ac 7Tm()(a .730),,6 S 7Tn(X7 xO) — [Oé,ﬁ] S 7Tm+n—1(Xa $0)~



The kernel is the cyclic group generated by [I,, I,,] € map—1(S™), where I,, €
7 (S™) is the homotopy class of the identity map.

3. Proof of the Hurewicz theorem.

Hurewicz Theorem. Let X be a connected CW complex. Assume X is
(n — 1)-connected, where n > 1 (m,(X) =0,p=1,...,n— 1.) Then H,(X) =0
forp=1,...,n — 1 (reduced homology) and the Hurewicz homomorphism h :
Tn(X) = H,(X) is an isomorphism.

Proof. (Based on cellular homology.)

1. Reduction. Using (n — 1)-connectivity, we may replace X by a homotopi-
cally equivalent complex with a single 0-cell zy and no other cells of dimension
< n; that is, the (n — 1) skeleton X"~! = {x¢}. This already implies (via
cellular homology) the reduced homology vanishes in dimensions 0, ...,n — 1.

Additionally, note that m,(X) depends only on the (n + 1)-skeleton (by
cellular approximation of maps) and likewise for H,,(X) (by cellular homology).
So we might as well assume X = X"*+!-there are no cells of dimension > n+1-
and we do.

This reduces the proof to the following special situation:

X" = \/ SP X = X" Uep et
keK

That is, the n-skeleton is a wedge of n-spheres and X is obtained from it by
attaching (n + 1)-cells e]'*!, via attaching maps ¢; : S® — X™ (with corre-
sponding characteristic maps ®; : D"t! — X restricting to ¢; on 9D"T1).

In this particular case, m, is easy to describe: it is the quotient of the
free abelian group 7,(X") ~ @, cx ™ (Sy) on K generators (represented by
ik«[idy], where [id,] € m,(S™) is the class of the identity map of S™ and iy :
S™ — X™ is the inclusion map of the k" sphere of the wedge) by the subgroup
of m,(X™) generated by the attachment maps ¢; : S™ — X" of the (n+1)-cells:

Tn(X) =m0 (X")/([0t] xn; 1 € L})

(See Example 4.29 in [Hatcher], which unfortunately ultimately relies on
the ‘homotopy excision theorem’. Alternatively, use the ‘homotopy addition
theorem’; as described in sections 11.1, 11.2, 11.3 of [Fomenko-Fuchs].)

2. Reminder of cellular homology facts. To understand the homology side
of things, we appeal to cellular homology. Recall the cellular chain complex
(Cn(X),dn)n>0 of a CW complex is given (in terms of singular homology) by:

Cn(X) = H (X", X" Y, dy = 5,00, : Cp(X) = Cp_1(X) = Hy_ 1 (X" X772,



where 0, : H,(X™, X" 1) — H,,_1(X""!) is the connection homomorphism of
the homology exact sequence of the pair (X", X"~ 1) and j, : H,_1(X""1) —
H,_1(X" 1, X"2) is induced by inclusion of pairs. Recall C,(X) is free
abelian, with generators in bijective correspondence with the set of n-cells of X.

In our case, X" ! = {zg}, so H, (X", X"~ 1) = H(X™), and we may identify
j» with the identity in H,(X™) and d,, 41 with 9,41 : Cpy1(X) — H,(X) (since
n > 2, homology and reduced homology coincide in these dimensions.) Also,
since Cp,_1(X) = 0 all chains in C,,(X) are cycles, and thus:

HEM(X) = Co(X) /im(dp1).
(And HN(X) ~ H,(X).)

3. The Hurewicz map of a wedge of spheres of the same dimension. Here we
consider h : m,(X™) — H,(X™) = H,(X). Note that Cp,11(X™) = 0, since X"
is a wedge of n-spheres and has no (n + 1)-cells. So we have:

h:m(X™) = Co(X™) = Hoy(X™) = @D Ha(SP),
keK

(reduced singular homology on the right) where both groups are isomorphic to
Ox L.

As we recalled above, 7,(X"™) has a basis {ig,[id,] = [ix]xn }kek, Where
ir : S® — X" is inclusion as the k" sphere. What is the image of the k'
basis element under h? By definition, it is (i) (s,) € Hn(X™) (induced hom
in homology), where s,, € H,,(S") is a fixed generator:

h(lik)xn) = (ik)% (sn)-

Note (ig)4 : H,(S™) — H,(X™) is inclusion of the k" summand into a direct
sum. Hence (ig)4(s,) is a basis element of H,(X™).This shows the map h :
Tn(X™) = H,(X"™) is an isomorphism, which of course is the Hurewicz theorem
for a wedge of n-spheres.

4. Conclusion of the proof. Given the above descriptions of m,(X) and
H,(X) as quotient groups, all that is left to show is that the Hurewicz ho-
momorphism h satisfies the mapping condition of subgroups (of 7,(X) and

Hy (X)):
h({[pi)xn;l € L)) = im(dnia),

where on the left we have the subgroup of 7, (X) generated by attachment maps
;2 S™ — X" of the cells e;”rl, and on the right the image of the connection
homomorphism dy, 11 = juOnt1 : Cpy1(X) = Hppr (XFL X)) — f{n(X") =
Cr(X) (composition of a connecting hom 9,41 in an exact sequence of pairs
and an injection operator 7, : H,(X") = H, (X", X" ') = H,(X") = C,,(X)).

Note that the attaching map ¢; of e?‘H extends to the characteristic map

o, : (D" S") — (X, X") = (X" X™), inducing in homology the hom



(®))y + Hypr (D" 8™) — Hpp (X X™) = Cpp1(X). By naturality of

connection homomorphisms, we have the commutative diagram:

Hyir (D™, 87) 2740 (57

J/qﬁ# J/‘Pl#

Copr(X) —22 5 €, (X)

Note 0y,+1 (top row) is an isomorphism, and (9,+1) 'maps the generator
sp, of H,(Sy) used to define h to a generator r,1 of the infinite cyclic abelian
group H,,1(D""1, S™). Commutativity of the diagram implies:

h([ei)x) = (01) 4 (5n) = On+1(P1)#(rns1),

and therefore h([p]x) € im(d,41), since we're identifying d,,1 (with image in
H,(X™)) and d, 41 (with image in H,(X,) =~ Cp(X)).

Now recall Cyy1(X) = Hpp1 (X", X™), and since (X" X") is a CW
pair, we have H,, 11 (X", X,,) & Hy,41(X"1/X™), while X" /X" = \/,., S;H,
a wedge of spheres with H, . given by the direct sum of individual Fln+1’s.
Thus the (®;)4(rn+1) form a basis of C,,41(X), and we have in fact established
the equality of the subgroups h({[¢i]xn;! € L)) and im(d,+1), concluding the

proof.

Sources: This proof follows the idea outlined in [Hatcher, section 4.2], which
emphasizes the relative case, but I’ve included more detail. The main reason
to choose a proof based on cellular homology is that it ties in with the exis-
tence/uniqueness (up to homotopy type) of Eilenberg-MacLane spaces.

A reasonably concise and understandable proof based on simplicial homology
is found in S-T Hu, Homotopy Theory (1959), Theorem 4.4 (Chapter V, section
4).

Classification of vector bundles.

1. Vector bundle morphisms and isomorphism.

Let &,m be k,l-vector bundles over base spaces B(£), B(n). A vector bundle
morphism is a pair (u, f) of continuous maps, where u : E(§) — E(n) preserves
fibers and is linear in each fiber, and f : B(§) — B(n) is the induced map of
base spaces.

If £, 7 have the same base space B, u is a linear isomorphism on fibers (so
k =1) and the induced map f =idp, we say & and 7 are (strongly) isomorphic
(Notation: & ~ 7). It is easy to show [M-S Lemma 3.1] this implies u : E(§) —
E(n) is a homeomorphism.

Let f: B — X, n a k-vector bundle over X. Recall the pullback f*n has
total space and projection:

E(f*n) ={(b,v) € B x E(n); f(b) = py(v) € X}, p(b,v) =b.

We have the following easy but useful fact:



Proposition. Suppose (u, f) : £ — n is a vector bundle morphism and an
isomorphism on each fiber. Then £ ~ f*n (as vector bundles over B.)

For the proof we define h : E(§) — E(f*n) via: h(e) = (pe(e), u(e)) (note
pn(u(e)) = f(pe(e)), so this makes sense.) Then h is continuous and maps each
fiber V;(€) isomorphically onto V;(f*n) (since on each fiber V4(&), h coincides
with u.)

2. Canonical and universal k-vector bundles.

We denote by «;' the canonical k-plane bundle over the real Grassmannian
G(R™) (n > k), with total space and projection:

E(v) ={(X,v) e Gx(R") x R";v e X.}, p(X,v)=X.}

The universal k-vector bundle v, has as base space the G(R*), the infinite
increasing union of the G (R™), an inifnite-dimensional CW complex given the
‘weak topology’, with total space:

E(yk) ={(X,v) € Gp(R™) x R0 € X}, p(X,v) = X.

Note E(7) is the infinite increasing union of the E(+}), with compatible pro-
jection maps.

The canonical bundle v}’ over G (R") is associated with an equally canonical
(n — k)-vector bundle over the same base, its orthogonal complement 47+, with

total space and projection:
E(yh) = {(X,v) € G(R") x R%;v € X1}, ¢(X,v)=X.
Note that their Whitney sum is the trivial n-bundle over Gy (R™):
M@ =" = G(R") x R".

This implies that if £ is a k-vector bundle over B and & ~ f*~}!, for some n and
some f: B — Gi(R"), then £ admits a ‘complement’, a n — k-vector bundle 7
over B so that:

Ednrey:=BxR",

the trivial n-bundle over B. (Just let n = f*(yp+).)

3. Ezxistence theorem.
Theorem 1. Let £ be a k-plane bundle over a compact manifold B. Then
there exists n and f : B — G (R™) so that { = f*4}.

Proof. See [M-S, Lemma 5.3] (extended to paracompact base spaces in The-
orem 5.6, with maps to G (R*°).) In the compact case, we have an open cover
of B by finitely many (say N) open sets, over each of which ¢ is trivial. The
proof gives a map B — Gy (RFY), using partitions of unity in the same way
as the proof that (compact) manifolds embed in euclidean spaces of sufficiently
large dimension.



4. Homotopy implies isomorphism.

Theorem 2. Suppose fo, f1 : B — Gi(R™) are homotopic maps (B compact.)
Then the pullback bundles are isomorphic: f§v; ~ fiv¢.

Proof. (Adapted from [Benedetti, p. 100].) Consider the simple linear
algebra fact: suppose we have two direct sum decompositions

RP=Vaev=V'aV.

Then we have a canonical isomorphism ¢ : V! — V" ¢(v') = v” where v/ =
v"” + v (unique decomposition.)

Let F: B x [0,1] = Gr(R™) be the homotopy from fy to f1, and consider
F*(vy), a k-vector bundle over B x [0,1]. Denote by V,,; its fiber over (p,?),
a k-dimensional subspace of R™ depending continuously on (p, ). Observe the
following. For any given ¢ € [0, 1], we have:

Vot NVl ={0},¥p e B& R" =V, ® V;lo,Yp € B& ff () = f5 (1)

p

Indeed it suffices to consider that the linear algebra fact implies the existence
of a continuous field of linear isomorphisms:

(ybp : Vp,t — Vp,()v pE Bv

that is, of a bundle isomorphism ¢ : £/ (7}}) = fi (7). Clearly the set of t € [0, 1]
such that V,, ;N V5 = {0},Vp € B is open in [0,1]. (This condition is equivalent
to the orthogonal projection in R™ mapping Vpﬁ isomorphically onto foo.)

Claim. Je > 0 such that V0 <t <€, Vpe B,V,; @ ‘/pl,_O - R,

Proof. Otherwise we have a sequence (pp,t,) — (po,0) in B x [0, 1], such
that dim(V,, ¢, N V;)J(;’O) > 0, which in the limit gives dim(V,, 0 N Vp{;’o) > 0,
contradiction.

Thus if we consider the set:
G ={e €0t Vp’tﬂfoO ={0},Vpe B,VO<t<e}={t€[0,1]; fivr = fivn, V0 <t <e},

we see that G is a an interval [0, ¢y), open on the right unless g = supG = 1.

But in fact g € G: let t,,, € G, 1, T €9. Since R™ = V¢, @ VpJgOVp, we have
Vipt,, N Veop = {0}1Vp for m sufficiently large (due to openness of the condition),
hence f; v =~ fi ) for m large, and since ¢, € G also fiv; = fZ v, so

€0 € G. This implies g = 1, or fiv; = f{v}, as we wished to show.

5. Gauss maps. [Husemoller p.31.] Definition: a Gauss map to R™ for
a k-vector bundle £ is a continuous map ¢ : E(§) — R™ which is a linear
monomorphism on each fiber of £ (so m > k.)

For example, ¢ : E(y}) — R",q(X,v) = v is a Gauss map. If (u,f) :
L= vy is a bundle morphism which is isomorphic on fibers, the composition
gou: E(§) — R™ is a Gauss map.



Conversely, if ¢ is a k-vector bundle p : E(§) — B and g : F(§) — R™ is
a Gauss map for &, there exists a bundle morphism (u, f) : £ — 7} such that
qou=g.

To see this, for b € B let f(b) = g(p~'b), the image under g of the fiber of ¢
over b, a k-dimensional subspace of R™ and hence a point of Gi(R™); and for
e € E(§), let u(e) = (f(p(e)),g(e)) € E(v"). Using local trivializations, one
sees that v and f are continuous and wu is isomorphic on fibers. Thus we have
the following simple but useful observation, for an arbitrary k-vector bundle

§(E,p, B):
[3f: B— Gx(R™), = f*(vi)] © [3g : E — R™ Gauss map).

In particular, it follows from Theorem 1 that any vector bundle over a compact
(or paracompact) base admits a Gauss map.

6. The even-odd trick. [Husemoller p. 33, M-S p. 67, Thm 5.7

To finish the classification theorem, it remains to prove that isomorphism
implies homotopy: if foy, f1 : B = G (R") yield isomorphic vector bundles under
pullback: fiv; ~ fiv}, then they are homotopic: fo >~ fi as maps to Gy(R")
(that is, with the homotopy taking values in G (R™)). Unfortunately this is not
what is proved, and here is the problem: say fiv; ~ fiv; =~ & a k-vector bundle
over B, the isomorphisms being given by ug, u1 : E(§) — E(v}), inducing fo, fi.
It would be enough to produce a homotopy between the corresponding Gauss
maps gop = ¢ o ug,g1 = ¢ © u1, an easier problem since we may try the linear
homotopy in R™:

gi(e) = (1 —t)go(e) + tgi(e) € R, ec€ E(§),t € [0,1].

Unfortunately there is no way to guarantee this always gives a nonzero vector
if e # 0; that is, that each g, is itself a Gauss map.

Thus a tricky detour is necessary, which in the end results in a homotopy
from fo to fi, but taking values in Gy (R?"), not Gj(R™).

Consider the ‘even and odd subspaces’ of R*>:
R = {x € R*™;x9;41 = OVi > 0}; RO = {x € R*;x9; = OVi > 0}.
For each t € [0,1], consider the linear embeddings:
ki : R" — R*™ kY : R" — R*":
kf(zo,z1, ..., xn—1) = (1—t)(20,21,. -+, Zp-1,0,...,0)+t(zo,0,21,0,...,2,-1,0).

k?(l’o,l’l, ce ,.’Enfl) = (1—t)(.’£07$1, . .,xn,l,O, e ,0)+t(0,x0,0,x1, ce 70,.’En,1).

We see that each kf, k7 (¢t € [0,1]) is a linear embedding and:
(1) k§ = k§ is the standard inclusion R™ — R?" (set the last n coordinates
equal to 0).



(2) k$(R™) = R?™ A ReY, KY(R") = R2" ) Rodd.

(3) Denote by g, : E(y) — R", g2, : E(72") — R*" the canonical Gauss
maps. Then £ o g, k{ o ¢, are Gauss maps for 77, taking values in R*". Thus,
as seen above, there exist vector bundle morphisms (injective on fibers):

(W, f) e =it (WO f0) s =,
such that:
kfoqn =ganou®, k{oqy=qanou’

(4) fé,f° : Gp(R™) — Gr(R?") are homotopic to the standard inclusion
maps j : Gx(R") — G(R*"). Namely,

X = k(X)) € GL(R*™), X € Gix(R™) joins j at t = 0 tof at t = 1;

X = k2(X) € GL(R*™), X € Gyx(R™) joins j at t = 0 tof® at t = 1.

7. From isomorphism to homotopy.

Theorem 3. Let fy, f1 : B — Gi(R") such that fi(v7) = fi (7). Then
jo fo =~ jo fi (homotopic), where j : Gp(R") — Gy(R?") is the standard
inclusion.

Proof. (cp. [Husemoller, p. 35].) By hypothesis there exists a k-vector
bundle £ over B and bundle morphisms (isomorphic on fibers):

(uo, fo) : € =i (ua, f1) 1§ =W
and Gauss maps:
ho=qnoug: E() = R", hi=gqnou:E() — R"
Composing with the maps obtained in the previous subsection, we have:
(u® o ug, f€o fo) : € = 7™ with Gauss map & o ho : E(¢) — R*" N R,
(u® ouy, fo f1) : € = 42" with Gauss map k¢ o hy : E(£) — R*™ N R°%,
Define the map h; : E(§) — R?", t € [0,1]:
ha(e) = (1= (kS 0 ho)(€) + LS o hu)(e), e € E(&).

Then h; is a Gauss map for &, for each t: in each fiber V, (), k§ o hg : V3(§) —
R k§ o hy : V3(€) — R° are both injective, taking values in subspaces inter-
secting only at 0; thus h; is also injective.

This implies there exists a continuous one-parameter family of bundle mor-
phisms:
(wta ¢t) : 5 — ,-yi”,
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where ¢; : B — G (R?") is a homotopy f¢o fo =~ f°o fi.
Now recall (from point (4) above): jo fo =~ f¢o fo,j0 f1 =~ f°o fi. Thus
jo fox~jo fi, as we wished to show.

8. Summary. Theorems 1,2,3 may be summarized as the classification the-
orem:

Any real k-vector bundle £ over a compact (or paracompact) base space B
is the pullback f*(7}}) under a map f : B — G(R"), for some n. Homotopic
maps B — G (R") induce isomorphic bundles; conversely, if f*y ~ g*~}, then
f is homotopic to g (as maps to G (R?")). In symbols, the pullback of 7 over
G (R>) establishes a bijection:

Vectr(B) + [B, G(R™)].

(Isomorphism classes of k-vector bundles over B on the left, homotopy classes
of maps on the right.)

The same is true for complex vector bundles:
VectS(B) < [B, G(C™®)).
In particular for line bundles:
Vect1(B) <+ [B, RP(x))] = [B, K(Z2,1)].

VectS(B) < [B,CP(0)] = [B, K(Z,2)].
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