
ALGEBRAIC TOPOLOGY II-LECTURES, SPRING 2024

Lecture 6.

Definition of πn(X), πn(X,A). Group operations, commutativity for n ≥ 2.

Meaning of [f ](X,A) = 0: ‘compression principle’

Homotopy exact sequence: proof of exactness.

Lecture 7. Preparation for Whitehead’s Theorem.

Homotopy extension property for CW pairs (X,A) [Hatcher, Hilton]

Compression Lemma: (X,A), (Y,B) connected CW pairs, B 6= ∅.. Assume
πn(Y,B, y0) = 0 (∀y0 ∈ B), for each n s.t. X \ A has an n-cell. Then any map
(X,A)→ (Y,B) is homotopic (Rel. A) to a map X → B.

Related facts (ref: Whitehead ch.2)
1. πq(Y,B) = 0, q = 1, . . . , n ⇔ any map of a CW complex K into Y is

htopic to a map mapping Kn to B.
2. πq(Y ) = 0, q = 1, . . . , n⇔ any map of a CW complex K into Y is htopic

to a map mapping Kn to the basepoint y0.

The mapping cylinder Mf of f : X → Y : deformationn retracts to Y ,
contains X as closed subspace X × 0. Any map f : X → Y factors as inclusion
to Mf , followed by homotopy equivalence Mf → Y . (ref: Hatcher)

Lecture 8.

Whitehead’s theorem: X,Y path-connected CW complexes, f : X → Y . If
f∗ : πn(X) → πn(Y ) is iso for all n, then f is a homotopy equivalence. If f is
the inclusion map of a subcomplex X ⊂ Y , then X is a deformation retract of
Y .

Proof. (ref: Hatcher) (i) For the subcomplex case, use the exact homotopy
sequence to conclude the relative htopy groups all vanish, hence by the com-
pression principle applied to the identity map (X,Y ) → (X,Y ), the identity
can be deformed (rel. Y ) to a map X → Y , a deformation retraction. (ii) In the
general case, use the mapping cylinder (a CW complex if f is a cellular map)
to reduce to the inclusion case.

Remark: There is no ‘relative version’ of this theorem.

Example. Sm×RPn, Sn×RPn (m 6= n) have isomorphic homotopy groups,
but not always isomorphic homology groups, hence are not htopy equivalent
manifolds (use Künneth’s formula or orientability.)

Example. πn(X × Y ) = πn(X)⊕ πn(Y ) (ref: Hilton)

Example. πn(X ∨ Y ) (ref: Hilton)
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Lecture 9.

Cellular approximation theorem. K,P CW complexes, L ⊂ K subcomplex,
f0 : K → P cellular on L⇒ f0 ' f1 (rel. L), where f1 : K → P is cellular.

Cor.πm(Sq) = 0 if m < q.

Cor. If Y is a CW complex with one vertex and no other cells of dimension
< q, and X is a CW complex of dimension < q, any cits map X → Y is
homotopic to a constant.

Cor. If f0, f1 : K → P are homotopic maps of (finite) CW complexes, and if
restricted to a subcomplex L ⊂ K the homotopy is cellular, then the homotopy
may be replaced by a cellular homotopy, without changing it in L. (A homotopy
K × I → P is celular if it maps each sekeleton Kn to Pn+1.)

Def.: weak homotopy equivalence. f : X → Y inducing iso f∗ : πn(X,x0)→
πn(Y, f(x0)) for each n, x0. (So Whitehead’s theorem says that for CW com-
plexes, they are homotopy equivalences.)

Proposition. (4.22 in Hatcher.). A weak homotopy equivalence f : Y → Z
induces (via composition) bijections of homotopy sets (resp. pointed homotopy
sets):

[X,Y ]→ [X,Z] 〈X,Y 〉 → 〈X,Z〉.
Def. X is n-connected if ∀q ≤ n, [Sq, X] has one element; equivalently, if

πq(X) = 0 for q in this range, or any f : Sq → X extends to Dq+1.

(X,Y ) n-connected if πq(X,Y ) = 0, q = 1, . . . n.

f : X → Y n-connected if Mf (mapping cylinder) is; equivalently, if induced
maps on πq are iso in this range.

Lemma:(Fomenko-Fuchs p.51) (X,A) CW pair, A contractible ⇒ the quo-
tient projection p : X → X/A is a homotopy equivalence.

A more precise version: (Prop. 4.28 in [Hatcher]) If (X,A) (CW pair) is
r-connected (see below for def.) with A s-connected, then πi(X,A)→ πi(X/A)
is iso for i ≤ r + s, epi for i = r + s+ 1.

(Challenge: give a direct proof of this, without appealing to the ‘homotopy
excision theorem in [Hatcher].)

Theorem. (F-F 1.5.9) X n-connected (finite) CW complex, n ≥ 0 (in partic-
ular path connected.) Then X is htopy equivalent to a CW complex with only
one vertex and no cells of dimensions 1,2,...,n.

Cor. If X is n-dimensional and Y is n-connected (CW complexes), then
[X,Y ] and 〈, X, Y 〉 have only one element. (Use the theorem and cellular ap-
proximation.)

Relative version. Def: a pair (X,A) is n-connected if given any relative CW
complex (Y,B) with dim(Y,B) ≤ n, any f : (Y,B) → (X,A) is compressible
into A (that is, homotopic rel. B to a map taking values in A.)
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Cor. An n-connected CW pair (X,A) is htopy eq. to a CW pair (X ′, A′)
s.t. A′ contains the n-skeleton (X ′)n. (See also [Hatcher, cor. 4.16])

Lecture 10. Cone and suspension constructions (of spaces and maps.)

Unlinked submanifolds of euclidean space. Definition of ‘linking number’.

Geometric proof of Freudenthal suspension theorem. (See [F-F, 10.1])

Invariance of degree under suspension/Proof that πn(Sn) ≈ Z, with isomor-
phism given by the degree.

πk+n(Sn) stabilizes starting from n = k+ 2; stable homotopy πsk of spheres.

Other facts: πq(S
3) ≈ πq(S

2), q ≥ 3 (easy consequence of the homotopy
sequence for the Hopf fibration S1 ↪→ S3 → S2). Serre’s great theorem: πq(S

n)
is finite, except in the cases q = n (infinite cyclic) and π4n−1(S2n) (direct sum
of infinite cyclic and finite abelian.)

The Whitehead product α ∈ πm(X), β ∈ πn(X) 7→ [α, β] ∈ πm+n−1(X).
The kernel of the suspension map π2n−1(Sn) → π2n(Sn+1) is cyclic, generated
by the Whitehead square [sn, sn]; here sn is a generator of πn(Sn). (See [F-F,
10.5].) It follows that π4(S3) = Z2, and hence πs1 = Z2.

Lecture 11.

Basepoints and homotopy. π1(X,x0) acts on the based homotopy set 〈Z,X〉
(say on the left), denote the action by τα, α ∈ π1.

Prop. (ref: Hatcher) (Z, z0) CW pair, X path-connected. Then the natural
map 〈Z,X〉 → [Z,X] induces a bijection of the orbit set 〈Z,X〉/π1(X,x0) onto
[Z,X]. In particular, bijection between [Sn, X] (free homotopy classes) and the
orbit space.

Remark. In the case n = 1, the action is given by conjugation: τα(β) =
αβα−1.

Def. A space X is n-simple (or ‘abelian’) if the action of π1 on πn is trivial.

Action of π1(A) on relative homotopy groups of a pair (X,A) (Prop: the
action is by hom). Effect of the action on the homotopy exact sequence (ref:
Whitehead.)

The Hurewicz map hn from homotopy to homology (ref: Whitehead IV.3,
Hatcher p. 369-373.) Proof that the map is a homomorphism; the ‘homotopy-
homology ladder’.

The elements τα(β) (α ∈ π1(A), β ∈ πn(X,A)) or πn(X) or πn(A) are in
the kernel of hn; groups π′n(X), π′n(X,A). Prop: if n = 2 (when π2(X,A) is
not nec. abelian) the action of π1 satisfies: τξ(α) = βαβ−1 (α, β ∈ π2(X,A),
ξ = ∂∗(β) ∈ π1(A).)

3



Lecture 12.

Effect of cell addition (Hatcher Ex. 4.29, FF 11.1–11.3, Whitehead 5.1)

Postnikov Towers (Hatcher Ex 4.17)

Eilenberg-MacLane spacesK(G,n): existence, uniqueness (Hatcher p.365/366)

Examples: K(Zr, 1), K(G, 1) with G f.g. abelian, K(Z, 2)

Connections with Moore spaces: statement of the Thom-Dold theorem (see
Hatcher, bottom of p.365)

Lecture 13.

Proof of Hurewicz theorem and corollaries

Fibre bundles: homotopy lifting property, homotopy exact sequence.

Classical examples: fibrations of spheres by spheres, Hopf fibration, CP (∞)
is K(Z, 2).

Lecture 14.

Vector bundles: definition
Examples: canonical line bundles γn1 over Pn and CPn, its orthogonal com-

plement, tangent bundle, normal bundle of a submanifold,

Triviality criterion in terms if l.i. sections; proof that γn1 over Pn is not
trivial.

Constructions: pullback bundle, product bundle, Whitney sum, Hom(E,F ),
vector bundles with fiberwise inner products.

Isomorphism TPn ≈ Hom(γn1 , (γ
n
1 )⊥)

Isomorphism TPn ⊕ ε1 ≈
⊕

n+1 γ
n
1 ; stable equivalence, K-theory interpre-

tation.

Lecture 15.

G-principal bundles: definition (free fiber-preserving right G-action, transi-
tive on fibers, with compatible local trivializations.)

Free G-actions on a manifold E and p : E → E/G as a principal bundle:
criterion given by local sections. (In particular if G is compact.) Example:
quotient of a Lie group G by a compact subgroup H gives a principal H-bundle.

Example: Lie groups are parallelizable.

Lecture 16. Classification of vector bundles.

Definition of bundle morphisms and isomorphism.

The canonical k-vector space bundle γnk over Gk(Rn); γk over Grk(R∞).
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Theorem 1: Given a k-vector bundle ξ over B, existence of f : B → Grk(Rn)
(for some n) such that f∗γnk ≈ ξ (proof when B is compact.)

Theorem 2: homotopy of two classifying maps B → Grk(Rn) implies iso-
morphism of pullback bundles.

Gauss maps of k-vector bundles to Rm and isomorphism to a pullback of
γmk .

The even-odd trick. Theorem 3: isomorphism of the pullback bundles implies
homotopy of the classifying maps to Gk(Rn) (where the homotopy takes place
in Gk(R2n).

Summary: the classification theorem.
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