ALGEBRAIC TOPOLOGY II-LECTURES, SPRING 2024

Lecture 6.

Definition of 7, (X), m,(X, A). Group operations, commutativity for n > 2.

Meaning of [f](x, ) = 0: ‘compression principle’

Homotopy exact sequence: proof of exactness.

Lecture 7. Preparation for Whitehead’s Theorem.
Homotopy extension property for CW pairs (X, A) [Hatcher, Hilton]

Compression Lemma: (X, A), (Y, B) connected CW pairs, B # (.. Assume
(Y, B,yo) =0 (Vyo € B), for each n s.t. X \ A has an n-cell. Then any map
(X,A) — (Y, B) is homotopic (Rel. A) to a map X — B.

Related facts (ref: Whitehead ch.2)

1. mg(Y,B) = 0,qg = 1,...,n < any map of a CW complex K into Y is
htopic to a map mapping K™ to B.

2. m(Y)=0,g=1,...,n < any map of a CW complex K into Y is htopic
to a map mapping K" to the basepoint yp.

The mapping cylinder My of f : X — Y: deformationn retracts to Y,
contains X as closed subspace X x 0. Any map f : X — Y factors as inclusion
to My, followed by homotopy equivalence My — Y. (ref: Hatcher)

Lecture 8.

Whitehead’s theorem: X,Y path-connected CW complexes, f: X — Y. If
fo i T (X) = mp(Y) is iso for all n, then f is a homotopy equivalence. If f is
the inclusion map of a subcomplex X C Y, then X is a deformation retract of
Y.

Proof. (ref: Hatcher) (i) For the subcomplex case, use the exact homotopy
sequence to conclude the relative htopy groups all vanish, hence by the com-
pression principle applied to the identity map (X,Y) — (X,Y), the identity
can be deformed (rel. V) to amap X — Y, a deformation retraction. (ii) In the
general case, use the mapping cylinder (a CW complex if f is a cellular map)
to reduce to the inclusion case.

Remark: There is no ‘relative version’ of this theorem.

Ezample. S™ x RP™,S™ x RP™ (m # n) have isomorphic homotopy groups,
but not always isomorphic homology groups, hence are not htopy equivalent
manifolds (use Kiinneth’s formula or orientability.)

Ezample. m,(X xY) = m,(X) & 7, (Y) (ref: Hilton)
Ezample. m,(X VY') (ref: Hilton)



Lecture 9.

Cellular approximation theorem. K, P CW complexes, L C K subcomplex,
fo: K — P cellular on L = fy ~ f1 (rel. L), where f; : K — P is cellular.

Cor.m,(S?) =01if m < gq.

Cor. If Y is a CW complex with one vertex and no other cells of dimension
< ¢q, and X is a CW complex of dimension < ¢, any cits map X — Y is
homotopic to a constant.

Cor. If fo, f1 : K — P are homotopic maps of (finite) CW complexes, and if
restricted to a subcomplex L C K the homotopy is cellular, then the homotopy
may be replaced by a cellular homotopy, without changing it in L. (A homotopy
K x I — P is celular if it maps each sekeleton K™ to P"T1.)

Def.: weak homotopy equivalence. f: X — Y inducing iso fi : mp (X, zo) —
(Y, f(20)) for each n, . (So Whitehead’s theorem says that for CW com-
plexes, they are homotopy equivalences.)

Proposition. (4.22 in Hatcher.). A weak homotopy equivalence f : Y — Z
induces (via composition) bijections of homotopy sets (resp. pointed homotopy
sets):

[X,Y] = [X, Z] (X,)Y) = (X, Z).

Def. X is n-connected if Vg < n, [S?, X]| has one element; equivalently, if

m4(X) = 0 for ¢ in this range, or any f:S? — X extends to D7t

(X,Y) n-connected if 7y(X,Y)=0,¢=1,...n.

f: X =Y n-connected if My (mapping cylinder) is; equivalently, if induced
maps on 7, are iso in this range.

Lemma:(Fomenko-Fuchs p.51) (X, A) CW pair, A contractible = the quo-
tient projection p: X — X /A is a homotopy equivalence.

A more precise version: (Prop. 4.28 in [Hatcher]) If (X, A) (CW pair) is
r-connected (see below for def.) with A s-connected, then m;(X, A) — m;(X/A)
isisofori<r+s, epifori=r+s+1.

(Challenge: give a direct proof of this, without appealing to the ‘homotopy
excision theorem in [Hatcher].)

Theorem. (F-F 1.5.9) X n-connected (finite) CW complex, n > 0 (in partic-
ular path connected.) Then X is htopy equivalent to a CW complex with only
one vertex and no cells of dimensions 1,2,...,n.

Cor. If X is n-dimensional and Y is n-connected (CW complexes), then
[X,Y] and (, X,Y) have only one element. (Use the theorem and cellular ap-
proximation.)

Relative version. Def: a pair (X, A) is n-connected if given any relative CW
complex (Y, B) with dim(Y,B) < n, any f : (Y,B) — (X, A) is compressible
into A (that is, homotopic rel. B to a map taking values in A.)



Cor. An n-connected CW pair (X, A) is htopy eq. to a CW pair (X', A")
s.t. A’ contains the n-skeleton (X’)". (See also [Hatcher, cor. 4.16])

Lecture 10. Cone and suspension constructions (of spaces and maps.)
Unlinked submanifolds of euclidean space. Definition of ‘linking number’.
Geometric proof of Freudenthal suspension theorem. (See [F-F, 10.1])

Invariance of degree under suspension/Proof that m,(S™) ~ Z, with isomor-
phism given by the degree.

Th+n(S™) stabilizes starting from n = k + 2; stable homotopy 7} of spheres.

Other facts: m,(S®) ~ m,(S?%), ¢ > 3 (easy consequence of the homotopy
sequence for the Hopf fibration S' — $3 — S2). Serre’s great theorem: ,(S™)
is finite, except in the cases ¢ = n (infinite cyclic) and 74, _1(5?") (direct sum
of infinite cyclic and finite abelian.)

The Whitehead product o € 7, (X),8 € m(X) — [, 8] € Tmgn—1(X).
The kernel of the suspension map ma,_1(S™) — m2,(S™1) is cyclic, generated
by the Whitehead square [s,, s,]; here s, is a generator of m,(S™). (See [F-F,
10.5].) Tt follows that 74(S3) = Zs, and hence 7§ = Z,.

Lecture 11.

Basepoints and homotopy. w1 (X, xg) acts on the based homotopy set (Z, X)
(say on the left), denote the action by 7, a € 7.

Prop. (ref: Hatcher) (Z,z9) CW pair, X path-connected. Then the natural
map (Z, X) — [Z, X] induces a bijection of the orbit set (Z, X)/m (X, z¢) onto
[Z, X]. In particular, bijection between [S™, X] (free homotopy classes) and the
orbit space.

Remark. In the case n = 1, the action is given by conjugation: 7,(8) =
afBa~l.

Def. A space X is n-simple (or ‘abelian’) if the action of 7, on =, is trivial.

Action of m1(A) on relative homotopy groups of a pair (X, A) (Prop: the
action is by hom). Effect of the action on the homotopy exact sequence (ref:
Whitehead.)

The Hurewicz map h,, from homotopy to homology (ref: Whitehead IV.3,
Hatcher p. 369-373.) Proof that the map is a homomorphism; the ‘homotopy-
homology ladder’.

The elements 7,(8) (o € m(A4),8 € 7,(X,A)) or m,(X) or 7, (A) are in
the kernel of h,; groups =}, (X),n (X, A). Prop: if n = 2 (when m2(X, A) is
not nec. abelian) the action of m; satisfies: 7¢(a) = Baf™! (o, B € ma(X, A),

§=0.(8) e m(A).)



Lecture 12.

Effect of cell addition (Hatcher Ex. 4.29, FF 11.1-11.3, Whitehead 5.1)
Postnikov Towers (Hatcher Ex 4.17)

Eilenberg-MacLane spaces K (G, n): existence, uniqueness (Hatcher p.365/366)
Examples: K(Z",1), K(G,1) with G f.g. abelian, K(Z,2)

Connections with Moore spaces: statement of the Thom-Dold theorem (see
Hatcher, bottom of p.365)

Lecture 13.
Proof of Hurewicz theorem and corollaries
Fibre bundles: homotopy lifting property, homotopy exact sequence.

Classical examples: fibrations of spheres by spheres, Hopf fibration, C P(c0)
is K(Z,2).

Lecture 14.

Vector bundles: definition
Examples: canonical line bundles 7} over P™ and C'P", its orthogonal com-
plement, tangent bundle, normal bundle of a submanifold,

Triviality criterion in terms if Li. sections; proof that 4 over P™ is not
trivial.

Constructions: pullback bundle, product bundle, Whitney sum, Hom(E, F),
vector bundles with fiberwise inner products.

Isomorphism TP™ ~ Hom(+}, (v)1)

Isomorphism TP" @ e; = @,, 4171 stable equivalence, K-theory interpre-
tation.

Lecture 15.

G-principal bundles: definition (free fiber-preserving right G-action, transi-
tive on fibers, with compatible local trivializations.)

Free G-actions on a manifold F and p : E — E/G as a principal bundle:
criterion given by local sections. (In particular if G is compact.) Example:
quotient of a Lie group G by a compact subgroup H gives a principal H-bundle.

Example: Lie groups are parallelizable.
Lecture 16. Classification of vector bundles.

Definition of bundle morphisms and isomorphism.

The canonical k-vector space bundle v over Gi(R"); i over Gri(R™).



Theorem 1: Given a k-vector bundle £ over B, existence of f : B — Gri(R™)
(for some n) such that f*y} ~ € (proof when B is compact.)

Theorem 2: homotopy of two classifying maps B — Gri(R™) implies iso-
morphism of pullback bundles.

Gauss maps of k-vector bundles to R™ and isomorphism to a pullback of
m

Vi -

The even-odd trick. Theorem 3: isomorphism of the pullback bundles implies
homotopy of the classifying maps to G (R™) (where the homotopy takes place
in Gk(R2n)

Summary: the classification theorem.



