
MAYER -VIETORIS SEQUENCES AND THE PROOF OF POINCARÉ
DUALITY IN DE RHAM COHOMOLOGY

Notation: Let A ⊂ B be open sets in M . Given ω ∈ Ωp(B), denote by
ωB
A ∈ Ωp(A) the restriction of ω from B to A. If ω ∈ Ωp(A), denote by ω0

A,B ∈
Ωp(B) the extension (from A to B) of ω by zero. This is a smooth form in B
if spt(ω) ⊂ A (that is, is a closed subset of the open set A.) To see this, note
it is certainly smooth in a neighborhood of any x ∈ A, since A is open. And
also smooth in a neighborhood of x ∈ B \ A = B ∩ Ac, since such an x has a
neighborhood not intersecting spt(ω) ⊂ A (closed in A).

Source: Based on [Bott-Tu, pp.22–27 and 42–46], with details added.

1. Mayer-Vietoris for de Rham cohomology.

Let U, V ⊂ M be open sets with M = U ∪ V . Let fU + fV ≡ 1 be a
subordinate partition of unity, spt(fU ) ⊂ U, spt(fV ) ⊂ V (closed subsets of U
resp. V , but in general not compact.)

We have a short exact sequence:

0→ Ωp(M)→ Ωp(U)⊕ Ωp(V )→ Ωp(U ∩ V )→ 0,

with maps given by:

ω ∈ Ωp(M) 7→ (ωM
U , ωM

V ), (ω, η) ∈ Ωp(U)⊕ Ωp(V ) 7→ ηVU∩V − ωU
U∩V .

Exactness at the left and middle spaces is clear. To verify surjectivity of the
second map, consider, given ω ∈ Ωp(U ∩ V ), the p-forms:

ωU = (fV ω)0U∩V,U ∈ Ωp(U), ωV = (fUω)0U∩V,V ∈ Ωp(U).

Subtle point: spt(fV ω) ⊂ spt(fV ) ∩ spt(ω) is a closed subset of V , so its
zero extension ωU from U ∩ V to U is a smooth p-form in U (and similarly ωV

is a smooth form in V ). It is easy to see that, under the second map:

(−ωU , ωV ) 7→ (ωV )VU∩V + (ωU )UU∩V = fUω + fV ω = ω.

Thus by general homological algebra we get a long exact sequence in cohomol-
ogy:

. . .→ Hq(M)
(j∗U , j

∗
V )

−−−−−−→ Hq(U)⊕Hq(V )
k∗V − k∗U−−−−−−→ Hq(U∩V )

d∗−−→ Hq+1(M)→ . . .

Here the first two arrows (on the level of forms) are restriction maps, the pull-
backs of inclusions:

jU : U →M, jV : V →M, kV : U ∩ V → V, kU : U ∩ V → U.

The map d∗ is defined as follows: let ω ∈ Ωp(U ∩V ), dω = 0. Then 0=d(fUω+
fV ω) = dfU ∧ ω + dfV ∧ ω in U ∩ V , so in U ∩ V :

dfV ∧ ω = −dfU ∧ ω,
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a (p+ 1)-form with closed support in the open set U ∩ V . This form is clearly
well-defined and smooth in U ∪ V = M (by the first expression in U , by the
second expression in V ). So we define:

d∗[ω]U∩V = [dfV ∧ ω]M ∈ Hp+1(M)

2.Mayer-Vietoris for compactly supported de Rham cohomology.

Again we let U, V ⊂ M be open sets with M = U ∪ V . For forms with
compact support, we have a short exact sequence in the same order as that for
homology, with maps given by zero extensions:

0→ Ωp
c(U ∩ V )

ε0U∩V,U ⊕ ε0U∩V,V−−−−−−−−−−−−−→ Ωp
c(U)⊕Ωp

c(V )
−ε0U,M + ε0V,M−−−−−−−−−−−→ Ωp

c(M)→ 0.

(For open sets A ⊂ B in M , we let ε0A,B : Ωp
c(A) → Ωp

c(B) denote the zero-
extension operator of compactly supported forms.) Exactness at the first and
second steps is easy to see. To see the second map is surjective, let ω ∈ Ωp

c(M)
be closed, dω = 0. With fU + fV ≡ 1 a partition of unity as above, note
fUω ∈ Ωp

c(U), fV ω ∈ Ωp
c(V ) both have compact support (since, for instance

spt(fUω) ⊂ spt(fU )∩ spt(ω) is closed, contained the intersection of a set closed
in U with one compact in M , hence a compact subset of U .) Then on M :

−ε0U,M (−fUω) + ε0V,M (fV ω) = ω,

so under the second map the pair (−fUω, fV ω) maps to ω.
Again, homological algebra yields a long exact Mayer-Vietoris sequence in

compactly supported cohomology, in the same order as that of homology:

. . .→ Hp
c (U ∩ V )→ Hp

c (U)⊕Hp
c (V )→ Hp

c (M)
d∗−−→ Hp+1

c (U ∩ V )→ . . . ,

where the first two arrows are induced by zero-extension operators (the second
one a signed addition, signs + for V , - for U .) The operator d∗ is defined as
follows: let ω ∈ Ωp

c(M) be closed, dω = 0. Then dfV ∧ ω = −dfU ∧ ω, showing
that the form dfV ∧ ω ∈ Ωp+1

c (V ) is in fact in Ωp+1
c (U ∩ V ). So we let:

d∗[ω]M = [dfV ∧ ω]U∩V .
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3. A commutative pairing between the two Mayer-Vietoris sequences.

Write the two long M-V exact sequences just discussed, the second one in
reverse order:

. . .→ Hq(M)
(j∗U , j

∗
V )

−−−−−−→ Hq(U)⊕Hq(V )
k∗V − k∗U−−−−−−→ Hq(U∩V )

d∗−−→ Hq+1(M)→ . . .

. . .← Hn−q
c (M)

−ε0U,M + ε0V,M←−−−−−−−−−−− Hn−q
c (U)⊕Hn−q

c (V )
ε0U∩V,U ⊕ ε0U∩V,V←−−−−−−−−−−−−− Hn−q

c (U∩V )
d∗←−− Hn−q−1

c (M)← . . .

There are vertical pairings between cohomology spaces of the same spaces, given
on the level of closed forms by integration of the wedge product (which has
compact support) over the corresponding space. (In the case of the direct sums,
the pairing is the integral over V minus the integral over U .)

Main Lemma. The pairings between corresponding spaces commute up to
sign.

We make this statement more precise for each of the three squares involved
in each section of the diagram, from left to right.

(a) Square I. Let µ ∈ Ωq(M), ξ ∈ Ωn−q
c (U), η ∈ Ωn−q

c (V ). Commutativity
of the pairings in square I means (recalling the notations defined at the very
beginning of this note):∫

V

µM
V ∧ η −

∫
U

µM
U ∧ ξ =

∫
M

µ ∧ (ε0V,M (η)− ε0U,M (ξ)).

This is clear, since, for example, spt(µ∧ ε0V,M (η)) is a compact subset of V , and
on V :

µM
V ∧ η = µ ∧ η = µ ∧ ε0V,M (η).

(b) Square II. Let α ∈ Ωq(U), β ∈ Ωq(V ), λ ∈ Ωn−q
c (U ∩ V ) be closed forms.

Commutativity of the pairings in square II means:∫
V

β ∧ λ−
∫
U

α ∧ λ =

∫
U∩V

(βV
U∩V − αU

U∩V ) ∧ λ.

This is also clear since, for example, spt(β ∧ λ) is a compact subset of U ∩ V ,
and on U ∩ V :

βV
U∩V ∧ λ = β ∧ λ.

(c) Square III. Let ω ∈ Ωq(U ∩ V ), τ ∈ Ωn−q−1
c (M) be closed forms. Com-

mutativity up to sign of square III means, on the level of cohomology classes:∫
M

d∗[ω] ∧ [τ ] = ±
∫
U∩V

[ω] ∧ d∗[τ ].
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Recall that, using the fact dfV ∧ ω is defined not only on U , but in fact on M ,
we defined:

d∗[ω]U∩V = [dfV ∧ ω]M .

And we also defined, using the fact dfV ∧ τMU∩V is an (n− q)−form of compact
support in U ∩ V :

d∗[τ ]M = [dfV ∧ τMU∩V ]U∩V .

So we want to compare:∫
M

(dfV ∧ ω) ∧ τ and

∫
U∩V

ω ∧ (dfV ∧ τMU∩V ).

Since spt[dfV ∧ω)∧ τ ] ⊂ U ∩V , these two integrals clearly differ only by a sign.

4. Statement and proof of Poincare’ duality.

Duality Theorem. Let Mn be an orientable manifold admitting a finite
good cover (for example, a compact orientable n-manifold.) Then the pairing
of de Rham cohomology spaces:

Hq(M)⊗Hn−q
c (M)→ R

(defined by integration of the wedge product over M) is nondegenerate. Since
both vector spaces are finite dimensional (see [Bott-Tu, p.43]), this establishes
an isomorphism:

Hq(M) ≈ (Hn−q
c (M))∗.

Proof. (outline). First note that for M = Rn, it follows from the Poincare’
lemmas that the only nontrivial case is the pairing:

H0(Rn)⊗Hn
c (Rn)→ R, f ⊗ gdvoln 7→

∫
Rn

fgdvoln,

where f ∈ R is a constant function and g is a smooth function with compact
support, so gdvoln ∈ Ωn

c (Rn). This pairing is clearly nondegenerate.

The Main Lemma (combined with the Five Lemma) implies that if the in-
tegration pairing is nondegenerate for open sets U, V and U ∩ V , it is also
nondegenerate for U ∪ V . And the case of Rn shows it is true for the inter-
section of any two sets in a good cover (since by definition of ‘good cover’ this
intersection is diffeomorphic to Rn). This implies the result, by induction on
the number of sets in a good cover.
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