
LECTURE NOTES ON OBSTRUCTION THEORY 1

The goal is to classify homotopy classes of maps K → Y using the cohomol-
ogy H∗(K;G) for a suitable abelian group G depending on Y . K is taken to be
a finite cell complex. The strategy is stepwise extension of maps to Y defined
on the skeleta Kq of K (q ≥ 0.)

The classical development has two main steps. In Step 1 the obstruction
cocycle c(f) ∈ Cq+1(K;πq) and difference cochain d(f0, f1) ∈ Cq(K;πq) are
defined, where f0, f1 : Kq → Y and πq = πq(Y ). In this step Y is assumed
to be path-connected and ‘q-simple’, that is, the action of π1(Y ) on πq(Y ) is
trivial. Thus the homotopy group πq(Y ) can be unambiguously identified with
the set of homotopy classes [Sq, Y ], independent of the choice of basepoint. This
assumption on Y is not unduly restrictive; for instance Lie groups, or quotients
G/H of Lie groups by closed subgroups are q simple for all q ≥ 1. Of course
simply-connected Y are q-simple for all q. We assume q ≥ 1 throughout, noting
that 1-simple means π1(Y ) is abelian (hence may be used as a coefficient group.)

Definition of the obstruction cochain. Imagine building a map from K to
Y . We can define it arbitrarily on K0, and since Y is path-connected, easily
extend it to K1. Suppose f : Kq → Y is given; next we want to extend it to
each (q + 1)-cell σ. Let hσ : Dq+1 → Kq be its characteristic map, restricting
on the boundary Sq to the attachment map φσ : Sq → Kq. The composition
f ◦ φσ defines an element of πq = πq(Y ), and f extends to σ iff this element
is zero. Thus we have defined a homomorphism from Cq+1(K) (cellular chain
complex) to πq, that is, a cochain:

c(f) ∈ Cq+1(K;πq), c(f)(σ) = [f ◦ φσ] ∈ πq(Y ),

the obstruction cochain of f . By definition, f extends to Kq+1 iff c(f) = 0.

Two properties of c(f) are immediate. First, naturality under mappings:
Given h : K → K ′ and f ′ : (K ′)q → Y , if we define f = f ′ ◦ h : K → Y , it is
clear that:

c(f) = h∗c(f ′),

for the usual induced map on cochains, h∗ : Cq+1(K ′;πq) → Cq+1(K;πq).
Also, if f0, f1 : Kq → Y are homotopic, we have c(f0) = c(f1) (since f0, f1 are
homotopic on the boundary of each (q+1)-cell, hence their compositions with
the attachment maps define the same element of πq.) The following property is
less easy:

Theorem 1: δc(f) = 0: c(f) is a cocycle.

Proof. First consider the special case where K is assumed to be (q − 1)-
connected. Then if f : Kq → Y is given, we claim c(f) is a coboundary. To see
this, consider the isomorphism ψ : πq(K

q) → Zq(Y ) defined as follows: since
Kq is also (q−1)-connected (by cellular approximation), from Hurewicz we have

1Algebraic Topology II, April 2024, U.T.K. Sources given at the end of the note.
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an isomorphism ψ : πq(K
q)→ Hq(Kq). But Hq(Kq) = Zq(Kq), since there are

no (q+1)-chains in Kq (using cellular homology.) Thus in this case c(f) admits
the alternative description: consider the composition of the maps:

Cq+1(K)
∂−→ Zq(K)

ψ−1

−−−→ πq(K
q)

f∗−→ πq(Y ).

Since Cq(K) is free abelian, Zq(K) = ker(∂) is a direct summand, so f∗ψ
−1

extends to a homomorphism h : Cq(K) → πq(Y ), that is, h ∈ Cq(K;πq). It is
easy to see that c(f)(σ) = h(∂σ) for any (q + 1)-cell σ, so c(f) = δh.

Turning now to the general case: let ζ be any (q+ 2)-cell in K, and consider
the subcomplex K ′ ⊂ K consisting of ζ and all its faces. Let c′ = c(f)|K′
Then δc′ has the same values on ζ as δc(f), and in fact c′ = c(f ′), where
f ′ = f|K′ . Since K ′ is (q − 1)-connected (indeed contractible), we have that c′

is a coboundary, in particular (δc)′(ζ) = 0, so δc(f)(ζ) = 0.

Definition of the difference cochain. Suppose now f0, f1 : Kq → Y given,
and homotopic on Kq−1; let k : Kq−1 × I → Y be the homotopy. Consider the
product cell complex KI = K × I. Its q-skeleton is:

(KI)q = (Kq−1 × I) ∪ (Kq × {0, 1}),

and we see that the maps f0, f1 and k combine to define F : (KI)q → Y . It
is natural to consider the obstruction to extending F to (KI)q+1, namely the
cocycle c(F ) ∈ Cq+1(KI ;πq). Now, the assignment σ 7→ σ × I is a bijective
correspondence between q-cells of K and (q + 1)-cells of KI . Thus we may
consider the map that to each σ assigns c(F )(σ × I) ∈ πq. This defines a
cochain:

d(f0, k, f1) ∈ Cq(K;πq), d(f0, k, f1)(σ) = (−1)q+1c(F )(σ×I), σ ∈ Cq(K) a cell.

the deformation cochain. In the special case f0|Kq−1 = f1|Kq−1 , with k the ho-
motopy that doesn’t move anything, we use the notation d(f0, f1) ∈ Cq(K;πq),
and call it the difference cochain.

By definition, d(f0, k, f1) = 0 or d(f0, f1) = 0 mean that f0 ' f1 on Kq.

Two easy properties are: (i) invariance under mappings: if h : K ′ → K and
given f0, k, f1, with f ′0, k

′, f ′1 defined by composition with h, then:

h∗d(f0, k, f1) = d(f ′0, k
′, f ′1);

and (ii) the addition formula (or ‘stacking of homotopies’): given f0, f1, f2 :
Kq → Y , if f0 ' f1 and f1 ' f2 on Kq−1 (via homotopies k, k′ resp.)–from
which it follows that f0 ' f1 on Kq−1 (via the ‘concatenated homotopy’ k′′)–
the corresponding deformation cochains satisfy:

d(f0, k
′′, f2) = d(f0, k, f1) + d(f1, k

′, f2).

The cochain d(f0, k, f1) is not a cocycle in general; something more interest-
ing happens:
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Theorem 2, coboundary formula. δd(f0, k, f1) = c(f0)− c(f1).

Proof. Let τ ∈ Cq+1(K) be a cell, set d = d(f0, k, f1). Then:

(δd)(τ) = d(∂τ) = (−1)q+1c(F )((∂τ)×I) = (−1)q+1c(F )[∂(τ×I)−(−1)q+1(τ×∂I)]

= −c(F )[(τ × 1)− (τ × 0)] = [c(f0)− c(f1](τ),

where in the fourth equality we used the fact that c(F ) is a cocycle.

The following lemma is quite useful.

Lemma 1. Let f0 : Kq → Y and d ∈ Cq(K;πq) be given. Then we may find
f1 : Kq → Y such that f1|Kq−1 = f0|Kq−1 and d(f0, f1) = d.

Before proving this, we recall the standard cell decomposition of L = Sq:
one zero-cell (a point * on the equator), two closed q-cells E1, E0 (upper/lower
hemisphere), and one (closed) (q − 1)-cell the equator Sq−1. We claim that
given α ∈ πq(Y, y0) and a map f : (E0, ∗) → (Y, y0), we may find an extension
g : (L, ∗)→ (Y, y0) of f , which represents the homotopy class α.

To see this, let g0 : (L, ∗) → (Y, y0) be any map representing α. Since E0

is contractible, g0|E0
' f (say g0 at t = 0, f at t = 1.) Since E0 ⊂ L is a

subcomplex, the homotopy extends to all of L, yielding that g0 (at t = 0) is
homotopic to a map g : L→ Y (at t = 1), which equals f on E0. Since g (being
homotopic to g0 on L) also represents α, this proves the claim.

Proof of Lemma 1. The map f0 defines a map F0 : (Kq×0)∪(Kq−1×I)→ Y ,
F0(x, t) = f0(x). We seek an extension F of F0 to (K × I)q such that the value
of the obstruction cocycle c(F ) ∈ Cq+1(K × I;πq) on a cell τ × I, τ ∈ Cq(K),
equals (−1)q+1d(τ); for then d(f0, f1) = d, where f1 : Kq → Y is the map
defined by the extension F at t = 1.

To find this extension cell by cell, let τ be a q-cell of K, with characteristic
map hτ : (Dq, Sq−1)→ (Kq,Kq−1). We now think of another model for the cell
decomposition of Sq ≈ ∂(Dq × I), namely with q-cells:

E0 = (Dq × 0) ∪ (Sq−1 × I), E1 = Dq × 1.

Consider the composition of F0 with the restriction of hτ × id to E0:

E0
hτ×id−−−−→ (Kq × 0) ∪ (Kq−1 × I)

F0−→ Y.

By the claim discussed just before the proof, we may find an extension Fτ of
this composition to a map E0 ∪ E1 → Y representing the element (−1)q+1d(τ)
in πq(Y ). It suffices then to define F on τ × 1 as Fτ |E1

. This extends F0 to F
defined on (Kq × {0, 1}) ∪ (Kq−1 × I) = (K × I)q.

Next, for f ′ : Kq → Y we interpret the meaning of the vanishing of the coho-
mology class c̄(f) ∈ Hq+1(K;πq) of the obstruction cocycle c(f ′) (the ‘primary
obstruction class’ of f ′). Here f = f ′|Kq−1
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Theorem 3. Let f : Kq−1 → Y ; assume f extends to Kq. Then the set
{c(f ′)} ⊂ Cn+1(K;πq) of obstruction cocycles of all such extensions spans a
single cohomology class c̄(f) ∈ Hq+1(K;πq); and f admits an extension to
Kq+1 iff c̄(f) = 0.

Proof. (i) Let f0, f1 be two extensions of f to Kq. Then d(f0, f1) ∈
Cq(K;πq) is defined, and the coboundary formula show c(f0), c(f1) are coho-
mologous.

(ii) Let f0 be an extension of f to Kq, c ∈ Cq+1(K;πq) a cocycle cohomolo-
gous to c(f0); thus there exists a q-cochain d so that c(f0)− c = δd. By Lemma
1, we may find an extension f1 of f to a map Kq → Y so that d(f0, f1) = d.
Then the coboundary formula implies c(f0) = c.

(iii) If f extends to Kq+1 and f ′ is an extension, then f0 = f ′|Kq extends to

Kq+1, so c(f0) = 0, so c̄(f) = 0.
(iv) Conversely, assuming c̄(f) = 0, we have an extension f ′ of f to Kq such

that c(f ′) = 0. Thus f ′ is extendible to Kq+1.

Thus if f : Kq → Y is given, then f|K(q−1) extends to Kq+1 iff c(f) is a
coboundary. In terms of the stepwise extension process, this means: if we get to
a map f : Kq → Y and find that c(f) 6= 0 (so that we can’t extend f directly to
Kq+1), if c(f) is cohomologous to 0 it is possible to change f on the q-cells of K
(leaving it alone on Kq−1) to obtain a new map on Kq, which is extendible to
Kq+1. (A bit like rock climbing, of which Hassler Whitney was a practitioner.)

There is an analogous interpretation for the deformation cochains, giving
information on the extension of homotopies (of maps defined on all of K).

Theorem 4. Let f0, f1 : K → Y , and assume: f0|Kq−2 ' f1|Kq−2 via

k : Kq−2×I → Y . Assume k extends to a homotopy k′ from f0 to f1, defined on
Kq−1. Then the set {d(f0, k

′, f1)} of deformation cocycles of all such extensions
spans a single cohomology class in Zq(K;πq), defining d̄(f0, k, f1) ∈ Hq(K;πq).
(Note they are cocycles by the coboundary formula, since the obstructions
c(f0), c(f1) vanish, given f0, f1 are assumed globally defined on K.) The homo-
topy k extends to a homotopy f0|Kq ' f1|Kq iff d̄(f0, k, f1) = 0.

Thus if k is a homotopy from the restriction of f0 to Kq−1 to the restriction of
f1 to Kq−1, k|Kq−2×I extends to a homotopy on Kq from f0 to f1 iff d(f0, k, f1)
is a coboundary. (But we may need to modify the homotopy on the (q − 1)-
cells.) The corresponding result for the difference cochain is: if f0, f1 : K → Y
coincide on Kq−1, then f0|Kq ' f1|Kq (rel. Kq−2) iff the q-cocycle d(f0, f1) is
a coboundary.

Now recall that homotopies defined on a subcomplex (such as Kq) extend
to homotopies defined on all of K. We obtain:

Theorem 5. Let f0, f1 : K → Y , and assume f0 = f1 on Kq−1 (so d(f0, f1)
is defined). Then there exists f ′1 : K → Y homotopic to f0 on K (rel. Kq−2)
and coinciding with f1 on Kq iff the difference cocycle d(f0, f1) ∈ Zq(K,πq) is
a coboundary.
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This concludes ‘Step 1’ of the obstruction theory program.

Moving to Step 2, we make stronger assumptions on Y : path-connected,
simply-connected if q > 1, abelian π1 if q = 1 and, most important, (q − 1)-
connected: all homotopy groups πr are trivial for r = 0, 1, . . . q − 1 (q ≥ 1). We
also assume πq = πq(Y ) 6= 0.

This hypothesis implies that, defining f : K0 → Y arbitrarily, we can always
extend it to f : Kq → Y . And if f1, f2 : Kq → Y are two such extensions,
c(f1)− c(f2) ∈ Cq+1(K;πq) is a coboundary: namely, f1|Kq−1 ' f2|Kq−1 (again
by the hypothesis on Y ), say via a homotopy k, implies the q-cochain d(f1, k, f2)
is defined, and its coboundary is c(f1)− c(f2).

Definition: If f : Kq → Y is a (continuous) map, the obstruction class c̄ =
c̄(f) ∈ Hq+1(K;πq) is independent of f (as seen in the previous paragraph). We
call this class c̄ the primary obstruction class of the pair (K,Y ). Its vanishing is
necessary and sufficient for the extendability of maps from Kq → Y to Kq+1 →
Y .

This class is natural under maps h : K → K ′, and in particular a topological
invariant (independent of the cell decomposition of K.)

With the same hypotheses on Y , consider the problem: given maps f0, f1 :
K → Y , when are they homotopic? First, the assumptions on Y are easily seen
to imply:

Lemma 2. Let f0, f1 : K → Y . Then f0|Kq−1 ' f1|Kq−1 via a homotopy
k. If k, k′ are two such homotopies, the difference of q-cochains: d(f0, k, f1) −
d(f0, k

′, f1) (which is a cocycle, in view of the coboundary formula) is in fact a
coboundary.

Definition. The common cohomology class of the d(f0, k, f1) (which, as
just noted, is independent of k), denoted d̄(f0, f1) ∈ Hq(K,πq), is the primary
difference class of f0, f1. Its vanishing is necessary and sufficient for the existence
of a homotopy from f0|Kq to f1|Kq .

Analogous to Theorem 5, vanishing of d̄(f0, f1) is necessary and sufficient
for the existence of f ′1 : K → Y which coincides with f1 on Kq and is homotopic
to f0 on K.

The difference class d̄(f0, f1) has the properties:
(i) Naturality: given h : K → K ′ and f ′0, f

′
1 : K ′ → Y , and defining f0, f1 :

K → Y by composition with h, we have:

h∗d̄(f ′0, f
′
1) = d̄(f0, f1).

(ii) Addition formula: given f0, f1, f2 : K → Y , their primary difference classes
satisfy:

d̄(f0, f2) = d̄(f0, f1) + d̄(f1, f2).

APPLICATIONS: classification theorems for homotopy classes. (Same hy-
potheses on Y as in Step 2.)
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Lemma 3. Existence of maps with given primary difference class. Let f0 :
K → Y . Assume dim(K) ≤ q + 1. Then for each d ∈ Hq(K;πq) there exists a
map f1 : K → Y such that d̄(f0, f1) = d.

Proof. Let d′ ∈ Zq(K;πq) be a cocycle representing d. By Lemma 1, we
know f0|Kq−1 admits an extension f1 : Kq → Y with d(f0, f1) = d′. But then
the coboundary formula implies:

c(f0|Kq )− c(f1) = δ(f0, f1) = δd′ = 0.

Since f0 is defined on all of K, c(f0) = 0. Thus c(f1) = 0 as well, and f1 extends
to Kq+1 = K (since we assume dim(K) ≤ q + 1.)

Theorem 6: classification theorem. Let dim(K) = q, and fix some f0 : K →
Y (for example, a constant map). The assignment [f ] 7→ d̄(f, f0) defines a
bijection:

[K,Y ]→ Hq(K,πq).

Proof. (i) If f ' f ′ on K, d̄(f, f0) = d̄(f ′, f0); thus the map is well-defined.
(ii) If d̄(f, f0) = d̄(f ′, f0), then by the addition formula d̄(f, f ′) = 0. Since

K = Kq, recalling the interpretation of this vanishing (given right after the
definition of d̄) we see that f ′ ' f on K; thus the map is injective.

(iii) Given a cocycle d ∈ Zq(K;πq), by Lemma 1 we may find f : K → Y
extending f0|Kq−1 such that d̄(f0, f) = −[d] (cohomology class). Then the

addition formula yields d̄(f, f0) = d. This shows the map is surjective. .

In particular, consider the case where f0 is a constant map, f = cy0 (and Y
is a finite complex). Define the class d̄Y = d̄(cy0 , idY ) ∈ Hq(Y ;πq). (Say y0 is
a vertex of Y .) Since Y is connected, this cohomology class is independent of
the choice of y0. It is easy to see (by naturality) that if f : K → Y is any map,
we have: d̄(cy0 , f) = f∗d̄Y . Thus we have:

Corollary 1: Hopf-Whitney theorem. Let dim(K) = q, and assume Y is a
(q − 1)-connected complex and πq = πq(Y ) 6= 0. Then the map f 7→ f∗d̄Y
defines a bijection:

ψ : [K,Y ]→ Hq(K;πq).

This generalizes the original Hopf theorem (where Y = Sq and πq = Z.)

Remark 1. In the statement and proof of the Hopf-Whitney theorem, it is
enough to consider homotopies that are fixed on Kn−2. In general, assuming
Y is (q-1))-connected, denote by 〈K,Y 〉 the set of equivalence classes of maps
K → Y , where ‘equivalent’ means ‘homotopic by a homotopy fixing Kq−1’.
Then the natural map 〈K,Y 〉 → [K,Y ] is a bijection (see [Prasolov, p. 119].)
We’ll ignore this distinction in the notation, and just use [K,Y ], with ‘homotopy
constant on Kq−2’ left implicit.

Remark 2/Definition. Let Y be a (q − 1)-connected, path-connected sim-
plicial complex, q ≥ 2. Denoting by h : πq(Y ) → Hq(Y ) the Hurewicz iso-
morphism, we have h−1 ∈ Hom(Hq(Y ), πq(Y )). And since Hq−1(K) = 0, by
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the universal coefficient theorem we have Hq(Y ;G) ≈ Hom(Hq(Y );G), for any
abelian coefficient group G. In particular, let G = πq(Y ) = πq. We denote
by FY ∈ Hq(Y ;G) the class corresponding to h−1 under this isomorphism, the
fundamental class of Y .

Exercise. (i) Show that FY coincides with the class dY ∈ Hq(Y ;πq) defined
earlier (the primary difference class from a constant map to the identity).

(ii) Show that if Y is an oriented, (q−1)-connected manifold and πq(Y ) = Z
(for example, Y = Sq), this definition coincides with the more common defini-
tion of ‘fundamental class’.

Cohomology and maps to Eilenberg-McLane spaces K(G, q).

It turns out that, starting from the Hopf-Whitney theorem, we may relax
the dimension restriction on the domain complex K, at the cost of assuming the
target space Y has non-vanishing homotopy groups in exactly one dimension;
that is, by assuming Y is an Eilenberg-MacLane space K(G, q), for the abelian
group G. Recall Y = K(G, q) is a path-connected CW complex (unique up
to homotopy type, and usually infinite) with only one non-vanishing homotopy
group, namely πq(Y ) = G. That is, we have the following fundamental theorem:

Theorem 7. Let Y = K(G, q), K any finite simplicial complex. Denote by
FY ∈ Hq(Y ;G) the fundamental class of Y . The map

ϕ : [K,Y ]→ Hq(K;G), ϕ([f ]) = f∗FY

is a bijection.

Proof. (Following [Prasolov]). The idea is summarized in the following
beautiful diagram: 2

π(K,Y ) π(Kq, Y )

Hq(K;G) Hq(Kq;G)

i#

ϕ ψ

i∗

Here ψ is the Hopf-Whitney map (a bijection), i# and i∗ are induced by the
inclusion Kq ↪→ K.

First, i∗ is injective: the cocycles of dimension ≤ q in K are cocycles in Kq,
and if such a cocycle (say z) is cohomologous to zero in Kq, say z = ∂w where
w ∈ Cq−1(Kq;G), then in particular this is also true in Hq(K;G).

Second, i# is injective: if f, g : K → Y have homotopic restrictions to Kq,
then they are homotopic as maps K → Y , since the obstructons to extending
homotopies to higher-dimensional skeleta lie in cocycles with values in πr(Y )
with r > q, and those are assumed to vanish.

2We change notation here, writing π(K,Y ) for [K,Y ], since tikzcd doesn’t like square
brackets for some reason.
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Thus, to complete the diagram with the map ϕ (simultaneously showing it
is a bijection), it is enough to show that ψ maps the image of i# to the image
of i∗ (and then necessarily bijectively.)

To prove this, we use the model of Y = K(G, q) with (q-1)-skeleton a vertex
y0, and q-skeleton a wedge of q-spheres with common point y0 (one for each
generator of G.) Thus (by cellular approximation of maps) it is enough to con-
sider maps f : (Kq,Kq−1) → (Y, y0), up to homotopy constant on Kq−2. The
homotopy class of such f is in im(i#) iff f extends to Kq+1 (since the obstruc-
tion cocycles to further extension have image in trivial homotopy groups). In
that case, the obstruction cocycle c(f) ∈ Cq+1(K;G) vanishes. In view of the
coboundary formula: δd(f, cy0) = c(f)− c(cy0), we have δd(f, cy0) = 0 (since of
course c(cy0) = 0), thus d(f, cy0) is a cocycle in K. Recall that, by definition,
ψ([f ]) is the cohomology class of the cocycle d(f, cy0) in Hq(Kq;G). Since we
just showed this is also a cocycle in K, it follows that, indeed, ψ([f ]) ∈ im(i∗).

It remains to show that the map ϕ has the form claimed. Note that by
construction the map ϕ is natural: if h : K → K ′ induces h# : [K ′, Y ]→ [K,Y ]
and h∗ : Hq(K ′;G)→ Hq(K,G), the maps:

ϕK′ : [K ′, Y ]→ Hq(K ′;G), ϕK : [K,Y ]→ Hq(K;G)

satisfy: ϕK ◦ h# = h∗ ◦ ϕK′ .

For the model of Y = K(G, q) referred to above, it’s easy to see that
ϕY ([idY ]) = FY . Thus, for f : K → Y , we find:

ϕK([f ]) = (ϕK ◦ f#)(idY ) = (f∗ ◦ ϕY )(idY ) = f∗(FY ),

as claimed.

Sources. Most of this follows closely [Steenrod 1950, 32–27.] There, how-
ever, the existence of sections of fiber bundles is considered, which necessitates
introducing local coefficients. Here we deal with the simpler case of maps, and
only with absolute extensions (i.e., not relative to fixed existing maps on a sub-
complex L). This is the recommended source for most missing proofs. Some
proofs were learned from [G. Whitehead 1978, V.5, V.6], and there is also ma-
terial from [Prasolov.] Nothing in this note is remotely original of course, all
of it having been understood by the mid-1940s. (Mainly codified by S. Eilen-
berg, although understood at the time also by N.Steenrod, H.Whitney and
L.Pontrjagin, among others.)
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