
Chapter IV, Paragraph 1: The Euclidean rotation group SOn.

(A) The skew-field H of quaternions, H = {y1 + y2i+ y3j+ y4k; yl ∈ R}. (A
review.)

(B) The group of unit-norm quaternions double-covers SO3.

Consider the orthogonal decomposition H = R⊕ J , where J is the space of
imaginary quaternions, a three-dimensional vector space over R. Let G be the
group of unit quaternions (topologically: the three-sphere.) Given g ∈ G, define
ψg(x) = gxg−1. This linear isometry of H preserves R, and hence also J ; since G
is connected, ψg is an orientation-preserving isometry of J ≈ R3, i.e. an element
of SO3. It is easy to see that the kernel of the homomorphism v : g 7→ ψg is ±1
(since quaternions in the kernel commute with all imaginary quaternions, hence
must be real, with norm 1.) Thus this map v induces a continuous bijection
w : P 3 → SO3, hence a homeomorphism (since P 3 is compact.) In addition,
v : G = S3 → SO3 ≈ P 3 is the 2-to-1 universal covering map.

The following fact is used later. Let g = cosβ + k sinβ. Then ψg(i) =
i cos 2β + j sin 2β (easy quaternion calculation). Thus, restricted to the circle
cosβ + k sinβ, the map ω = χ ◦ v (where χ : SO3 → S2, χ(T ) = T (i) ∈ S2 for
T ∈ SO3) covers the circle {ai+ bk; a2 + b2 = 1} ⊂ S2 ⊂ J with degree 2.

Covering homotopy. We recall a differential topology fact (consequence
of the local form of submersions):

Lemma 1.1 Homotopies lift over submersions: That is, if ϕ : P p → Qq is a
smooth submersion (p ≥ q, P,Q compact manifolds) and we’re given f0 : R→ P
(R compact metric and f0 cont., or R compact manifold and f smooth) and a
homotopy gt : R→ Q with g0 = ϕ ◦ f0, then there exists a lift ft : R→ P of gt,
meaning ϕ ◦ ft = gt.

(For a proof, see [P, p.93-95].)

(C) The group SOn is a smooth manifold of dimension n(n − 1)/2. There
exists a smooth submersion SOn → Sn−1, with fibers diffeomorphic to SOn−1.

The fundamental group of SOn is Z2 if n ≥ 3. For n = 3 this was seen in
(B) above. This implies the result for n ≥ 3, since the homotopy exact sequence
of the fibration SOn−1 ↪→ SOn → Sn−1 is easily seen to imply π1(SOn) ∼
π1(SOn−1) if n ≥ 4. The maps S1 → SOn not homotopic to 0 may be described
as follows. An orthogonal decomposition En = E2 ⊕ En−2 (where E2 is any
two-dimensional subspace) defines an embedding SO2 ↪→ SOn.

Theorem 17. (i) Each h : S1 → SOn is homotopic (rel h−1(SO2)) to some
g : S1 → SO2.

(ii) A map g : S1 → SO2 is homotopic to a constant in SOn iff deg(g) is
even.

Proof. (i) Let χ : SOn → Sn−1 be the usual subnersion (χ(T ) = Te1.) Fix
a ∈ Sn−1, so χ−1(a) ∼ SOn−1 (rotations in the hyperplane orthogonal to a.)
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Claim. If f0 : Mr → SOn is smooth, r ≤ n− 2, there exists a homotopy ft
(rel. f−10 (SOn−1) of f0 in SOn so that f1(Mn) ⊂ SOn−1.

This follows since χ ◦ f0(Mr) is nowhere dense in Sn−1, so there exists a
homotopy gt of χ ◦ f0 in Sn−1 (rel. the preimage of a) so that g1 : Mr → Sn−1

is the constant map to a. Lifting this to a homotopy ft : Mr → SOn yields the
claim.

Now let Mr = S1 and apply the claim iteratively to the inclusions SOm−1 ↪→
SOm, down to m = 3 to finish the proof of (i).

Remark: This proof is a nice illustration of how one can get around the
‘cellular approximation theorem’ (which quickly implies the conclusion (i)) in
the smooth case.

To prove (ii), first observe that if g : S1 → SO2 is ' const. in SOn, then
this is so in SO3 as well. For then g extends to ĝ : D2 → SOn, and the claim in
part (i), applied (iteratively) to Mr = D2 shows ĝ is homotopic (rel. ĝ−1(SO3))
to a map h : D2 → SO3, which restricts to g on S1 = ∂D2.

So we need to show that g : S1 → SO2 ⊂ SO3 is ' const in SO3 iff deg(g)
is even. We use the double covering v : S3 → SO3. Recall from (A) in this
paragraph that Σ1 = v−1(SO2) is a circle in S3, mapping to SO2 with degree
2.

Assume deg(g) = n = 2m is even. Let h : S1 → Σ1 have degree m. Then
v ◦h : S1 → SO2 has degree 2m = n, hence is homotopic (in SO2, and a fortiori
in SO3) to g. Since h ' const. in S3, we have v ◦ h ' const in SO3; hence also
g ' const. in SO3.

Conversely, suppose g : S1 → SO2 is ' const. in SO3, via gt : S1 → SO3

(g1 = g, g0 ≡ q ∈ SO3). Pick p ∈ S3 so that v(p) = q, and let f0 : S1 → S3 be
the constant map to p. The homotopy gt lifts (over the submersion S3 → SO3)
to ft : S1 → S3. So v ◦ f1 = g1 = g, and f1 maps S1 to Σ1, a circle. Since
deg(v) = 2, it follows that deg(g) is even.

(D) The homotopy invariant β.

Let M1 be a compact one-dimensional manifold. To each homotopy class
of h : M1 → SOn we assign β(h) ∈ Z2, as follows: (i) if n ≥ 3: if M1 = S1,
β(h) = 0 if h ' const., β(h) = 1 otherwise. If M1 is not connected, we add the
β(h) mod 2 over the finitely many components. (ii) if n = 2: for M1 = S1, set
β(h) equal to the mod 2 reduction of deg(h); then add mod 2 over components.

Given two maps f, g : S1 → SOn, consider the product map h(x) = f(x)g(x)
(product in the group SOn.) We claim the following:

β(h) = β(f)β(g) (product in Z2.)

To see this, consider the map ϕ : T 2 → SOn, ϕ(x, y) = f(x)g(y). Fix a ∈ S1

such that f(a) = g(a) = e ∈ SOn (the identity) and define the maps from S1

to SOn:
fa(x) = (x, a), ga(x) = (a, x), ∆(x) = (x, x).
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Clearly, we have:

f = ϕ ◦ fa, g = ϕ ◦ ga, h = ϕ ◦∆.

Consider the cell structure in T 2 with one 0-cell (a), two 1-cells (the figure-eight
space S1 ∨ S1, two circles meeting at a) and one 2-cell. Clearly ∆ is homotopic
to the map ∆̂ from S1 to the figure eight, which maps S1 with degree 1 to each
circle of the figure-eight. Thus we have:

β(h) = β(ϕ ◦∆) = β(ϕ ◦ ∆̂) = β(ϕ ◦ fa) + β(ϕ ◦ ga) = β(f) + β(g).

(For the third equality, just recall β is the degree mod 2, for maps S1 → SO2.)
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Chapter IV, Paragraph 2: Classification of maps Σ3 → S2.

Theorem 18. Every map Sn → S1 for n ≥ 2 is nullhomotopic.
Proof: follows directly from the invariance of higher homotopy groups under

covering maps. (Or see [P, p.99-100 for a proof.])

Hopf mapping from the 3-sphere to the 2-sphere.

(A) We’ll be led to consider normal framings in E3 (with coordinates (y1, y2, y3))
of the unit circle in E2, parametrized as:

S1 ⊂ E2 × 0 ⊂ E3, S1 = {x = (cos θ, sin θ, 0); θ ∈ R}.

The normal space at x = (cos θ, sin θ, 0) ∈ S1 with coordinates (t1, t2) is:

N2
x = {y1 = (1 + t1) cos θ, y2 = (1 + t1) sin θ, y3 = t3},

and we have a background o.n. frame U(x) = {u1(x), u2(x)} = {x, e3(x)},
with e3 the third basis vector of E3, (And [P] regards both vectors as ‘parallel
translated’ to have basepoint x.)

We also have, for each r ∈ Z, the rotated frame Vr, with normal vectors at
x:

v1(x) = (cos rθ)u1(x) + (sin rθ)u2(x), v2(x) = (− sin rθ)u1(x) + (cos rθ)u2(x).

It is easy to see that, for c = (c1, c2) ∈ R2 small, the embedding of S1 into E3:

ηc(x) = x+ c1v1(x) + c2v2(x)

wraps around the original S1 r times; so it’s not hard to show from the definition
that the Hopf invariant of this frame is:

γ(S1, Vr) = Lk(S1, ηc(S
1)) = r.

Lemma 2.1: the Hopf map.
There exists a smooth submersion ω : Σ3 → S2 such that all preimages

ω−1(y), y ∈ S2, are circles, and for the Hopf invariant: γ(ω) = 1.

Proof. Let H denote the skew-field of quaternions (with coordinates y1 +
y2i+ y3j + y4k), G ⊂ H the group of unit norm quaternions (topologically the
sphere Σ3, isomorphic to SU2) and J ⊂ H the imaginary quaternions, spanned
over the real numbers by the unit quaternions i, j, k. For S2 we take the. unit
sphere in J .

Define ω : G → S2 by ω(g) = gig−1. Then if v : G → SO3 is the double
covering (v(g) = T if T (w) = gwg−1, w ∈ J) and χ : SO3 → S2 the submersion
χ(T ) = T (i), then ω = χ ◦ v, so ω is a submersion. All preimages are homeo-
morphic, and since the preimage of i is the circle {cos θ + i sin θ}, they are all
circles.
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To find the frame V (x), x ∈ S1, associated to the map ω, [P, p.101/102] uses
quaternions in a computation. The final result is that, relative to the background
normal frame {u1(x), u2(x)} described above, we have at x = cos θ + i sin θ ∈
ω−1(i):

v1(x) = (cos θ)u1(x) + (sin θ)u2(x), v2(x) = (− sin θ)u1(x) + (cos θ)u2(x).

so V (x) = V1(x), which implies γ(ω) = γ(S1, V1) = 1. .

Classification of mappings Σ3 → S2.

The Hopf map ω induces the homomorphism of homotopy groups:

ω∗ : πn(Σ3)→ πn(S2), [f ] 7→ [ω ◦ f ], f : Sn → Σ3.

Lemma 2.2: For n ≥ 3, ω∗ is an isomorphism.

Proof. Both parts of the proof appeal to Lemma 1.1 above (homotopies lift
over submersions.)

(i) We show ω∗ is injective. Let f : Sn → Σ3 be such that ω ◦ f : Sn → S2

is homotopic to a constant: there exists gt : Sn → S2 so that g0 = ω ◦ f, g1 ≡
c ∈ S2. Then we have a lift ft : Sn → Σ3 with f0 = f, ω ◦ ft = gt. Thus
f1(Sn) ⊂ ω−1(c), a circle. This implies f1 ' const., and hence also f ' const.

(ii) We show ω∗ is surjective. Given β ∈ πn(S2), we must find f : Sn → Σ3

such that [ω ◦ f ] = β.
Let Sn ⊂ En+1 with E+, E− the upper/lower hemispheres, intersecting at

Sn−1 = {xn+1 = 0}, with north/south poles p = en+1, q = −en+1.

In the homotopy class β, we may choose a representative g : Sn → S2

mapping E− to a point c ∈ S2 (since there exists a map of Sn homotopic to the
identity, taking E− to q.) We now need to find f : Sn → Σ3 with ω ◦ f = g.

For x ∈ Sn−1, let Γx be the half-meridian (=half great circle) of Sn defined
by p, x and q. Parametrize its intersection with E+ so that Γx ∩{xn+1 = 1− t}
corresponds to (x, t), x ∈ Sn−1, t ∈ [0, 1]. Defining gt : Sn−1 → S2 by gt(x) =
g(x, t), we have a homotopy with g1 ≡ c ∈ S2, g0 ≡ b ∈ S2, where b = g(p).
Pick a ∈ ω−1(b) and let f0 : Sn−1 → Σ3 be the constant map, f0(Sn−1) = {a}.
Thus g0 = ω ◦ f0 ≡ b.

We may lift the homotopy gt over ω starting at f0, obtaining ft : Sn−1 → Σ3

such that ω ◦ ft = gt. Using the same parameterization of Γx ∩ E+, we define
f : E+ → S2 via f(x, t) = ft(x). Thus ω ◦ f = g on E+. At t = 1, f maps Sn−1

to ω−1(c), a circle. Hence f|Sn−1 ' const (say d ∈ ω−1(c)). This homotopy
takes place in ω−1(c), and we use it to extend f ‘radially’ to E−, with values in
ω−1(c) and mapping q to d. Since g ≡ c on E−, we have ω ◦ f = g on E−. All
told, we have found f : Sn → Σ3 with ω ◦ f = g.

Theorem 19. The homomorphism γ : Π1
2 → Z (Hopf invariant of a framed

1-manifold in E3) is an isomorphism. Thus f0, f1 : Σ3 → S2 are homotopic iff
γ(f0) = γ(f1).
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Proof. (i) γ is mono. Let g : Σ3 → S2 satisfy γ(g) = 0. We must show
g ' const. By Lemma 2, there exists f : Σ3 → Σ3 such that ω ◦ f ' g; thus
γ(ω ◦f) = 0. But γ(ω ◦f) = γ(ω)deg(f); thus deg(f) = 0. So f ' const., hence
g ' const.

(ii) Given n ∈ Z, let f : Σ3 → Σ3 satisfy deg(f) = n. Then if g = ω ◦ f we
have γ(ω ◦ f) = γ(ω)deg(f) = n. Thus γ is an epimorphism.

(B) Corollary. (i) Each one-dimensional framed submanifold (M1, U) of
E3 is frame-cobordant to (S1, Vr), for some r ∈ Z.

Proof. By the theorem, γ(M1, U) = r = γ(S1, Vr) implies (M1, U) ∼
(S1, Vr).

(ii) For any framed (M1,W ) ⊂ En+1, we have (M1,W ) ∼ En−2(S1, Vr) for
some r ∈ Z. (En−2 denotes iterated suspension.)

Proof. First use the fact any framed submanifold of En+1 is fr-cobordant to
a connected one: (M1,W ) ∼ (S1, U). This is a consequence of part (i).

Recall now that, by the Freudenthal suspension theorem (Theorem 11), E :
Πk

n → Πk
n+1 is an epimorphism if n ≥ k + 1. In particular, E : Π1

n → Π1
n+1 is

epi, if n ≥ 2. Iterating, we find that: En−2 : Π1
2 → Π1

n is an epimorphism. The
conclusion now follows from part (i).
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