Chapter IV, Paragraph 1: The Euclidean rotation group SO,,.

(A) The skew-field H of quaternions, H = {y' +y%i +v%j +y*k;y' € R}. (A
review.)

(B) The group of unit-norm quaternions double-covers SOs.

Consider the orthogonal decomposition H = R @ .J, where J is the space of
imaginary quaternions, a three-dimensional vector space over R. Let G be the
group of unit quaternions (topologically: the three-sphere.) Given g € G, define
Yy(x) = grg™'. This linear isometry of H preserves R, and hence also J; since G
is connected, 1, is an orientation-preserving isometry of J &~ R3, i.e. an element
of §O;3. It is easy to see that the kernel of the homomorphism v : g — 1) is &1
(since quaternions in the kernel commute with all imaginary quaternions, hence
must be real, with norm 1.) Thus this map v induces a continuous bijection
w : P? — SOz, hence a homeomorphism (since P? is compact.) In addition,
v:G =82 SO3 =~ P3 is the 2-to-1 universal covering map.

The following fact is used later. Let g = cos3 + ksinf8. Then 94(i) =
icos28 + jsin 28 (easy quaternion calculation). Thus, restricted to the circle
cos 3 + ksin 3, the map w = y ov (where x : SO3 — S2%, x(T) = T(i) € S? for
T € SO3) covers the circle {ai + bk;a? + b* = 1} C S? C J with degree 2.

Covering homotopy. We recall a differential topology fact (consequence
of the local form of submersions):

Lemma 1.1 Homotopies lift over submersions: That is, if ¢ : PP — Q% is a
smooth submersion (p > ¢, P, Q) compact manifolds) and we’re given fo: R — P
(R compact metric and fy cont., or R compact manifold and f smooth) and a
homotopy g; : R — @ with gg = ¢ o fy, then there exists a lift f; : R — P of gy,
meaning ¢ o f; = g;.

(For a proof, see [P, p.93-95].)

(C) The group SO,, is a smooth manifold of dimension n(n — 1)/2. There
exists a smooth submersion SO,, — S"~!, with fibers diffeomorphic to SO,,_1.

The fundamental group of SO, is Zy if n > 3. For n = 3 this was seen in
(B) above. This implies the result for n > 3, since the homotopy exact sequence
of the fibration SO,,_; — SO, — S"! is easily seen to imply m(SO,,) ~
71(SO,,_1) if n > 4. The maps S' — SO,, not homotopic to 0 may be described
as follows. An orthogonal decomposition E" = E? @ E"~2 (where E? is any
two-dimensional subspace) defines an embedding SOy — SO,,.

Theorem 17. (i) Each h : S* — SO, is homotopic (rel h=1(S03)) to some
g: St — SOs.

(ii) A map g : S — SO, is homotopic to a constant in SO, iff deg(g) is
even.

Proof. (i) Let x : SO, — S™~! be the usual subnersion (x(T') = Te;.) Fix
a € S" 1 so x7!(a) ~ SO, _1 (rotations in the hyperplane orthogonal to a.)



Claim. If fo: M™ — SO, is smooth, r < n — 2, there exists a homotopy f;
(rel. fgl(SOn,l) of fo in SO, so that fi(M™) C SO,_1.

This follows since x o fo(M") is nowhere dense in S"~!, so there exists a
homotopy g; of x o fo in S~ ! (rel. the preimage of a) so that g; : M" — S"~1
is the constant map to a. Lifting this to a homotopy f; : M" — SO,, yields the
claim.

Now let M" = S' and apply the claim iteratively to the inclusions SO,,_, <
SOy, down to m = 3 to finish the proof of (i).

Remark: This proof is a nice illustration of how one can get around the
‘cellular approximation theorem’ (which quickly implies the conclusion (i)) in
the smooth case.

To prove (ii), first observe that if g : S' — SO; is ~ const. in SO,,, then
this is so in SO3 as well. For then g extends to § : D?> — SO,,, and the claim in
part (i), applied (iteratively) to M" = D? shows ¢ is homotopic (rel. §=1(SO3))
to a map h : D? — SOz, which restricts to g on S* = 9D2.

So we need to show that g : St — SOy C SO3 is ~ const in SOj iff deg(g)
is even. We use the double covering v : S — SO3. Recall from (A) in this
paragraph that X! = v~1(SO0,) is a circle in S®, mapping to SO, with degree
2.

Assume deg(g) = n = 2m is even. Let h : ST — X! have degree m. Then
voh : S — SO, has degree 2m = n, hence is homotopic (in SOs, and a fortiori
in SO3) to g. Since h ~ const. in S3, we have v o h ~ const in SO3; hence also
g ~ const. in SO3.

Conversely, suppose g : S — SO, is ~ const. in SO3, via ¢; : S = SOs
(91 = 9,90 = q € SO3). Pick p € S so that v(p) = ¢, and let fo : ST — S3 be
the constant map to p. The homotopy g; lifts (over the submersion S® — SO3)
to f; : S — 83. Sowo fi = g1 =g, and f; maps S to X!, a circle. Since
deg(v) = 2, it follows that deg(g) is even. O

(D) The homotopy invariant £.

Let M"' be a compact one-dimensional manifold. To each homotopy class
of h: M' — SO,, we assign 8(h) € Zy, as follows: (i) if n > 3: if M! = St
B(h) = 0 if h ~ const., B(h) = 1 otherwise. If M is not connected, we add the
B(h) mod 2 over the finitely many components. (ii) if n = 2: for M! = S!, set
B(h) equal to the mod 2 reduction of deg(h); then add mod 2 over components.

Given two maps f,g : S* — SO,,, consider the product map h(z) = f(z)g(z)
(product in the group SO,,.) We claim the following:

B(h) = B(f)B(g) (product in Zs.)

To see this, consider the map ¢ : 7% — SO, ¢(z,y) = f(z)g(y). Fix a € S*
such that f(a) = g(a) = e € SO,, (the identity) and define the maps from S*
to SO,,:

fa(x) - (1‘,&), ga(x) = (Cl,l‘), A(x) = (a:,x)



Clearly, we have:

f=vofs, g=¢ogs, h=poA.

Consider the cell structure in 72 with one 0-cell (a), two 1-cells (the figure-eight
space StV S, two circles meeting at a) and one 2-cell. Clearly A is homotopic
to the map A from S! to the figure eight, which maps S* with degree 1 to each
circle of the figure-eight. Thus we have:

B(h) = BlpoA)=BlpoA)=B(po fu) + Blyoga) = B(f) + Blg).

(For the third equality, just recall 3 is the degree mod 2, for maps S* — SO,.)
O



Chapter IV, Paragraph 2: Classification of maps X2 — S2.

Theorem 18. Every map S™ — S! for n > 2 is nullhomotopic.
Proof: follows directly from the invariance of higher homotopy groups under
covering maps. (Or see [P, p.99-100 for a proof.)])

Hopf mapping from the 3-sphere to the 2-sphere.
(A) We'll be led to consider normal framings in E? (with coordinates (y!, 32, y%))
of the unit circle in E?, parametrized as:
S'cE*x0c E3 S'={x=(cosh,sinh,0);0 € R}.
The normal space at = = (cosf,sin#,0) € S* with coordinates (t1,ts) is:

NZ={y1 = (1 +1t")cosb,y” = (1+t")sin6,y*> = t*},

and we have a background o.n. frame U(z) = {ui(z),u2(z)} = {x,e3(x)},
with ez the third basis vector of E3, (And [P] regards both vectors as ‘parallel
translated’ to have basepoint x.)

We also have, for each r € Z, the rotated frame V,., with normal vectors at
x:

v1(z) = (cosTO)ur(x) + (sinr@)us(x), wvo(x) = (—sinrd)ui(x) + (cosr)ua(x).
It is easy to see that, for ¢ = (c1, c2) € R? small, the embedding of S! into E3:
Ne(x) = x + crv1(x) + cava(x)

wraps around the original S' 7 times; so it’s not hard to show from the definition
that the Hopf invariant of this frame is:

v(8Y,V;) = Lk(S", n(S1)) = .

Lemma 2.1: the Hopf map.
There exists a smooth submersion w : ¥3 — S2 such that all preimages
w™(y),y € S?, are circles, and for the Hopf invariant: v(w) = 1.

Proof. Let H denote the skew-field of quaternions (with coordinates y' +
2 . 3 . 4 . . .
y*i +y°j + y*k), G C H the group of unit norm quaternions (topologically the
sphere Y3, isomorphic to SUs) and J C H the imaginary quaternions, spanned
over the real numbers by the unit quaternions 3, j, k. For S? we take the. unit
sphere in J.

Define w : G — 5% by w(g) = gig~!. Then if v : G — SO3 is the double
covering (v(g) =T if T(w) = gwg™',w € J) and y : SO3 — S? the submersion
x(T) = T(i), then w = x o v, so w is a submersion. All preimages are homeo-
morphic, and since the preimage of i is the circle {cosf + isin 6}, they are all
circles.



To find the frame V (x),z € S, associated to the map w, [P, p.101/102] uses
quaternions in a computation. The final result is that, relative to the background

normal frame {uj(z),uz(z)} described above, we have at = cos@ + isinf €
wL(i):

v1(z) = (cos Q)ug (z) + (sinB)uz(x), wvo(x) = (—sinB)ug(z) + (cosO)us(x).
so V(x) = Vi(z), which implies v(w) = v(S*, V4) = 1. O.
Classification of mappings %3 — 52,

The Hopf map w induces the homomorphism of homotopy groups:
We : T (Z%) = ma(S?),  [f] [wo f], f:8™— X3
Lemma 2.2: For n > 3, w, is an isomorphism.

Proof. Both parts of the proof appeal to Lemma 1.1 above (homotopies lift
over submersions.)

(i) We show w, is injective. Let f : S™ — 32 be such that wo f: S" — S?
is homotopic to a constant: there exists g; : S™ — S2 so that go = wo f,g1 =
c € S%. Then we have a lift f; : S — X3 with fo = f,wo f; = ¢;. Thus
f1(S™) C w™(e), a circle. This implies f; =~ const., and hence also f ~ const.

(i) We show w, is surjective. Given § € m,(S?), we must find f : S" — ¥3
such that [wo f] = S.

Let S® C E"! with E,, E_ the upper/lower hemispheres, intersecting at
S = {x, 11 = 0}, with north/south poles p = e,,4+1,¢ = —€,41.

In the homotopy class 3, we may choose a representative g : S™ — 5?2
mapping E_ to a point ¢ € S? (since there exists a map of S™ homotopic to the
identity, taking E_ to ¢.) We now need to find f : S" — 2 with wo f = g.

For z € S~ !, let ', be the half-meridian (=half great circle) of S™ defined
by p,x and g. Parametrize its intersection with F so that I'y N{z,41 =1 -1t}
corresponds to (z,t),x € S~ t € [0,1]. Defining g, : S"~! — 52 by g(z) =
g(z,t), we have a homotopy with g; = ¢ € S?, go = b € 5%, where b = g(p).
Pick a € w™!(b) and let fo: S"~! — ¥3 be the constant map, fo(S" ') = {a}.
Thus gg =wo fo =b.

We may lift the homotopy g; over w starting at fy, obtaining f; : S~ — 33
such that w o f; = ¢;. Using the same parameterization of I'; N E, we define
f:E. — S?via f(z,t) = fi(x). Thuswof=gon Ey. Att=1, f maps S~ !
to w™'(c), a circle. Hence fign-1 =~ const (say d € w™!(c)). This homotopy
takes place in w™!(c), and we use it to extend f ‘radially’ to E_, with values in
w™1(¢) and mapping ¢ to d. Since g =con E_, we have wo f = g on E_. All
told, we have found f: S" — X3 withwo f =g¢. O

Theorem 19. The homomorphism v : I} — Z (Hopf invariant of a framed
I-manifold in E3) is an isomorphism. Thus fo, fi : ¥° — S? are homotopic iff

v(fo) = (f1)-



Proof. (i) v is mono. Let g : ¥* — S? satisfy v(g) = 0. We must show
g ~ const. By Lemma 2, there exists f : ¥ — ¥3 such that wo f ~ g; thus
Y(wo f) =0. But y(wo f) = y(w)deg(f); thus deg(f) = 0. So f ~ const., hence
g =~ const.

(i) Given n € Z, let f : 3 — X3 satisfy deg(f) = n. Then if g = wo f we
have y(w o f) = y(w)deg(f) = n. Thus + is an epimorphism. O

(B) Corollary. (i) Each one-dimensional framed submanifold (M?!,U) of
E3 is frame-cobordant to (S!,V,), for some r € Z.

Proof. By the theorem, v(M',U) = r = ~(5,V,) implies (M, U) ~
(S, V).

(ii) For any framed (M, W) C E"*1, we have (M', W) ~ E"~2(S1,V,) for
some r € Z. (E"~2 denotes iterated suspension.)

Proof. First use the fact any framed submanifold of E"*! is fr-cobordant to
a connected one: (M', W) ~ (S',U). This is a consequence of part (i).

Recall now that, by the Freudenthal suspension theorem (Theorem 11), E :
k. — H’fH_l is an epimorphism if n > k + 1. In particular, E : I}, — II} | is
epi, if n > 2. Tterating, we find that: E"~2 : II} — II} is an epimorphism. The
conclusion now follows from part (i). O



