CURVATURE UNDER CONFORMAL CHANGE OF METRIC

We consider a conformal change $\tilde{g}=e^{2 f} g$. From the usual formula for Christoffel symbols, we find:

$$
\tilde{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+f_{j} \delta_{i}^{k}+f_{i} \delta_{j}^{k}-f^{k} g_{i j}
$$

which translates to:

$$
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+T(X, Y)
$$

where T is the symmetric $(2,1)$ tensor:

$$
T(X, Y)=(X f) Y+(Y f) X-\langle X, Y\rangle \nabla f
$$

Turning to the $(3,1)$ curvature $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$, we find (by iterating the above, and after cancellations):
$\tilde{R}(X, Y) Z=R(X, Y) Z+\left(\nabla_{X} T\right)(Y, Z)-\left(\nabla_{Y} T\right)(X, Z)+T(X, T(Y, Z))-T(Y, T(X, Z))$.
Expressed in terms of f, the second-order terms are (with $H f$ the Hessian):

$$
\left(\nabla_{X} T\right)(Y, Z)=H f(X, Y) Z+H f(X, Z) Y-\langle Y, Z\rangle \nabla_{X} \nabla f
$$

$\left(\nabla_{X} T\right)(Y, Z)-\left(\nabla_{Y} T\right)(X, Z)=H f(X, Z) Y-H f(Y, Z) X-\langle Y, Z\rangle \nabla_{X} \nabla f+\langle X, Z\rangle \nabla_{Y} \nabla f$.
For the quadratic first-order terms, we find:

$$
\begin{gathered}
T(X, T(Y, Z))-T(Y, T(X, Z)) \\
=(Y f)(Z f) X-(X f)(Z f) Y+\langle Y, Z\rangle(X f) \nabla f-\langle X, Z\rangle(Y f) \nabla f \\
-|\nabla f|^{2}(\langle Y, Z\rangle X-\langle X, Z\rangle Y)
\end{gathered}
$$

The symmetries in this expression become evident when we consider the $(4,0)$ curvature, taking g-inner product with W :

$$
\begin{gathered}
e^{-2 f} \tilde{R}(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle \\
-H f(X, W)\langle Y, Z\rangle+H f(Y, W)\langle X, Z\rangle-\langle X, W\rangle H f(Y, Z)+\langle Y, W\rangle H f(Y, Z) \\
+\langle X, W\rangle(Y f)(Z f)-\langle Y, W\rangle(X f)(Z f)+(X f)(W f)\langle Y, Z\rangle-(Y f)(W f)\langle X, Z\rangle \\
-|\nabla f|^{2}(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle)
\end{gathered}
$$

The second line involves the symmetric $(2,0)$ tensor defined as:

$$
(d f \circ d f)(X, Y)=(X f)(Y f)
$$

Now recall the definition of the Kulkarni-Nomizu product, which associates to two symmetric 2-tensors h, k an algebraic (4,0) curvature tensor, in a symmetric way:
$(h ® k)(X, Y, Z, W)=h(X, W) k(Y, Z)-h(Y, W) k(X, Z)+k(X, W) h(Y, Z)-k(Y, W) h(X, Z)$.

We see immediately that the conformally changed $(4,0)$ curvature is:

$$
\begin{gathered}
e^{-2 f} \tilde{R}=R-H f \otimes g+(d f \circ d f) \boxtimes g-|\nabla f|^{2} \frac{g \boxtimes g}{2} \\
=R-\left[H f-(d f \circ d f)+(1 / 2)|d f|^{2} g\right] \otimes g
\end{gathered}
$$

The Ricci and Scalar traces of a K-N product (w.r.t. g) are easily computed:

$$
\begin{gathered}
\operatorname{Ric}_{g}(h \boxtimes k)=\left(t r_{g} h\right) k+\left(t r_{g} k\right) h-(h \bullet k+k \bullet h), \\
S c a l_{g}(h \boxtimes k)=\left(t r_{g} h\right)\left(t r_{g} k\right)-\langle h, k\rangle_{g}
\end{gathered}
$$

where $(h \bullet k)(X, Y)=\sum_{i} h\left(X, e_{i}\right) k\left(e_{i}, Y\right),\left(e_{i}\right) g$-o.n. In particular, when one of the bilinear forms is the metric:

$$
\begin{gathered}
\operatorname{Ric}_{g}(h \boxtimes g)=(n-2) h+\left(t r_{g} h\right) g \\
S_{c a l}(h \boxtimes g)=2(n-1) t r_{g} h
\end{gathered}
$$

Specializing to the case on hand: note the o.n. frame for \tilde{g} corresponding to $\left(e_{i}\right)$ is $e^{-f} e_{i}$, so:

$$
\widetilde{\operatorname{Ric}}(X, Y)=e^{-2 f} \sum_{i} \tilde{R}\left(X, e_{i}, e_{i}, Y\right)=\operatorname{Ric}_{g}\left(e^{-2 f} \tilde{R}\right)(X, Y)
$$

and $\operatorname{tr}_{g}\left[H f-(d f \circ d f)+(1 / 2)|d f|^{2} g\right]=\Delta f+\frac{n-2}{2}|d f|^{2}$ so:

$$
\begin{gathered}
\widetilde{R i c}=\operatorname{Ric}-(n-2)\left[H f-(d f \circ d f)+\frac{1}{2}|d f|^{2} g\right]-\left[\Delta f+\frac{n-2}{2}|d f|^{2}\right] g \\
\widetilde{R i c}=\operatorname{Ric}-(n-2)[H f-(d f \circ d f)]-\left[\Delta_{g} f+(n-2)|d f|^{2}\right] g
\end{gathered}
$$

a surprisingly simple formula (cp. [LP87], (2.5)). Turning to the scalar curvature, we have:

$$
\begin{gathered}
\tilde{S}=\sum_{j} e^{-2 f} \widetilde{\operatorname{Ric}}\left(e_{j}, e_{j}\right)=e^{-2 f}\left\{S_{g}-(n-2)\left[\Delta f+(n-1)|d f|^{2}\right]-n \Delta f\right\} \\
\tilde{S}=e^{-2 f}\left[S_{g}-2(n-1) \Delta f-(n-1)(n-2)|d f|^{2}\right]
\end{gathered}
$$

(Cf. [LP87], (2.6).) Making the change of variable $e^{2 f}=u^{\frac{4}{n-2}}$ (where $u>0$), we find:

$$
\begin{gathered}
\tilde{S}=u^{-\frac{4}{n-2}}\left(S_{g}-a_{n} \frac{\Delta u}{u}\right), \quad a_{n}=\frac{4(n-1)}{n-2} \\
\tilde{S}=u^{-\frac{n+2}{n-2}}\left(S_{g} u-a_{n} \Delta u\right)=u^{-\frac{n+2}{n-2}} L_{g} u
\end{gathered}
$$

where $L_{g} u=-a_{n} \Delta_{g} u+S_{g} u$ is the conformal Laplacian of g.
For $\tilde{g}=u^{4 / n-2} g$, the Ricci curvature is:

$$
\widetilde{R i c}=R i c-2 \frac{H u}{u}+\frac{2 n}{n-2} \frac{d u \circ d u}{u^{2}}-\frac{2}{n-2}\left(\frac{\Delta u}{u}+\frac{|d u|^{2}}{u^{2}}\right) g .
$$

We can eliminate the $d f \circ d f$ term in the expression for $\widetilde{\text { Ric }}$ by writing the new metric in the form $\tilde{g}=\phi^{-2} g$ (so $e^{2 f}=\phi^{-2}$). We find:

$$
\widetilde{R i c}=R i c+\phi^{-1}\left[(n-2) H \phi-(n-1) \frac{|d \phi|_{g}^{2}}{\phi} g+(\Delta \phi) g\right] .
$$

And for the trace-free Ricci tensors:

$$
\widetilde{R i c}^{t f}=\operatorname{Ric}^{t f}+(n-2) \frac{(H \phi)^{t f}}{\phi}
$$

Example: metrics conformal to the euclidean metric in R^{n}, polar coordinates $(r, \omega), u=u(r)$.

With $d s^{2}=d r^{2}+r^{2} d \omega^{2}$, for the Hessian we have for the euclidean metric (where ∂_{ω} is a tangent vector to $S^{n-1},\left|\partial_{\omega}\right|=r$):

$$
H u\left(\partial_{r}, \partial_{r}\right)=u^{\prime \prime}(r), \quad H u\left(\partial_{r}, \partial_{\omega}\right)=0, \quad H u\left(\partial_{\omega}, \partial_{\omega}\right)=r u^{\prime}
$$

And for the Ricci curvature of \tilde{g}, we have from the above:

$$
\begin{gathered}
\widetilde{\operatorname{Ric}}\left(\partial_{r}, \partial_{r}\right)=-\frac{2(n-1)}{n-2}\left(\frac{u^{\prime \prime}}{u}+\frac{u^{\prime}}{r u}-\frac{\left(u^{\prime}\right)^{2}}{u^{2}}\right), \quad \widetilde{\operatorname{Ric}}\left(\partial_{r}, \partial_{\omega}\right)=0 \\
\widetilde{\operatorname{Ric}}\left(\frac{\partial_{\omega}}{r}, \frac{\partial_{\omega}}{r}\right)=-\frac{2}{n-2}\left(\frac{u^{\prime \prime}}{u}+(2 n-3) \frac{u^{\prime}}{r u}+\frac{\left(u^{\prime}\right)^{2}}{u^{2}}\right)
\end{gathered}
$$

As a check, we find as expected:

$$
u^{4 / n-2} \tilde{S}=\widetilde{\operatorname{Ric}}\left(\partial_{r}, \partial_{r}\right)+\sum_{i} \widetilde{\operatorname{Ric}}\left(\frac{\partial_{\omega_{i}}}{r}, \frac{\partial_{\omega_{i}}}{r}\right)=-a_{n}\left(\frac{u^{\prime \prime}}{u}+\frac{n-1}{r} \frac{u^{\prime}}{u}\right)
$$

Example: Spatial Schwarzschild metric. The one-parameter family of ndimensional spatial Schwarzschild metrics is given in original coordinates as the metric outside a ball in R^{n} (with polar coordinates (s, ω)):

$$
g_{m}=\frac{d s^{2}}{1-\frac{2 m}{s^{n-2}}}+s^{2} d \omega^{2}, \quad s>(2 m)^{1 / n-2}
$$

The change of coordinates to 'isotropic coordinates' (r, ω) expresses g_{m} in conformally flat form:

$$
g_{m}=u(r)^{4 / n-2}\left(d r^{2}+r^{2} d \omega^{2}\right), \quad u(r)=1+\frac{m}{2 r^{n-2}}, \quad s=r\left(1+\frac{m}{2 r^{n-2}}\right)^{2 / n-2}, \quad r>(m / 2)^{1 / n-2}
$$

Exercise: Check that this coordinate change $s=s(r)$ indeed changes the form of the metric g_{m} as described. Hint: The coordinate change is suggested by the $d \omega^{2}$ part of the metric, so what needs to be checked is:

$$
\frac{d s}{\left(1-\frac{2 m}{s^{n-2}}\right)^{1 / 2}}=\left(1+\frac{m}{2 r^{n-2}}\right)^{2 / n-2} d r
$$

Exercise: Use the formulas derived above to compute the expressions for the Ricci curvature of g_{m} :

$$
\begin{aligned}
\operatorname{Ric}\left(\partial_{r}, \partial_{r}\right)= & -\frac{m(n-1)(n-2)}{r^{n}}\left(1+\frac{m}{2 r^{n-2}}\right)^{-2}, \quad \operatorname{Ric}\left(\partial_{r}, \partial_{\omega}\right)=0 \\
& \operatorname{Ric}\left(\frac{\partial_{\omega}}{r}, \frac{\partial_{\omega}}{r}\right)=\frac{m(n-2)}{r^{n}}\left(1+\frac{m}{2 r^{n-2}}\right)^{-2}
\end{aligned}
$$

As a check, confirm that (as expected from $\Delta_{0} u=0$), the scalar curvature vanishes:

$$
S=u^{-4 / n-2}\left(\operatorname{Ric}\left(\partial_{r}, \partial_{r}\right)+\sum_{i} \operatorname{Ric}\left(\frac{\partial_{\omega_{i}}}{r}, \frac{\partial_{\omega_{i}}}{r}\right)\right)=0
$$

Example: the ADM mass of spatial Schwarzschild.

$$
g_{m}=\frac{d r^{2}}{1-\frac{2 m}{r^{n-2}}}+r^{2} d \omega^{2}=\left(1+\frac{2 m}{r^{n-2}}+O_{2}\left(r^{-n+1}\right)\right) d r^{2}+r^{2} d \omega^{2}
$$

So the difference with the euclidean metric is:

$$
e=e_{i j} d x^{i} d x^{j}=\left(\frac{2 m}{r^{n-2}}+O_{2}\left(r^{-n+1}\right)\right) d r^{2}, \quad e_{i j}=2 m \frac{x^{i} x^{j}}{r^{n}}+O_{2}\left(r^{1-n}\right)
$$

since $d r^{2}=\frac{x^{i} x^{j}}{r^{2}} d x^{i} d x^{j}$.
The mass integrand 1 -form is $\mu=\left(e_{i j, i}-e_{i i, j}\right) d x^{j}$ (with summation convention). We compute the first partial derivatives:

$$
e_{i j, k}=\frac{2 m}{r^{n}}\left(\delta_{i k} x^{j}+\delta_{j k} x^{i}-n \frac{x^{i} x^{j} x^{k}}{r^{2}}\right)+O\left(r^{-n}\right)
$$

This gives for the mass 1-form:

$$
\mu=\frac{2 m(n-1)}{r^{n}} x^{i} d x^{i}+O\left(r^{-n}\right)
$$

So the surface integral in the definition of ADM mass is (with $\left.\nu^{i}=x^{i} / r\right)$:

$$
\oint_{S_{r}} \mu[\nu] d \sigma_{r}=2 m(n-1) \oint_{S_{r}}\left(\frac{x^{i} x^{i}}{r^{n+1}}+O\left(r^{-n}\right)\right) r^{n-1} d \omega .
$$

So we see that:

$$
\lim _{r \rightarrow \infty} \oint_{S_{r}} \mu[\nu] d \sigma_{r}=2 m(n-1) \omega_{n-1}
$$

(ω_{n-1} is the area of the $(n-1)$-sphere, so $\omega_{2}=4 \pi$.). This explains the normalization constant in the definition of $m_{A D M}$. For the metrics g_{m} :

$$
m_{A D M}\left(g_{m}\right)=\frac{1}{2(n-1) \omega_{n-1}} \lim _{r \rightarrow \infty} \oint_{S_{r}} \mu[\nu] d \sigma_{r}=m
$$

Example: Obata's Theorem: A conformal metric g on S^{n} of constant scalar curvature must have constant (sectional) curvature, and hence be isometric to the standard sphere (up to scaling).

Proof. Write $g_{c a n}=\phi^{-2} g$, where $g_{c a n}$ is the standard metric. Then, denoting by $B=$ Ric $-\frac{1}{n} S g$ the trace-free Ricci tensor, which vanishes for the standard metric, we find:

$$
0=B+(n-2) \phi^{-1}\left(H \phi-\frac{\Delta \phi}{n} g\right) .
$$

Integrating over S^{n} :

$$
\int_{S^{n}} \phi|B|_{g}^{2} d V_{g}=-(n-2) \int_{S^{n}}\left\langle B, H \phi-\frac{\Delta \phi}{n} g\right\rangle d V_{g}=-(n-2) \int_{S^{n}}\langle B, H \phi\rangle d V_{g},
$$

since B is trace-free. Since the scalar curvature S_{g} is constant, the contracted second Bianchi identity:

$$
d S-2 \delta(R i c)=0
$$

implies $\delta($ Ric $)=0$, and hence also $\delta B=0$. But letting α be the 1 -form $\alpha(X)=B(X, \nabla \phi)$, we find:

$$
\delta \alpha=(\delta B)(\nabla \phi)+\langle B, H \phi\rangle .
$$

Thus the last integral vanishes, so $B \equiv 0$. Since the Weyl tensor of g also vanishes, we find that g is a constant curvature metric, hence necessarily the standard metric on S^{n}, up to scaling.

