
CURVATURE UNDER CONFORMAL CHANGE OF METRIC

We consider a conformal change g̃ = e2fg. From the usual formula for
Christoffel symbols, we find:

Γ̃k
ij = Γk

ij + fjδ
k
i + fiδ

k
j − fkgij ,

which translates to:
∇̃XY = ∇XY + T (X,Y ),

where T is the symmetric (2, 1) tensor:

T (X,Y ) = (Xf)Y + (Y f)X − 〈X,Y 〉∇f.

Turning to the (3,1) curvature R(X,Y )Z = ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z,
we find (by iterating the above, and after cancellations):

R̃(X,Y )Z = R(X,Y )Z+(∇XT )(Y,Z)−(∇Y T )(X,Z)+T (X,T (Y,Z))−T (Y, T (X,Z)).

Expressed in terms of f , the second-order terms are (with Hf the Hessian):

(∇XT )(Y,Z) = Hf(X,Y )Z +Hf(X,Z)Y − 〈Y,Z〉∇X∇f,

(∇XT )(Y,Z)−(∇Y T )(X,Z) = Hf(X,Z)Y−Hf(Y, Z)X−〈Y,Z〉∇X∇f+〈X,Z〉∇Y∇f.

For the quadratic first-order terms, we find:

T (X,T (Y,Z))− T (Y, T (X,Z))

= (Y f)(Zf)X − (Xf)(Zf)Y + 〈Y,Z〉(Xf)∇f − 〈X,Z〉(Y f)∇f

−|∇f |2(〈Y,Z〉X − 〈X,Z〉Y ).

The symmetries in this expression become evident when we consider the
(4,0) curvature, taking g-inner product with W :

e−2f R̃(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉

−Hf(X,W )〈Y,Z〉+Hf(Y,W )〈X,Z〉 − 〈X,W 〉Hf(Y, Z) + 〈Y,W 〉Hf(Y,Z)

+〈X,W 〉(Y f)(Zf)− 〈Y,W 〉(Xf)(Zf) + (Xf)(Wf)〈Y, Z〉 − (Y f)(Wf)〈X,Z〉

−|∇f |2(〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉).

The second line involves the symmetric (2,0) tensor defined as:

(df ◦ df)(X,Y ) = (Xf)(Y f).

Now recall the definition of the Kulkarni-Nomizu product, which associates to
two symmetric 2-tensors h, k an algebraic (4,0) curvature tensor, in a symmetric
way:

(h©∧ k)(X,Y, Z,W ) = h(X,W )k(Y,Z)−h(Y,W )k(X,Z)+k(X,W )h(Y,Z)−k(Y,W )h(X,Z).
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We see immediately that the conformally changed (4,0) curvature is:

e−2f R̃ = R−Hf ©∧ g + (df ◦ df)©∧ g − |∇f |2 g©∧ g
2

= R− [Hf − (df ◦ df) + (1/2)|df |2g]©∧ g.

The Ricci and Scalar traces of a K-N product (w.r.t. g) are easily computed:

Ricg(h©∧ k) = (trgh)k + (trgk)h− (h • k + k • h),

Scalg(h©∧ k) = (trgh)(trgk)− 〈h, k〉g,

where (h • k)(X,Y ) =
∑

i h(X, ei)k(ei, Y ), (ei) g-o.n. In particular, when one
of the bilinear forms is the metric:

Ricg(h©∧ g) = (n− 2)h+ (trgh)g,

Scalg(h©∧ g) = 2(n− 1)trgh.

Specializing to the case on hand: note the o.n. frame for g̃ corresponding to
(ei) is e−fei, so:

R̃ic(X,Y ) = e−2f
∑
i

R̃(X, ei, ei, Y ) = Ricg(e−2f R̃)(X,Y ),

and trg[Hf − (df ◦ df) + (1/2)|df |2g] = ∆f + n−2
2 |df |

2 so:

R̃ic = Ric− (n− 2)[Hf − (df ◦ df) +
1

2
|df |2g]− [∆f +

n− 2

2
|df |2]g

R̃ic = Ric− (n− 2)[Hf − (df ◦ df)]− [∆gf + (n− 2)|df |2]g,

a surprisingly simple formula (cp. [LP87], (2.5)). Turning to the scalar curva-
ture, we have:

S̃ =
∑
j

e−2f R̃ic(ej , ej) = e−2f{Sg − (n− 2)[∆f + (n− 1)|df |2]− n∆f},

S̃ = e−2f [Sg − 2(n− 1)∆f − (n− 1)(n− 2)|df |2].

(Cf. [LP87], (2.6).) Making the change of variable e2f = u
4

n−2 (where u > 0),
we find:

S̃ = u−
4

n−2 (Sg − an
∆u

u
), an =

4(n− 1)

n− 2
,

S̃ = u−
n+2
n−2 (Sgu− an∆u) = u−

n+2
n−2Lgu,

where Lgu = −an∆gu+ Sgu is the conformal Laplacian of g.

For g̃ = u4/n−2g, the Ricci curvature is:

R̃ic = Ric− 2
Hu

u
+

2n

n− 2

du ◦ du
u2

− 2

n− 2
(
∆u

u
+
|du|2

u2
)g.
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We can eliminate the df ◦ df term in the expression for R̃ic by writing the
new metric in the form g̃ = φ−2g (so e2f = φ−2). We find:

R̃ic = Ric+ φ−1[(n− 2)Hφ− (n− 1)
|dφ|2g
φ

g + (∆φ)g].

And for the trace-free Ricci tensors:

R̃ic
tf

= Rictf + (n− 2)
(Hφ)tf

φ
.

Example: metrics conformal to the euclidean metric in Rn, polar coordinates
(r, ω), u = u(r).

With ds2 = dr2 + r2dω2, for the Hessian we have for the euclidean metric
(where ∂ω is a tangent vector to Sn−1, |∂ω| = r):

Hu(∂r, ∂r) = u′′(r), Hu(∂r, ∂ω) = 0, Hu(∂ω, ∂ω) = ru′.

And for the Ricci curvature of g̃, we have from the above:

R̃ic(∂r, ∂r) = −2(n− 1)

n− 2
(
u′′

u
+
u′

ru
− (u′)2

u2
), R̃ic(∂r, ∂ω) = 0,

R̃ic(
∂ω
r
,
∂ω
r

) = − 2

n− 2
(
u′′

u
+ (2n− 3)

u′

ru
+

(u′)2

u2
).

As a check, we find as expected:

u4/n−2S̃ = R̃ic(∂r, ∂r) +
∑
i

R̃ic(
∂ωi

r
,
∂ωi

r
) = −an(

u′′

u
+
n− 1

r

u′

u
).

Example: Spatial Schwarzschild metric. The one-parameter family of n-
dimensional spatial Schwarzschild metrics is given in original coordinates as the
metric outside a ball in Rn (with polar coordinates (s, ω)):

gm =
ds2

1− 2m
sn−2

+ s2dω2, s > (2m)1/n−2.

The change of coordinates to ‘isotropic coordinates’ (r, ω) expresses gm in con-
formally flat form:

gm = u(r)4/n−2(dr2+r2dω2), u(r) = 1+
m

2rn−2
, s = r(1+

m

2rn−2
)2/n−2, r > (m/2)1/n−2.

Exercise: Check that this coordinate change s = s(r) indeed changes the form
of the metric gm as described. Hint: The coordinate change is suggested by the
dω2 part of the metric, so what needs to be checked is:

ds

(1− 2m
sn−2 )1/2

= (1 +
m

2rn−2
)2/n−2dr.
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Exercise: Use the formulas derived above to compute the expressions for the
Ricci curvature of gm:

Ric(∂r, ∂r) = −m(n− 1)(n− 2)

rn
(1 +

m

2rn−2
)−2, Ric(∂r, ∂ω) = 0,

Ric(
∂ω
r
,
∂ω
r

) =
m(n− 2)

rn
(1 +

m

2rn−2
)−2.

As a check, confirm that (as expected from ∆0u = 0), the scalar curvature
vanishes:

S = u−4/n−2(Ric(∂r, ∂r) +
∑
i

Ric(
∂ωi

r
,
∂ωi

r
)) = 0.

Example: the ADM mass of spatial Schwarzschild.

gm =
dr2

1− 2m
rn−2

+ r2dω2 = (1 +
2m

rn−2
+O2(r−n+1))dr2 + r2dω2,

So the difference with the euclidean metric is:

e = eijdx
idxj = (

2m

rn−2
+O2(r−n+1))dr2, eij = 2m

xixj

rn
+O2(r1−n),

since dr2 = xixj

r2 dxidxj .

The mass integrand 1-form is µ = (eij,i− eii,j)dxj (with summation conven-
tion). We compute the first partial derivatives:

eij,k =
2m

rn
(δikx

j + δjkx
i − nx

ixjxk

r2
) +O(r−n)

This gives for the mass 1-form:

µ =
2m(n− 1)

rn
xidxi +O(r−n).

So the surface integral in the definition of ADM mass is (with νi = xi/r):∮
Sr

µ[ν]dσr = 2m(n− 1)

∮
Sr

(
xixi

rn+1
+O(r−n))rn−1dω.

So we see that:

lim
r→∞

∮
Sr

µ[ν]dσr = 2m(n− 1)ωn−1

(ωn−1 is the area of the (n− 1)-sphere, so ω2 = 4π.). This explains the normal-
ization constant in the definition of mADM . For the metrics gm:

mADM (gm) =
1

2(n− 1)ωn−1
lim
r→∞

∮
Sr

µ[ν]dσr = m.
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Example: Obata’s Theorem: A conformal metric g on Sn of constant scalar
curvature must have constant (sectional) curvature, and hence be isometric to
the standard sphere (up to scaling).

Proof. Write gcan = φ−2g, where gcan is the standard metric. Then, denoting
by B = Ric− 1

nSg the trace-free Ricci tensor, which vanishes for the standard
metric, we find:

0 = B + (n− 2)φ−1(Hφ− ∆φ

n
g).

Integrating over Sn:∫
Sn

φ|B|2gdVg = −(n− 2)

∫
Sn

〈B,Hφ− ∆φ

n
g〉dVg = −(n− 2)

∫
Sn

〈B,Hφ〉dVg,

since B is trace-free. Since the scalar curvature Sg is constant, the contracted
second Bianchi identity:

dS − 2δ(Ric) = 0

implies δ(Ric) = 0, and hence also δB = 0. But letting α be the 1-form
α(X) = B(X,∇φ), we find:

δα = (δB)(∇φ) + 〈B,Hφ〉.

Thus the last integral vanishes, so B ≡ 0. Since the Weyl tensor of g also
vanishes, we find that g is a constant curvature metric, hence necessarily the
standard metric on Sn, up to scaling.
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