CURVATURE UNDER CONFORMAL CHANGE OF METRIC

We consider a conformal change § = e?fg. From the usual formula for
Christoffel symbols, we find:

LY =T+ f567 + fi8] — [*aij,

which translates to: B
VxY =VxY +T(X,Y),

where T is the symmetric (2,1) tensor:
T(X,Y) = (XY + (Y )X — (X,Y)V.

Turning to the (3,1) curvature R(X,Y)Z = VxVyZ - VyVxZ ~Vx y|Z,
we find (by iterating the above, and after cancellations):

R(X,)Y)Z =R(X,Y)Z+(VxT)(Y,Z2)-(VyT)(X, Z2)+T(X,T(Y, Z))-T(Y, T(X, Z)).

Expressed in terms of f, the second-order terms are (with H f the Hessian):

(VxT)(Y,2) =Hf(X,Y)Z + Hf (X, Z2)Y = (Y, Z)VxV/,

(VxT)(Y, 2)~(VyT)(X, Z) = Hf (X, 2)Y ~H (Y, 2)X~(Y, Z)VxV f+(X, Z)Vy V.

For the quadratic first-order terms, we find:

T(Xa T(Y7 Z)) - T<Y7 T(X7 Z))
=Y NENX = (XHZHY + Y, Z) XV = (X, )Y [)Vf
—IVIP((Y, 2)X — (X, 2)Y).

The symmetries in this expression become evident when we consider the
(4,0) curvature, taking g-inner product with W:

e Y R(X,Y,Z,W) = (R(X,Y)Z,W)

—Hf(X, W)Y, 2) + Hf (Y, W)(X, Z) = (X, W)Hf(Y, Z) + (Y, W)H [ (Y, Z)
HX, WYY IZ]) = Y WHYXZ]) + (XHWHY, Z) = (Y WX, Z)
—IVIPUX, W)Y, Z) — (X, Z)(Y,W)).

The second line involves the symmetric (2,0) tensor defined as:
(df o df)(X,Y) = (XF)(Y[).

Now recall the definition of the Kulkarni-Nomizu product, which associates to
two symmetric 2-tensors h, k an algebraic (4,0) curvature tensor, in a symmetric
way:

(hPK)(X,Y, Z,W) = h(X, W)k(Y, Z)—h(Y,W)k(X, Z)+k(X, W)WY, Z)—k(Y, W)h(X, Z).



We see immediately that the conformally changed (4,0) curvature is:
e R=R-Hf Qg+ od) ®g— vsPLE7
=R—[Hf = (df odf) + (1/2)|df|’9] D g.
The Ricci and Scalar traces of a K-N product (w.r.t. g) are easily computed:
Ricg(h ® k) = (trgh)k + (trgk)h — (hek+ ke h),

Scaly(h O k) = (trgh)(trgk) — (h, k) g,

where (h e k)(X,Y) =3, h(X,e;)k(e;,Y), (e;) g-on. In particular, when one
of the bilinear forms is the metric:

Ricy(h® g) = (n —2)h + (tryh)g,
Scalg(h @ g) = 2(n — L)tryh.

Specializing to the case on hand: note the o.n. frame for g corresponding to
(e;) is e~ ey, sor

Ric(X,Y) =e ' Y R(X,e;,¢;,Y) = Ricy(e > R)(X,Y),

and try[H f — (df o df) + (1/2)|df|g] = Af + “52|df|? so:

n

Ric = Ric — (n ~ 9)[Hf — (df o df) + 51df g] ~ [AF + ™ ]dfPlg

Ric = Ric— (n = 2)[Hf — (df o df)] = [Agf + (n = 2)|df’]g,

a surprisingly simple formula (cp. [LP87], (2.5)). Turning to the scalar curva-
ture, we have:

S = Ze‘”f%(ej,ej) = e Sy — (n = 2)[Af + (n = 1)|df "] = nAf},
S=e2[S, —2(n-1)Af — (n—1)(n—2)[df|*].

(Cf. [LP87], (2.6).) Making the change of variable 2/ = uv (where u > 0),
we find:

~ __a Au 4(n—1)
S=uTmR S menm ) = T

~ _n+t2 _nt2
S =u"m2(Seu—a,Au) =u" "2 Lgu,

where Lyu = —an,Agu + Sgu is the conformal Laplacian of g.
For § = u*/"~2g, the Ricci curvature is:
— H 2n duod 2 A dul?
Ric = Ric— 2% 4 2 quodu (Au
u n—2 u? n—2" u u?



We can eliminate the df o df term in the expression for Ric by writing the
new metric in the form § = ¢~2g (so €2/ = ¢~2). We find:

— d 2
Fie = Ric 6700~ D16~ (0~ 102y + (o)l
And for the trace-free Ricci tensors:
— Ho)tf
Ric! = Ric! + (n— 2)( z) .

Ezxample: metrics conformal to the euclidean metric in R™, polar coordinates
(r,w), u=u(r).

With ds? = dr? + r2dw?, for the Hessian we have for the euclidean metric
(where 9, is a tangent vector to S"~1, |9, = r):

Hu(d,,0,) =u"(r), Hu(0r,0.,) =0, Hu(d,,0d.,)=ru'.
And for the Ricci curvature of g, we have from the above:

20n —1) u” u')?
A1) ol

Ric(0y,0,) = — — ( e ), Ric(0,,0,) =0,
—— 0y O 2 u o (u)?
o Soyo L r@n-3)— .
Rw(r’r) n—2(u+(n 3)ru+ u2)
As a check, we find as expected:
T — Oy, Ou, v on—14d
4/n—-23 _ ps ; Wi ZWiy _ _
) S = Ric(0,0,) + EZ Ric( pati ) an( " + " u)

Ezxample: Spatial Schwarzschild metric. The one-parameter family of n-
dimensional spatial Schwarzschild metrics is given in original coordinates as the
metric outside a ball in R™ (with polar coordinates (s,w)):

ds?

I = T 2 + s%dw?, s> (2m)

1/n—2

sn—2

The change of coordinates to ‘isotropic coordinates’ (r,w) expresses g, in con-
formally flat form:

Gm = u(P) "2 (dr?+r2dw?),  u(r) = - 5= T(1+7m V2/n=2 s (my2)tn2,

2rn—2’ 2rn—2

Ezercise: Check that this coordinate change s = s(r) indeed changes the form
of the metric g,, as described. Hint: The coordinate change is suggested by the
dw? part of the metric, so what needs to be checked is:

ds m_ \2/n-2
1= 2myie ~ Lt gm=)



Ezercise: Use the formulas derived above to compute the expressions for the
Ricci curvature of gy,:

Ric(0,,,) = - "= i}l(” =24 o) % Ric(d,,0.) =0,
.0, 0y, m(n-—2) m o,
RZC(T’ 7) - (1+ 27"”—2) '

As a check, confirm that (as expected from Agu = 0), the scalar curvature
vanishes:
Ou; O,

S = uw /" 2(Ric(9,.8,) + 3 Rie(=2, %)) = 0,

r r

Example: the ADM mass of spatial Schwarzschild.

dr? 2
g = g+ 17d? = (L =+ Oo(r ) 4 120,
- rn—2 r

So the difference with the euclidean metric is:
+ Og(r*"“))er, eij =2m
r

rn—Q

+ ()2(7,1771)7

e = e;jjdr'da’ = (

since dr? = £5-dx'da’.

The mass integrand 1-form is 1 = (e;5,; — €45, j)dz? (with summation conven-
tion). We compute the first partial derivatives:

2m ; N
Cijk = 771(51'1&] + k2" —n 2 )+O@r™")

This gives for the mass 1-form:
-1 ..
o= 7n)xzdx’ +O(r™").

So the surface integral in the definition of ADM mass is (with v = x%/r):

ji plvlde, = 2m(n — l)ﬁ (% + 0> ™))r" tdw.

So we see that:

lim ulvlde, = 2m(n — Dw,—1

r—00 S,
(wp—1 is the area of the (n — 1)-sphere, so wy = 47.). This explains the normal-
ization constant in the definition of mapas. For the metrics gp,:

1 .
mADM(Qm) = m TILH;O . u[l/]dcrr =1m.

r



Ezxample: Obata’s Theorem: A conformal metric g on S™ of constant scalar
curvature must have constant (sectional) curvature, and hence be isometric to
the standard sphere (up to scaling).

Proof. Write geqn = ¢~ 2g, where geqp is the standard metric. Then, denoting
by B = Ric — %S g the trace-free Ricci tensor, which vanishes for the standard
metric, we find:

A
0=B+(n 20" (Ho— ~2g)

Integrating over S™:

As
| olBiav, =—-2 [ (B0 S0V, = ~(a-2) [ (1AW,

n

since B is trace-free. Since the scalar curvature S, is constant, the contracted
second Bianchi identity:
dS — 26(Ric) =0

implies 0(Ric) = 0, and hence also 6B = 0. But letting « be the 1-form
a(X) = B(X,V¢), we find:
S0 = (5B)(V6) + (B, H).

Thus the last integral vanishes, so B = 0. Since the Weyl tensor of g also
vanishes, we find that g is a constant curvature metric, hence necessarily the
standard metric on S™, up to scaling.



