1. Linearization of Ricci and scalar curvature.

We consider variations of a background metric b. All covariant derivatives, inner products and traces are with respect to b (Levi-Civita connection), unless noted otherwise. Covention: the Laplacian of a function is the trace of its Hessian.

Step1. Let $g_{t}=b+t h, h \in S y m_{M}^{2}$. The difference of L-C connections is a $(2,1)$ symmetric tensor:

$$
\Gamma^{t}(X, Y)=D_{X}^{t} Y-D_{X}^{b} Y
$$

and we denote by $\dot{\Gamma}$ its first variation. To compute the variation in curvature, define also the $(3,1)$ tensor:

$$
\Gamma^{2 t}(X, Y, Z)=\Gamma(X, \Gamma(Y, Z))
$$

and then we have:
$R^{t}(X, Y) Z-R^{b}(X, Y) Z=\left(D_{X} \Gamma^{t}\right)(Y, Z)-\left(D_{Y} \Gamma^{t}\right)(X, Z)-\left(\Gamma^{2 t}(X, Y, Z)-\Gamma^{2 t}(Y, X, Z)\right)$.
Since $\Gamma=0$ at $t=0$, we have for the variation of the $(3,1)$ Riemann tensor:

$$
\dot{R}(X, Y) Z=\left(D_{X} \dot{\Gamma}\right)(Y, Z)-\left(D_{Y} \dot{\Gamma}\right)(X, Z)
$$

The Koszul formula gives the first variation of Γ :

$$
\langle\dot{\Gamma}(X, Y), Z\rangle=\frac{1}{2}\left[\left(D_{X} h\right)(Y, Z)+\left(D_{Y} h\right)(X, Z)-\left(D_{Z} h\right)(X, Y)\right]
$$

Step 2: variation of Ricci. From now on, assume all vector fields in sight have zero covariant derivative at a fixed point $p \in M$. For the (4,0) Riemann tensor, we find:

$$
\begin{gathered}
\langle\dot{R}(X, Y) Z, W\rangle=X(\langle\dot{\Gamma}(Y, Z), W\rangle)-Y(\langle\dot{\Gamma}(X, Z), W\rangle) \\
=\frac{1}{2} X\left[\left(D_{Y} h\right)(Z, W)+\left(D_{Z} h\right)(Y, W)-\left(D_{W} h\right)(Y, Z)\right]-(Y \leftrightarrow X) \\
=\frac{1}{2}\left[\left(D_{X} D_{Y} h\right)(Z, W)+\left(D_{X} D_{Z} h\right)(Y, W)-\left(D_{X} D_{W} h\right)(Y, Z)\right]-(Y \leftrightarrow X) .
\end{gathered}
$$

Now take trace over Y, Z : let $\left(e_{i}\right)$ be a local orthonormal frame, normal at p (sum over repeated indices implicit in what follows):

$$
\begin{gathered}
\left\langle\dot{R}\left(X, e_{i}\right) e_{i}, W\right\rangle=\frac{1}{2}\left[\left(D_{X} D_{e_{i}} h\right)\left(e_{i}, W\right)+\left(D_{x} D_{e_{i}} h\right)\left(e_{i}, W\right)-\left(D_{X} D_{W} h\right)\left(e_{i}, e_{i}\right)\right] \\
-\frac{1}{2}\left[\left(D_{e_{i}} D_{X} h\right)\left(e_{i}, W\right)+\left(D_{e_{i}} D_{e_{i}} h\right)(X, W)-\left(D_{e_{i}} D_{W} h\right)\left(X, e_{i}\right)\right]
\end{gathered}
$$

Now replace the last term in the second line by: $-\left(D_{W} D_{e_{i}} h\right)\left(X, e_{i}\right)-\left(R\left(W, e_{i}\right) h\right)\left(X, e_{i}\right)$. Rearranging terms, we find:

$$
\begin{aligned}
& \dot{\operatorname{Ric}}(X, W)=-\frac{1}{2}\left(D_{e_{i}} D_{e_{i}} h\right)(X, W)-\frac{1}{2}\left(D_{X} D_{W} h\right)\left(e_{i}, e_{i}\right) \\
&+\frac{1}{2}\left(D_{X} D_{e_{i}} h\right)\left(e_{i}, W\right)+\frac{1}{2}\left(D_{W} D_{e_{i}} h\right)\left(e_{i}, X\right) \\
&+ \frac{1}{2}\left[R\left(X, e_{i}\right) h\right]\left(e_{i}, W\right)+\frac{1}{2}\left[R\left(W, e_{i}\right) h\right]\left(e_{i}, X\right)
\end{aligned}
$$

Step 3. We now express the various terms as geometric differential operators. First we have:

$$
\delta: \operatorname{Sym}_{M}^{2} \rightarrow \Omega^{1}(M), \quad(\delta h)(W)=-\left(D_{e_{i}} h\right)\left(e_{i}, W\right)
$$

and its formal adjoint $\delta^{*}: \Omega_{M}^{1} \rightarrow \operatorname{Sym}_{M}^{2}$, the symmetrized covariant derivative:

$$
\left(\delta^{*} \omega\right)(X, Y)=\frac{1}{2}\left[\left(D_{X} \omega\right)(Y)+\left(D_{Y} \omega\right)(X)\right], \quad \omega \in \Omega_{M}^{1}
$$

We easily find then:

$$
\delta^{*}(\delta h)(X, W)=-\frac{1}{2}\left[\left(D_{X} D_{e_{i}} h\right)\left(e_{i}, W\right)+\left(D_{W} D_{e_{i}} h\right)\left(e_{i}, X\right)\right]
$$

To understand the curvature terms, recall how $R(X, Y)$ acts on symmetric bilinear forms:

$$
\begin{gathered}
{\left[R\left(X, e_{i}\right) h\right]\left(e_{i}, W\right)=h\left(R\left(X, e_{i}\right) e_{i}, W\right)+h\left(e_{i}, R\left(X, e_{i}\right) W\right)} \\
=\operatorname{Ric}\left(X, e_{j}\right) h\left(e_{j}, W\right)-h\left(R\left(e_{i}, X\right) W, e_{i}\right)
\end{gathered}
$$

and similarly for the term obtained by symmetrizing this in (X, W).
Recall the symmetric product of two symmetric bilinear forms defined by:

$$
(k \circ h)(X, W)=k\left(X, e_{i}\right) h\left(e_{i}, W\right), \quad k, h \in S y m_{M}^{2}
$$

And also the 'action of the Riemann tensor on symmetric bilinear forms':

$$
\mathcal{R}[h](X, W)=h\left(R\left(e_{i}, X\right) W, e_{i}\right)=h\left(R\left(e_{i}, W\right) X, e_{i}\right)
$$

(cp. [Besse, 1.131(b)]; it's like taking a Ricci trace, but using h instead of the metric.) With these definitions, the curvature terms become:

$$
\frac{1}{2}\left[R\left(X, e_{i}\right) h\right]\left(e_{i}, W\right)+\frac{1}{2}\left[R\left(W, e_{i}\right) h\right]\left(e_{i}, X\right)=\frac{1}{2}(\text { Ricoh }+h \circ R i c)(X, W)-\mathcal{R}[h](X, W)
$$

Putting everything together, we find for the variation of Ricci:

$$
\dot{\operatorname{Ric}}[h]=-\frac{1}{2} D_{e_{i}, e_{i}}^{2} h-\frac{1}{2} \operatorname{Hess}\left(\operatorname{tr}_{b} h\right)-\delta^{*}(\delta h)+\frac{1}{2}[\operatorname{Ric} \circ h+h \circ \operatorname{Ric}]-\mathcal{R}[h] .
$$

(cp. [Besse, 1.180a]).
Variation of Scalar curvature. From $S c a l^{g_{t}}=t r_{g_{t}}$ Ric $^{g_{t}}$ follows:

$$
\operatorname{Scal}[h]=-\left\langle h, \operatorname{Ric}_{b}\right\rangle_{b}+\operatorname{tr}_{b}(\dot{\operatorname{Ric}}[h])
$$

And then it turns out (easily checked) that the curvature terms in the variation of Ric, combined, have zero trace! We also have:

$$
\delta^{*}(\delta h)\left(e_{j}, e_{j}\right)=\left[D_{e_{j}}(\delta h)\right]\left(e_{j}\right)=-\delta(\delta h)
$$

The traces of $D_{e_{i}, e_{i}}^{2} h$ and of $\operatorname{Hess}\left(\operatorname{tr}_{b} h\right)$ are both equal to $\Delta\left(\operatorname{tr}_{b} h\right)$. We conclude:

$$
\operatorname{Scal}[h]=-\Delta\left(\operatorname{tr}_{b} h\right)+\delta(\delta h)-\langle R i c, h\rangle_{b} .
$$

(cp. [Besse, 1.174e], where their convention for the Laplacian on functions has the opposite sign to ours.)
2. Adjoints. We have the linearization of scalar curvature at a background metric b :

$$
L_{b}: \operatorname{Sym}_{M}^{2} \rightarrow C_{M}^{\infty}, \quad L_{b}[h]=-\Delta\left(t r_{b} h\right)+\delta(\delta h)-\langle\operatorname{Ric}, h\rangle_{b}
$$

and wish to compute its formal adjoint $L_{b}^{*}: C_{M}^{\infty} \rightarrow S y m_{M}^{2}$. For two of the terms, this is clear. On the other hand, if either V or h have compact support in M :

$$
\int_{M} V \delta(\delta h) d \mu_{b}=\int_{M}\langle d V, \delta h\rangle d \mu_{b}=\int_{M}\left\langle\delta^{*}(d V), h\right\rangle d \mu_{b}=\int_{M}\langle H e s s(V), h\rangle d \mu_{b}
$$

Here we used the fact δ (on one-forms) is the formal adjoint of the exterior differential d, δ^{*} (the symmetrized covariant derivative, taking Ω_{M}^{1} to $S y m_{M}^{2}$) the formal adjoint of $\delta: \operatorname{Sym}_{M}^{2} \rightarrow \Omega_{M}^{1}$, and:

$$
\left(\delta^{*} d V\right)(X, Y)=\frac{1}{2}\left[\left(D_{X} d V\right) Y+\left(D_{Y} d V\right) X\right]=\operatorname{Hess}(V)(X, Y)
$$

We conclude the formal adjoint is:

$$
L_{b}^{*}: C_{M}^{\infty} \rightarrow \operatorname{Sym}_{M}^{2}, \quad L_{b}^{*}[V]=\operatorname{Hess}_{b}(V)-(\Delta V) b-V \operatorname{Ric}_{b}
$$

Consider now the case in which neither V nor h have compact support. Pointwise, we have:

$$
\begin{gathered}
\left\langle L_{b}^{*}[V], h\right\rangle-\left\langle V, L_{b}[h]\right\rangle=\langle\operatorname{Hess}(V), e\rangle-(\Delta V) \operatorname{tr} b-V \delta(\delta h)+V \Delta\left(\operatorname{tr}_{b} h\right) \\
-\delta(\delta h)+\Delta\left(\operatorname{tr}_{b} h\right)=\delta \mu, \quad \mu=-\delta h-d\left(\operatorname{tr}_{b} h\right) \in \Omega_{M}^{1}
\end{gathered}
$$

In particular, if b is Ricci-flat, the constants (say $V \equiv 1$) are in $\operatorname{Ker} L_{b}^{*}$, and we have, integrating over the compact manifold with boundary M :

$$
\int_{M} L_{b}[h] d \mu_{b}=-\int_{M}(\delta \mu) d \mu_{b}=\int_{M} d i v_{b}\left(\mu^{\#}\right)=\int_{\partial M} \mu\left[\nu_{b}\right] d \sigma_{b}
$$

by the divergence theorem (ν_{b} is the unit outward normal in the background metric). This relates the bulk integral of linearized scalar curvature to the boundary integral of the ADM mass integrand. $\mu\left[\nu_{b}\right]$

In the general case, we have:

$$
\begin{gathered}
\delta\left[V\left(-\delta h-d\left(t r_{b} h\right)\right)-i_{\nabla V} h+\left(t r_{b} h\right) d V\right]= \\
\langle d V, \delta h\rangle-V \delta(\delta h)+\left\langle d V, d\left(\operatorname{tr}_{b} h\right)\right\rangle-V \delta d\left(t r_{b} h\right)-\delta\left(i_{\nabla V} h\right)-\left\langle d\left(\operatorname{tr}_{b} h\right), d V\right\rangle-\left(\operatorname{tr}_{b} h\right) \Delta V .
\end{gathered}
$$

Now use:

$$
\delta\left(i_{\nabla V} h\right)=(\delta h)(\nabla V)-\langle\operatorname{Hess}(V), h\rangle .
$$

After cancelation, we find the pointwise relation:
$\delta\left(\mu_{(V, h)}\right)=\left\langle L_{b}^{*}[V], h\right\rangle-\left\langle V, L_{b}[h]\right\rangle, \quad \mu_{(V, h)}=V\left(-\delta h-d\left(\operatorname{tr}_{b} h\right)\right)-i_{\nabla V} h+\left(\operatorname{tr}_{b} h\right) d V \in \Omega_{M}^{1}$.
Integrating over the compact manifold with boundary M

$$
\int_{M}\left(\left\langle V, L_{b}[h]\right\rangle-\left\langle L_{b}^{*}[V], h\right\rangle\right) d \mu_{b}=\int_{M} \operatorname{div}_{b}\left(\mu_{(V, h)}^{\#}\right) d \mu_{b}=\int_{\partial M} \mu_{(V, h)}\left[\nu_{b}\right] d \sigma_{b}
$$

3. Variation of the Einstein-Hilbert functional.

We consider the first variation of:

$$
\mathcal{R}_{b}=\int_{M} S_{b} d \mu_{b}
$$

under the variation of metric: $g^{t}=b+t h, h \in S y m_{M}^{2}$. We have:

$$
\dot{S}=-\Delta\left(t r_{b} h\right)+\delta(\delta h)-\langle R i c, h\rangle_{b}, \quad(\dot{d} \mu)=\frac{1}{2}\left(t_{b} h\right) d \mu_{b}
$$

Thus:

$$
\dot{\mathcal{R}}=\int_{M}\left[\delta\left(\delta h+d\left(t r_{b} h\right)\right)-\left\langle G^{b}, h\right\rangle\right] d \mu_{b}, \quad G^{b}=R i c^{b}-\frac{S_{b}}{2} b
$$

the 'Einstein tensor' of b. Using the divergence theorem:

$$
\dot{\mathcal{R}}=-\int_{M}\left\langle G^{b}, h\right\rangle d \mu_{b}+\int_{\partial M} \mu_{h}\left[\nu_{b}\right] d \sigma_{b}, \quad \mu_{h}=-\delta h-d\left(\operatorname{tr}_{b} h\right) \in \Omega_{M}^{1}
$$

We conclude the critical metrics for \mathcal{R} (under variations h with compact support) are those with vanishing Einstein tensor G. And for metrics with vanishing G and variation tensor $h=\dot{g}$, we have the suggestive relation:

$$
\dot{\mathcal{R}}-\dot{m}=0, \quad m=\int_{\partial M} \mu_{g}\left[\nu_{b}\right] d \sigma_{b}
$$

4. Where the mass comes from. (cp. [Michel] and [Herzlich].)

We consider (M, g) complete noncompact (with one end, for simplicity), asymptotic to a 'background' $\left(\mathbb{M}_{0}, b\right)$ (typically euclidean or hyperbolic n-space, in the following sense: there exists a chart from an exterior region (complement of a ball) $E_{0} \subset \mathbb{M}_{0}$ to $M \backslash K, K \subset M$ compact: $\phi: E_{0} \rightarrow M \backslash K$, and letting $g_{\phi}=\phi^{*} g$, we have on E_{0} :

$$
h=g_{\phi}-b=O_{2}\left(r^{-\tau}\right)
$$

where r is distance in \mathbb{M}_{0} to a fixed point. Consider the space of 'static potentials' on b :

$$
\mathcal{N}_{b}=\left\{V \in C^{\infty}\left(\mathbb{M}_{0} ; L_{b}^{*}[V]=0\right\}, \quad L_{b}^{*}(V)=\operatorname{Hess}(V)-\left(\Delta_{b} V\right) b-V \operatorname{Ric}_{b}\right.
$$

the formal adjoint of the linearization at b of the scalar curvature map. Consider the Taylor theorem representation:

$$
S c a l\left(g_{\phi}\right)-S c a l(b)=L_{b}[h]+Q_{b}(h)
$$

where $Q_{b}(h)$ is the quadratic (and higher order) remainder.
Exercise. If $V \in \mathcal{N}_{b}$, the metric $V^{2} d t \oplus b$ on $\mathbb{R} \times \mathbb{M}_{0}$ is Ricci-flat.
The main assumption is g_{ϕ} is asymptotic to b as $r \rightarrow \infty$, at a fast enough rate that:
(1) $\left\langle V, S \operatorname{cal}\left(g_{\phi}\right)-S \operatorname{cal}(b)\right\rangle_{b}$ is $d \mu_{b}$-integrable;
(2) $Q_{b}(V, h)=\left\langle V, Q_{b}(h)\right\rangle_{b}$ is $d \mu_{b}$-integrable, for all $V \in \mathcal{N}_{b}$.

If $V \in \mathcal{N}_{b}$, pointwise on E_{0} we have:

$$
\begin{gathered}
\left\langle V, S \operatorname{cal}\left(g_{\phi}\right)-S \operatorname{cal}(b)\right\rangle=\left\langle V, L_{b}[h]\right\rangle+\left\langle V, Q_{b}(h)\right\rangle \\
=-\delta_{b}\left(\mu^{\phi}(V, h)\right)+\left\langle V, Q_{b}(h)\right\rangle_{b},
\end{gathered}
$$

for a one-form $\mu^{\phi}(V, h)$ on E_{0} given in the previous section (linear in V, h and their first order derivatives.)

Let $\left(B_{k}\right)$ be an increasing exhaustion of \mathbb{M}_{0} by Smoothly bounded domains, $\partial B_{k}=S_{k}$ (so for $k \geq k_{1}$ large enough, $S_{k} \subset E_{0}$). The divergence theorem implies:

$$
\oint_{S_{k}} \mu^{\phi}(V, h)\left[\nu_{b}\right] d \sigma_{b}=\oint_{S_{k_{1}}} \mu^{\phi}(V, h)\left[\nu_{n}\right] d \sigma_{b}+\int_{B_{k} \backslash B_{k_{1}}}\left[\left\langle V, S \operatorname{cal}\left(g_{\phi}-S c a l(b)\right\rangle-Q_{b}(V, h)\right] d \mu_{b} .\right.
$$

The integrability conditions (1) and (2) guarantee the RHS has a limit as $k \rightarrow$ ∞, and that this limit is independent of k_{1}. We conclude the limit:

$$
\lim _{k} \oint_{S_{k}} \mu^{\phi}(V, h)\left[\nu_{b}\right] d \sigma_{b}
$$

exists, and is independent of the exhaustion considered.

Remark: Additional conditions are needed to ensure the limit is independent of the chart ϕ. Roughly speaking, they are: (i) $S c a l(b)$ is constant and (ii) Any two charts ϕ, ψ with the property that g_{ϕ}, g_{ψ} are asymptotic to b differ by a diffeomorphism (of some exterior region E_{R}) whose leading term is an isometry of b. (This is a 'rigidity condition' on b; for details, see [Michel].)

Example 1: asymptotically flat manifolds.
$\left(\mathbb{M}_{0}, b\right)=\left(\mathbb{R}^{n}, \delta\right)$: euclidean space.
We assume $h=g-\delta=O_{2}\left(r^{-\tau}\right)$ on E_{0}. The remainder term satisfies:

$$
|Q(1, e)| \leq C\left(|\partial h|^{2}+|h|_{b}\left|\partial^{2} h\right|\right)=O\left(r^{-2 \tau-2}\right)
$$

Thus the integrablity conditions (1), (2) above are satisfied if $S c a l_{g} \in L^{1}(M, g)$ and $2 \tau+2>n$, or $\tau>\frac{n-2}{2}$.

Since $L_{0}^{*}[V]=\operatorname{Hess}_{0}(V)-\left(\Delta_{0} V\right) \delta$ (euclidean Hessian and Laplacian), taking traces one sees easily that $V \in \mathcal{N}_{b}$ iff $\operatorname{Hess}_{0}(V)=0$, or V is affine (linear plus constant): \mathcal{N}_{b} is $(n+1)$-dimensional. For $V=1$, the mass one-form is:

$$
\mu(1, h)=\sum_{i, j}\left(\partial_{i} h_{i j}-\partial_{j} h_{i i}\right) d x^{j} \in \Omega^{1}\left(E_{0}\right)
$$

and the mass is:

$$
m(g)=\lim _{k} \oint \mu(1, h)\left[\nu_{0}\right] d \sigma_{0}
$$

up to a normaliziation constant depending only on n.
Example 2: asymptotically hyperbolic manifolds. $\left(\mathbb{M}_{0}, b\right)=\left(\mathbb{H}^{n}, g_{\text {hyp }}\right)$, hyperbolic space.: $g_{h y p}=d r^{2}+\sinh ^{2} r g_{S^{n-1}}$, the standard metric on the sphere.The asymptotic conditions are:

$$
|h|=O_{2}\left(e^{-r \tau}\right), \quad h=\phi^{*} g-b
$$

The static potentials V (kernel of L_{b}^{*}) are solutions of:

$$
\operatorname{Hess}_{b}(V)-\left(\Delta_{b} V\right) b=V\left(\operatorname{Ric}_{b}\right)=-(n-1) V b
$$

It is easy to see (exercise) this is equivalent to $\operatorname{Hess}_{b}(V)=V b$. As in the euclidean case, the space \mathcal{N}_{b} of solutions has dimension $n+1$:

$$
\mathcal{N}_{b}=\operatorname{span}\left\{V_{0}, V_{1}, \ldots, V_{n}\right\}, \quad V_{0}=\cosh r, V_{i}=(\sinh r) \omega_{i}
$$

where $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ is the standard embedding of S^{n-1} into R^{n}.
Consider the integrability conditions (1) and (2): since $|V|+|\nabla V|=O\left(e^{r}\right)$, we need $e^{r}\left(S c a l\left(\phi^{*} g\right)+n(n-1)\right)$ integrable; while $\left|Q_{b}(V, h)\right|=O\left(e^{r} e^{-2 \tau r}\right)$; since $d \mu_{b}=O\left(e^{(n-1) r}\right)$, we have $Q_{b}(V, h) d \mu_{b}=O\left(e^{n r} e^{-2 \tau r}\right)$, so for integrability we need: $\tau>n / 2$. Under these conditions, the limit:
$m_{g}(V)=\lim _{k} \oint_{S_{k}} \mu_{b}(V, h)\left[\nu_{b}\right] d \sigma_{n}, \quad \mu_{b}(V, h)=V\left(-\delta_{b} h-d\left(t r_{b} h\right)\right)-i_{\nabla^{b} V} h+\left(t r_{b} h\right) d V \in \Omega^{1}\left(E_{0}\right)$ exists, and defines a linear functional on \mathcal{N}_{b}.

