
1. Linearization of Ricci and scalar curvature.

We consider variations of a background metric b. All covariant derivatives,
inner products and traces are with respect to b (Levi-Civita connection), unless
noted otherwise. Covention: the Laplacian of a function is the trace of its
Hessian.

Step1. Let gt = b + th, h ∈ Sym2
M . The difference of L-C connections is a

(2,1) symmetric tensor:

Γt(X,Y ) = Dt
XY −Db

XY,

and we denote by Γ̇ its first variation. To compute the variation in curvature,
define also the (3,1) tensor:

Γ2t(X,Y, Z) = Γ(X,Γ(Y,Z)),

and then we have:

Rt(X,Y )Z−Rb(X,Y )Z = (DXΓt)(Y,Z)−(DY Γt)(X,Z)−(Γ2t(X,Y, Z)−Γ2t(Y,X,Z)).

Since Γ = 0 at t = 0, we have for the variation of the (3,1) Riemann tensor:

Ṙ(X,Y )Z = (DX Γ̇)(Y,Z)− (DY Γ̇)(X,Z).

The Koszul formula gives the first variation of Γ:

〈Γ̇(X,Y ), Z〉 =
1

2
[(DXh)(Y,Z) + (DY h)(X,Z)− (DZh)(X,Y )].

Step 2: variation of Ricci. From now on, assume all vector fields in sight
have zero covariant derivative at a fixed point p ∈ M . For the (4,0) Riemann
tensor, we find:

〈Ṙ(X,Y )Z,W 〉 = X(〈Γ̇(Y,Z),W 〉)− Y (〈Γ̇(X,Z),W 〉)

=
1

2
X[(DY h)(Z,W ) + (DZh)(Y,W )− (DWh)(Y,Z)]− (Y ↔ X)

=
1

2
[(DXDY h)(Z,W ) + (DXDZh)(Y,W )− (DXDWh)(Y,Z)]− (Y ↔ X).

Now take trace over Y,Z: let (ei) be a local orthonormal frame, normal at p
(sum over repeated indices implicit in what follows):

〈Ṙ(X, ei)ei,W 〉 =
1

2
[(DXDeih)(ei,W ) + (DxDeih)(ei,W )− (DXDWh)(ei, ei)]

−1

2
[(DeiDXh)(ei,W ) + (DeiDeih)(X,W )− (DeiDWh)(X, ei)].
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Now replace the last term in the second line by: −(DWDeih)(X, ei)−(R(W, ei)h)(X, ei).
Rearranging terms, we find:

Ṙic(X,W ) = −1

2
(DeiDeih)(X,W )− 1

2
(DXDWh)(ei, ei)

+
1

2
(DXDeih)(ei,W ) +

1

2
(DWDeih)(ei, X)

+
1

2
[R(X, ei)h](ei,W ) +

1

2
[R(W, ei)h](ei, X).

Step 3. We now express the various terms as geometric differential operators.
First we have:

δ : Sym2
M → Ω1(M), (δh)(W ) = −(Deih)(ei,W ).

and its formal adjoint δ∗ : Ω1
M → Sym2

M , the symmetrized covariant derivative:

(δ∗ω)(X,Y ) =
1

2
[(DXω)(Y ) + (DY ω)(X)], ω ∈ Ω1

M .

We easily find then:

δ∗(δh)(X,W ) = −1

2
[(DXDeih)(ei,W ) + (DWDeih)(ei, X)].

To understand the curvature terms, recall how R(X,Y ) acts on symmetric bi-
linear forms:

[R(X, ei)h](ei,W ) = h(R(X, ei)ei,W ) + h(ei, R(X, ei)W )

= Ric(X, ej)h(ej ,W )− h(R(ei, X)W, ei);

and similarly for the term obtained by symmetrizing this in (X,W ).

Recall the symmetric product of two symmetric bilinear forms defined by:

(k ◦ h)(X,W ) = k(X, ei)h(ei,W ), k, h ∈ Sym2
M

And also the ‘action of the Riemann tensor on symmetric bilinear forms’:

R[h](X,W ) = h(R(ei, X)W, ei) = h(R(ei,W )X, ei)

(cp. [Besse, 1.131(b)]; it’s like taking a Ricci trace, but using h instead of the
metric.) With these definitions, the curvature terms become:

1

2
[R(X, ei)h](ei,W )+

1

2
[R(W, ei)h](ei, X) =

1

2
(Ric◦h+h◦Ric)(X,W )−R[h](X,W ).

Putting everything together, we find for the variation of Ricci:

Ṙic[h] = −1

2
D2
ei,eih−

1

2
Hess(trbh)− δ∗(δh) +

1

2
[Ric ◦ h+ h ◦Ric]−R[h].
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(cp. [Besse, 1.180a]).

Variation of Scalar curvature. From Scalgt = trgtRic
gt follows:

˙Scal[h] = −〈h,Ricb〉b + trb(Ṙic[h]).

And then it turns out (easily checked) that the curvature terms in the variation
of Ric, combined, have zero trace! We also have:

δ∗(δh)(ej , ej) = [Dej (δh)](ej) = −δ(δh).

The traces of D2
ei,eih and of Hess(trbh) are both equal to ∆(trbh). We conclude:

˙Scal[h] = −∆(trbh) + δ(δh)− 〈Ric, h〉b.

(cp. [Besse, 1.174e], where their convention for the Laplacian on functions has
the opposite sign to ours.)

2. Adjoints. We have the linearization of scalar curvature at a background
metric b:

Lb : Sym2
M → C∞M , Lb[h] = −∆(trbh) + δ(δh)− 〈Ric, h〉b

and wish to compute its formal adjoint L∗b : C∞M → Sym2
M . For two of the terms,

this is clear. On the other hand, if either V or h have compact support in M :∫
M

V δ(δh)dµb =

∫
M

〈dV, δh〉dµb =

∫
M

〈δ∗(dV ), h〉dµb =

∫
M

〈Hess(V ), h〉dµb.

Here we used the fact δ (on one-forms) is the formal adjoint of the exterior
differential d, δ∗ (the symmetrized covariant derivative, taking Ω1

M to Sym2
M )

the formal adjoint of δ : Sym2
M → Ω1

M , and:

(δ∗dV )(X,Y ) =
1

2
[(DXdV )Y + (DY dV )X] = Hess(V )(X,Y ).

We conclude the formal adjoint is:

L∗b : C∞M → Sym2
M , L∗b [V ] = Hessb(V )− (∆V )b− V Ricb.

Consider now the case in which neither V nor h have compact support. Point-
wise, we have:

〈L∗b [V ], h〉 − 〈V,Lb[h]〉 = 〈Hess(V ), e〉 − (∆V )trbh− V δ(δh) + V∆(trbh).

−δ(δh) + ∆(trbh) = δµ, µ = −δh− d(trbh) ∈ Ω1
M .

In particular, if b is Ricci-flat, the constants (say V ≡ 1) are in KerL∗b , and
we have, integrating over the compact manifold with boundary M :∫

M

Lb[h]dµb = −
∫
M

(δµ)dµb =

∫
M

divb(µ
#) =

∫
∂M

µ[νb]dσb,
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by the divergence theorem (νb is the unit outward normal in the background
metric). This relates the bulk integral of linearized scalar curvature to the
boundary integral of the ADM mass integrand. µ[νb]

In the general case, we have:

δ[V (−δh− d(trbh))− i∇V h+ (trbh)dV ] =

〈dV, δh〉−V δ(δh)+〈dV, d(trbh)〉−V δd(trbh)−δ(i∇V h)−〈d(trbh), dV 〉−(trbh)∆V.

Now use:
δ(i∇V h) = (δh)(∇V )− 〈Hess(V ), h〉.

After cancelation, we find the pointwise relation:

δ(µ(V,h)) = 〈L∗b [V ], h〉−〈V,Lb[h]〉, µ(V,h) = V (−δh−d(trbh))−i∇V h+(trbh)dV ∈ Ω1
M .

Integrating over the compact manifold with boundary M∫
M

(〈V,Lb[h]〉 − 〈L∗b [V ], h〉)dµb =

∫
M

divb(µ
#
(V,h))dµb =

∫
∂M

µ(V,h)[νb]dσb.

3. Variation of the Einstein-Hilbert functional.

We consider the first variation of:

Rb =

∫
M

Sbdµb

under the variation of metric: gt = b+ th, h ∈ Sym2
M . We have:

Ṡ = −∆(trbh) + δ(δh)− 〈Ric, h〉b, ˙(dµ) =
1

2
(trbh)dµb.

Thus:

Ṙ =

∫
M

[δ(δh+ d(trbh))− 〈Gb, h〉]dµb, Gb = Ricb − Sb
2
b,

the ‘Einstein tensor’ of b. Using the divergence theorem:

Ṙ = −
∫
M

〈Gb, h〉dµb +

∫
∂M

µh[νb]dσb, µh = −δh− d(trbh) ∈ Ω1
M .

We conclude the critical metrics for R (under variations h with compact sup-
port) are those with vanishing Einstein tensor G. And for metrics with vanishing
G and variation tensor h = ġ, we have the suggestive relation:

Ṙ − ṁ = 0, m =

∫
∂M

µg[νb]dσb.
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4. Where the mass comes from. (cp. [Michel] and [Herzlich].)

We consider (M, g) complete noncompact (with one end, for simplicity),
asymptotic to a ‘background’ (M0, b) (typically euclidean or hyperbolic n-space,
in the following sense: there exists a chart from an exterior region (complement
of a ball) E0 ⊂ M0 to M \K, K ⊂ M compact: φ : E0 → M \K, and letting
gφ = φ∗g, we have on E0:

h = gφ − b = O2(r−τ ),

where r is distance in M0 to a fixed point. Consider the space of ‘static poten-
tials’ on b:

Nb = {V ∈ C∞(M0;L∗b [V ] = 0}, L∗b(V ) = Hess(V )− (∆bV )b− V Ricb,

the formal adjoint of the linearization at b of the scalar curvature map. Consider
the Taylor theorem representation:

Scal(gφ)− Scal(b) = Lb[h] +Qb(h),

where Qb(h) is the quadratic (and higher order) remainder.

Exercise. If V ∈ Nb, the metric V 2dt⊕ b on R×M0 is Ricci-flat.

The main assumption is gφ is asymptotic to b as r → ∞, at a fast enough
rate that:

(1) 〈V, Scal(gφ)− Scal(b)〉b is dµb-integrable;
(2) Qb(V, h) = 〈V,Qb(h)〉b is dµb-integrable, for all V ∈ Nb.

If V ∈ Nb, pointwise on E0 we have:

〈V, Scal(gφ)− Scal(b)〉 = 〈V,Lb[h]〉+ 〈V,Qb(h)〉

= −δb(µφ(V, h)) + 〈V,Qb(h)〉b,

for a one-form µφ(V, h) on E0 given in the previous section (linear in V, h and
their first order derivatives.)

Let (Bk) be an increasing exhaustion of M0 by Smoothly bounded domains,
∂Bk = Sk (so for k ≥ k1 large enough, Sk ⊂ E0). The divergence theorem
implies:∮
Sk

µφ(V, h)[νb]dσb =

∮
Sk1

µφ(V, h)[νn]dσb+

∫
Bk\Bk1

[〈V, Scal(gφ−Scal(b)〉−Qb(V, h)]dµb.

The integrability conditions (1) and (2) guarantee the RHS has a limit as k →
∞, and that this limit is independent of k1. We conclude the limit:

lim
k

∮
Sk

µφ(V, h)[νb]dσb

exists, and is independent of the exhaustion considered.
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Remark: Additional conditions are needed to ensure the limit is independent
of the chart φ. Roughly speaking, they are: (i) Scal(b) is constant and (ii) Any
two charts φ, ψ with the property that gφ, gψ are asymptotic to b differ by a
diffeomorphism (of some exterior region ER) whose leading term is an isometry
of b. (This is a ‘rigidity condition’ on b; for details, see [Michel].)

Example 1: asymptotically flat manifolds.
(M0, b) = (Rn, δ): euclidean space.

We assume h = g − δ = O2(r−τ ) on E0. The remainder term satisfies:

|Q(1, e)| ≤ C(|∂h|2 + |h|b|∂2h|) = O(r−2τ−2).

Thus the integrablity conditions (1), (2) above are satisfied if Scalg ∈ L1(M, g)
and 2τ + 2 > n, or τ > n−2

2 .

Since L∗0[V ] = Hess0(V )−(∆0V )δ (euclidean Hessian and Laplacian), taking
traces one sees easily that V ∈ Nb iff Hess0(V ) = 0, or V is affine (linear plus
constant): Nb is (n+ 1)-dimensional. For V = 1, the mass one-form is:

µ(1, h) =
∑
i,j

(∂ihij − ∂jhii)dxj ∈ Ω1(E0),

and the mass is:

m(g) = lim
k

∮
µ(1, h)[ν0]dσ0,

up to a normaliziation constant depending only on n.

Example 2: asymptotically hyperbolic manifolds. (M0, b) = (Hn, ghyp), hy-
perbolic space.: ghyp = dr2+sinh2 rgSn−1 , the standard metric on the sphere.The
asymptotic conditions are:

|h| = O2(e−rτ ), h = φ∗g − b.

The static potentials V (kernel of L∗b) are solutions of:

Hessb(V )− (∆bV )b = V (Ricb) = −(n− 1)V b.

It is easy to see (exercise) this is equivalent to Hessb(V ) = V b. As in the
euclidean case, the space Nb of solutions has dimension n+ 1:

Nb = span{V0, V1, . . . , Vn}, V0 = cosh r, Vi = (sinh r)ωi,

where ω = (ω1, . . . , ωn) is the standard embedding of Sn−1 into Rn.

Consider the integrability conditions (1) and (2): since |V |+ |∇V | = O(er),
we need er(Scal(φ∗g) + n(n − 1)) integrable; while |Qb(V, h)| = O(ere−2τr);
since dµb = O(e(n−1)r), we have Qb(V, h)dµb = O(enre−2τr), so for integrability
we need: τ > n/2. Under these conditions, the limit:

mg(V ) = lim
k

∮
Sk

µb(V, h)[νb]dσn, µb(V, h) = V (−δbh−d(trbh))−i∇bV h+(trbh)dV ∈ Ω1(E0)

exists, and defines a linear functional on Nb.
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