
NOTES ON THE YAMABE PROBLEM

These are course notes to accompany the survey by J. Lee and T.Parker
([BAMS, July 1987]), of which they are a very rough summary.

1. The Yamabe invariant of a conformal class.

The Yamabe functional on Riemannian metrics on a compact manifoldMn, n ≥
3, is defined by:

Q(g) =

∫
M
SgdVg

V ol(M, g)
n−2
n

.

The power in the denominator makes it scaling-invariant. Here we consider
this functional within a conformal class of metrics g̃ = u4/n−2g, for a given
background metric g and arbitrary positive smooth function u on M :

Qg(u) = Q(g̃) =

∫
M
uLudVg

(
∫
M
u2n/n−2dVg)

n−2
n

=
E[u]

||u||2p
,

where Lu = −a∆gu+Sgu (the conformal Laplacian of g, a = 4(n− 1)/(n− 2)),
E(u) =

∫
M

(a|∇u|2g+Sgu
2)dVg the associated quadratic form, and p = 2n/n−2.

Computing the first variation with ut = u+ tv, we find:

d

dt |t=0
Qg(ut) =

2

||u||2p

∫
M

(Lu)vdVg − 2
E(u)

||u||p+2
p

∫
M

u
n+2
n−2 vdVg

=
2

||u||2p

∫
M

[Lu− λu
n+2
n−2 ]vdVg, λ =

E(u)

||u||pp
.

Thus u is a critical point for Qg iff:

Lu = λu
n+2
n−2 , λ =

E(u)

||u||pp
.

This means the metric g̃ has constant scalar curvature Sg̃ ≡ λ. In fact note:

λ =

∫
M

(Lu)udVg

||u||pp
=

∫
M
Sg̃u

n+2
n−2udVg

vol(M, g̃)
=

∫
M
Sg̃dVg̃

vol(M, g̃)
,

the mean value of scalar curvature over M in the metric g̃, as expected.

The Sobolev inequality on (M, g) corresponding to the embedding L2
1 ⊂ Lp:

||φ||2p ≤ C(||∇φ||22 + ||φ||22) for all φ ∈ C∞(M),

with C = C(M, g), guarantees the functional Qg is bounded below:

Qg(u) =
E(u)

||u||2p
≥ ||∇u||

2
2

||u||2p
− (sup

M
|Sg|)

||u||22
||u||2p

≥ 1

C
− [(sup

M
|Sg|) + 1]vol(M, g)2/n,
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by Hölder’s inequality. Thus to find critical points (which would give metrics of
constant scalar curvature in the same conformal class) it is natural to look for
minimizers of Qg. Define the Yamabe invariant of g by:

λ(M, g) = inf{Qg(u);u ∈ C∞(M)}.

Remark. This is in fact an invariant of the conformal class of g. Indeed, let
ḡ = w4/n−2g. Then for any φ ∈ C∞(M):

|∇φ|2ḡ = w−4/n−2|∇φ|2g, Sḡφ
2dVḡ = (−a∆gw + Sgw)wφ2dVg.

(|∇φ|2ḡ + Sḡφ
2)dVḡ = (aw2|∇φ|2g − a(∆gw)wφ2 + Sgw

2φ2)dVg

E(φ, ḡ) =

∫
M

(aw2|∇φ|2g + a|∇w|2gφ2 + 2a〈∇w,∇φ〉gwφ+ Sgw
2φ2)dVg

=

∫
M

(a|w∇φ+ φ∇w|2 + Sgw
2φ2)dVg = E(wφ, g).

And since ||φw||Lp(g) = ||φ||Lp(ḡ), it follows that:

Qḡ(φ) = Qg(φw),

and this implies:
λ(M, g) = λ(M, ḡ).

2. The case of Sn.

Let σ : Sn \ {P} → Rn be stereographic projection, ρ : Rn → Sn \ {P} its
inverse. The canonical metric gcan pulls back under ρ to the incomplete metric
of constant scalar curvature n(n− 1) in Rn:

g1 = ρ∗gcan =
4

(1 + |x|2)2
dx2 = 4u

4/n−2
1 dx2, u1(x) =

1

(1 + |x|2)n−2/2
.

By Liouville’s theorem, the group of conformal diffeomorphisms of Sn is a
finite-dimensional Lie group, generated (via conjugation by ρ) by orthogonal
transformations, translations and homotheties of Rn, the latter being the maps
δα(x) = x

α , α > 0. We have:

gα = δ∗α(g1) =
4

(1 + |x|2
α2 )2

d(
x

α
)2 =

4α2

(α2 + |x|2)2
dx2 = 4u4/n−2

α dx2,

where:
uα(x) = (

α

α2 + |x|2
)(n−2)/2.

For the scalar curvature, we have:

S(u4/n−2
α dx2) = S(

1

4
gα) = 4S(gα) = 4n(n− 1).
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Thus the euclidean Laplacian of uα satisfies:

−a∆0uα = 4n(n− 1)u
n+2
n−2
α .

The family of conformal metrics of constant scalar curvature on Sn is not large,
and described by the following uniqueness theorem:

Theorem [Obata 1971]. (See [L-P prop 3.1].) Any metric of constant scalar
curvature on Sn pointwise conformal to gcan is obtained from gcan by scaling,
or by pullback via a conformal diffeomorphism of Sn. By pullback via ρ, this
describes the set of all positive solutions in Rn of:

−a∆0u = λu
n+2
n−2

for some constant λ ∈ R: λ must be positive, and they are the uα, their constant
multiples and compositions with translations and orthogonal transformations
(acting on the independent variable x.)

We conclude that this is also a complete list of possible critical points of the
Yamabe functional in Rn:

Q(u) =

∫
Rn

a|∇u|20dnx
||u||2p

, u ∈ L2
1(Rn),

Of course, the uα are critical points; but at this point we don’t know if they are
minimizers. We need an independent (and harder to prove) existence theorem:

Theorem. (Prop 4.6 in [L-P], proof attributed to K. Uhlenbeck). There
exists a positive smooth function φ on Sn minimizing the Yamabe functional:

Qgcan(φ) = λ(Sn, gcan).

(And then, from uniqueness for critical points, we do know the complete set of
minimizers.)

Connection with the Sobolev inequality. In Rn we have the following esti-
mate, corresponding to the critical Sobolev embedding L2

1 ⊂ Lp:

||φ||2p ≤ σn||∇φ||22, ∀φ ∈ C∞c (Rn)

(i.e. smooth, of compact support.) In fact we let σn > 0 be the optimal constant,
so:

1

σn
= inf{

∫
Rn
|∇φ|2dnx
||φ||2p

;φ ∈ C∞c (Rn)}.

We see (using density of C∞c (Rn) in L2
1(Rn)) that 1

σn
= 1

aλ(Sn, gcan), and from
the two results just quoted we know this infimum is achieved by (pullbacks to
Rn of) the standard metric gcan on Sn, where we know its value (ωn = vol(Sn)):

Λ := λ(Sn, [gcan]) = Qgcan(1) =
Egcan(1)

vol(Sn)2/p
= n(n− 1)ω2/n

n , σ−1
n =

Λ

a
.
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It is a useful fact that the corresponding Sobolev inequality on a compact
Riemannian manifold holds with essentially the same constant:

Theorem. ([T. Aubin 1976], Thm 2.3 in [L-P]). Let σn be the best constant
in the Sobolev inequality in Rn, and let (Mn, g) be any compact Riemannian
manifold. Then for any ε > 0, there exists a constant Cε > 0 so that for all
φ ∈ C∞(M):

||φ||2p ≤ (1 + ε)σn

∫
M

|∇φ|2gdVg + Cε

∫
M

φ2dVg, p =
2n

n− 2
.

3. λ(M) is always bounded above by λ(Sn).

Theorem. Let (M, g) be a compact Riemannian manifold, n ≥ 3. Then
λ(M, [g]) ≤ λ(Sn, [gcan]) := Λ.

Proof. (See [L-P], Lemma 3.4.) We need a suitable ‘test function’ for the
Yamabe quotient on M . The idea is to ‘transplant’ the uα from Rn to M , for
α small. (This corresponds to grafting on M a huge sphere, so the effect of M
itself becomes negligible.) But first we have to deal with the fact the uα do
not have compact support; so still in Rn, we fix an ε > 0 and multiply it by a
smooth ‘bump function’ η, with support in B2ε and equal to 1 on Bε. That is,
let φ = ηuα, where both are radial functions. Then:

∫
Rn

a|∇φ|2dnx ≤
∫
B2ε

a|∂ruα|2dnx+ C

∫
Aε

(uα|∂ruα|+ u2
α)dnx.

Remark. There are two parameters, and the idea is to choose the cutoff param-
eter ε small (depending only on the geometry of (M, g), considered fixed), then
choose α small depending on ε. Thus in this proof it is not important to keep
track of the dependence of the estimates on ε.

About the radial functions uα(x) = ( α
α2+r2 )(n−2)/2 we know everything:

a||∇uα||22 = Λ||uα||2p, 0 < uα ≤ α
n−2
2 r2−n, |∂ruα| ≤ (n− 2)α

n−2
2 r1−n.

So for the annular term (treated as an ‘error’):∫
Aε

(uα|∂ruα|+ u2
α)dnx ≤ Cαn−2

(where C depends on ε). For the main term:∫
Rn

a|∂ruα|2dnx = Λ(

∫
Bε

upαd
nx+

∫
Bcε

upαd
nx)2/p

≤ Λ(

∫
B2ε

φpdnx+

∫
Bcε

αnr−2ndnx)2/p ≤ Λ(

∫
B2ε

φpdnx)2/p +O(αn).
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To complete the estimate, at this point we need to divide by ||φ||2p. This is fine
for the main term, but since there are error terms we also need a lower bound
on the denominator, a point left implicit in [L-P]. To see this is not a problem,
recall V ol(Rn, gα) = ωn, so:∫

Rn
upαd

nx = V ol(Rn, u4/n−2
α dx2) =

ωn
4n
,

a constant independent of α. In addition,

uα(x) =
1

α(n−2)/2
u1(

x

α
)⇒

∫
Bε

upα(x)dnx =

∫
B ε
α

up1(y)dny,

making the obvious change of variable x = αy. So the way to guarantee a lower
bound on the denominator (independent of α) is to choose ε small, then α small
so that: ∫

B ε
α

up1(y)dny ≥ 1

2

∫
Rn

up1(y)dny.

So we find for the Yamabe quotient of φ = ηuα (for the euclidean metric):

Q0(φ) =
E0(φ)

||φ||2p
≤ Λ + Cαn−2.

To obtain the estimate on a compact manifold (M, g), we choose 2ε to be
smaller than the injectivity radius, and transfer φ to a normal ball at some point
p ∈M , via normal coordinates at p. To control the error terms, we observe that
dVg = (1 + O(r))dnx and grr = 1 in normal coordinates, so |∇φ|2g = |∂rφ|2 as
before. Then for the energy we have:

Eg(φ) =

∫
M

(a|∇φ|2g+Sgφ2)dVg ≤ (1+Cε)(Λ||φ||2p+Cαn−2+C

∫ 2ε

0

u2
α(r)rn−1dr).

The last term (which comes from the scalar curvature) is a one-variable integral,
and a ‘calculus lemma’ (Lemma 3.5 in [L-P]) yields that it is bounded by a
constant times α. Thus, appealing again to the remark above concerning the
denominator, we obtain:

Qg(φ) ≤ (1 + Cε)(Λ + Cα),

which is enough to yield the conclusion λ(M, [g]) ≤ Λ.

4. Existence for the subcritical problem.

Instead of solving the critical variational problem directly, Yamabe’s ap-
proach was to consider subcritical variational problems:

λs(M) = {minQs(φ) =
E(φ)

||φ||s
;φ ∈ C∞(M)}, where 2 ≤ s < p;

5



‘Subritical’ is in the sense of the Sobolev embedding W 1,2 ⊂ Ls:

||φ||2s ≤ σs(
∫
M

|∇φ|2dVg +

∫
M

φ2dVg),

which implies the quotient Qs is bounded below (possibly by a negative con-
stant.) The Euler-Lagrange equation for normalized critical points (||φ||s = 1)
is:

Lφ = λsφ
s−1, Lφ = −a∆gφ+ Sgφ, a =

4(n− 1)

n− 2
, λs = λs(M) (Ys)

This equation has smooth positive solutions, obtained by the direct method.
The main reason is the fact the embedding W 1,2 ⊂ Ls is compact if s < p
(that is, bounded sequences in W 2,1 have subsequences converging strongly in
Ls norm.) The following regularity lemma is used:

Lemma. Suppose φ ∈ W 1,2 is a nonnegative weak solution of Ys, where
2 ≤ s ≤ p. Assume |λs| ≤ K. If φ ∈ Lr for some r > (s−2)n2 , then φ is smooth,
either φ > 0 or vanishes identically, and ||φ||C2,α ≤ C (with C depending on
||φ||r and K.)

Proof. Writing −a∆φ = λsφ
s−1 − Sφ, we see if φ ∈ Lr, the right-hand side

is in Lq, q = r
s−1 . By elliptic regularity in Sobolev spaces, we have φ ∈ W 2,q.

By Sobolev embedding, W 2,q ⊂ Lr′ , where:

1

r′
=

1

q
− 2

n
=
s− 1

r
− 2

n
=
ns− n− 2r

nr
<

1

r
,

the last inequality being equivalent to r > (s − 2)n2 . Thus r′ > r, and we’ve
gained some integrability. (In fact if r > (s− 1− C−1)n2 for some C > 1, as is
the case under the hypothesis on r, we have r′ > Cr.) Iterating this argument,
we find φ ∈ W 2,q for any q > 1. By Sobolev embedding into Hölder spaces, we
know φ ∈ Cα as soon as q > n

2 , where 0 < α < 1 and 1
q <

2−α
n . And then also

φs−1 ∈ Cα, so by elliptic regularity in Hölder spaces φ ∈ C2,α.

As for positivity, let m > 0 satisfy m > supM (S − λsφs−2). Then, since
φ ≥ 0:

−a∆φ+mφ = mφ− Sφ+ λsφ
s−1 ≥ 0,

so the strong maximum principle implies either φ > 0 on M , or φ ≡ 0 on M .
Thus φs−1 > 0 on M , and then repeated application of elliptic regularity yields
φ ∈ C∞.

Theorem: minimizers for the subcritical problem.[Yamabe 1960].
For 2 ≤ s < p, there exists a smooth positive solution φs to Ys, with Qs(φs) =
λs(M) and ||φs||s = 1.

Proof. We may assume vol(M, g) = 1. Let ui ∈ C∞ be a smooth minimizing
sequence for Qs with ||ui||s ≤ 1. Since E(|ui|) ≤ E(ui), we may assume ui ≥ 0.
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It’s easy to see (ui) is bounded in W 1,2:

||ui||W 1,2 = intM (|∇ui|2+u2
i )dVg =

1

a
E(ui)+

∫
M

(1−S
a

)u2
i dVg ≤

1

a
E(ui)+C||ui||22,

while ||ui||2 ≤ ||ui||s = 1, by Hölder’s inequality (since vol(M) = 1.)
Since the embedding W 1,2 ⊂ Ls is compact, a subsequence converges weakly

in W 1,2, strongly in Ls and pointwise a.e. to a function φs ≥ 0, with ||φs||s = 1.
Since convergence in Ls implies convergence in L2, we have:

∫
M
Su2

i dVg →∫
M
Sφ2dVg. By weak convergence in W 1,2:∫

M

|∇φs|2dVg = lim

∫
M

〈∇φs,∇ui〉dVg ≤ lim sup(

∫
M

|∇ui|2dVg)1/2(

∫
M

|∇φs|2dVg)1/2.

It then follows that:

Qs(φs) = E(φs) ≤ limE(ui) = λs(M),

so φs is a minimizer, hence a nonnegative weak solution of Ys. By the earlier
elliptic regularity lemma, φs is positive and smooth.

The next lemma has a simple proof (See Lee-Parker, Lemma 4.3]).
Lemma. (Behavior of λs.) Assume vol(M, g) = 1. Then |λs| is nonincreas-

ing, for s ∈ [2, p]. If λs < 0 for some s, then this is true for all s (and λ(M) < 0.)
If λ(M) ≥ 0, then λs is left-continuous as s ↑ p.

5. Solution of the critical Yamabe equation.

The idea is to take limits of the subcritical solution φs, as s ↑ p. This requires
a uniform bound, which will follow from the following lemma (see [Trudinger
68],[Aubin 76]).

Lemma. Assume λ(M) < λ(Sn) := Λ. For 2 ≤ s < p, let φs be a smooth
positive solution of the subcritical Yamabe equation Ys, normalized so that
||φs||s = 1. There exist s0 ∈ [2, p), r > p and C > 0 so that for all s ≥ s0 we
have ||φs||r ≤ C.

Proof. We may assume vol(M, g) = 1, so Hölder’s inequality implies the
Lq norm of a function is a nondecreasing function of q. Let w = φ1+δ

s . The
goal is to show ||w||2p ≤ C||w||22. Since ||w||p = ||φs||1+δ

p(1+δ), we would then let

r = p(1 + δ) and observe that, assuming s ≥ s0 = 2(1 + δ):

||w||2 = ||φs||1+δ
2(1+δ) ≤ ||φs||

1+δ
s = 1,

giving a bound on ||φs||p(1+δ) independent of s in the range [s0, p].

Multiplying Lφs = λsφ
s−1
s by φ1+2δ

s and integrating, we find:

a(1 + 2δ)

∫
M

〈dφs, φ2δ
s dφs〉dVg = λs

∫
M

φs+2δ
d dVg −

∫
M

Sφ2+2δ
s dVg,
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or in terms of w, with dw = (1 + δ)φδsdφs:

a
1 + 2δ

(1 + δ)2

∫
M

|dw|2dVg =

∫
M

(λsw
2φs−2
s − Sw2)dVg.

Now recall the critical Sobolev inequality on M , with the near-optimal constant
(1 + ε)σn, σn = a

Λ :

||w||2p ≤ (1 + ε)
a

Λ

∫
M

|dw|2dVg + Cε

∫
M

w2dVg,

which combined with the above gives:

||w||2p ≤ (1 + ε)
(1 + δ)2

1 + 2δ

λs
Λ

∫
M

w2φs−2
s dVg + C ′ε||w||22.

If λp = λ(M) < 0, since λs is increasing in s it follows λs < 0, and then
the desired estimate ||w||2p ≤ C||w||2s follows immediately. So from this point
on assume λ(M) ≥ 0. The remaining integral can be estimated via Hölder’s
inequality: ∫

M

w2φs−2
s dVg ≤ ||w||2p||φs||s−2

(s−2)n2
.

(To see this, let f = w2, g = φs−2
s . Since we want to use the Lp norm in

the estimate of w, let q = p
2 be the exponent for f , and consequently, with

1
q′ = 1− 2

p = 2
n , q′ = n

2 will be the exponent for g in:∫
M

fgdVg ≤ ||f ||q||g||q′ = ||w2|| p
2
||φs−2

s ||n
2

= ||w||2p||φs||s−2
(s−2)n2

,

as claimed.)

It is easy to see that s ≤ p is equivalent to (s − 2)n2 ≤ s, so ||φs||(s−2)n2
≤

||φs||s = 1 (again by Hölder, since vol(M) = 1.) Since λ(M) ≥ 0 (and con-

sequently λs ≥ 0), by continuity in s the hypothesis λ(M)
Λ := δ0 < 1 implies

λs
Λ < 1+2δ0

3 < 1 for s sufficiently close to p. And then we may choose δ > 0, ε > 0
sufficiently small that we have:

||w||2p ≤
2 + δ0

3
||w||2p + C ′ε||w||22, or

1− δ0
3
||w||2p < C ′ε||w||22,

yielding an estimate ||w||2p ≤ C||w||22, which, as observed earlier, proves the
lemma.

From the lemma it is a short step to prove the main existence result of
Trudinger and Aubin:

Theorem. Let φs be solutions to the subcritical Yamabe equation Ys, for
2 ≤ s < p, normalized to ||φs||s = 1. Assume λ(M) < λ(Sn) = Λ. Then as
s ↑ p, a subsequence of {φs} converges uniformly on M to a smooth minimizer
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φ > 0 of the Yamabe quotient: Q(φ) = λ(M) and ||φ||p = 1. In particular, the
metric φ4/n−2g has constant scalar curvature λ(M) (and unit volume.)

It follows from this theorem that Yamabe’s problem is solvable when λ(M, [g]) ≤
0 for the conformal class [g].

Proof. By the lemma, {φs} is uniformly bounded in Lr(M), for some r > p.
As we saw in section 4, this implies {φs} is uniformly bounded in C2,α, for some
0 < α < 1. (Note that p ≥ (s− 2)n2 is equivalent to s ≤ p.) The Arzelà-Ascoli
theorem then implies a subsequence φsi converges to φ ∈ C2, uniformly in C2

norm. The limit solves the limiting equation, namely the Yamabe equation with
critical exponent:

Lφ = λφp−1, λ := lim
s↑p

λs.

By elliptic regularity, φ is smooth. Since φ ≥ 0, φ > 0 follows from the maximum
principle. We also have: E(φs)→ E(φ) and ||φs||s = ||φ||p = 1, so

Qs(φs) = λs(M)→ Q(φ) = λ.

It remains to show that λ = λ(M), and there are two cases to consider:
First, if λ(M) ≥ 0. Then λs is decreasing in s and left-continuous at s = p.

Hence in this case λ = λp(M) = λ(M).
On the other hand, if λp(M) < 0, we have λs < 0 for s ∈ [2, p], and is

increasing (nondecreasing) in s. So we have λ = limλs ≤ λ(M). But λ(M) ≤
Q(φ) = λ; so also in this case, λ = λ(M).

6. Conformal blowup and a test function. To complete the solution
of the Yamabe problem, we need to find a test function φ on M yielding the
estimate λ(M) < λ(Sn) = Λ. The goal of [Lee-Parker] was to produce a unified
argument, with appeal to the Positive Mass Theorem at the last step, in the
cases where it applies. This is done in three steps: (1) Green’s functions and
the ‘conformal blowup’ construction; (2) Estimates for a test function; (3) The
spherical defect rate and the ADM mass.

We consider point (3) first, starting with an observation regarding behavior
of the ADM mass of AF manifolds under conformal change.

Proposition. (Exercise 3.12 in [Lee].) Suppose g is AF with rate q, and u is
a positive function asymptotic to 1 also with rate q (both expressed in euclidean
coordinates in the complement of a ball in Rn (r is the radial variable in Rn):

gij(x) = δij +O2(r−q), u(x) = 1 +O2(r−q).

If the ADM mass is defined (say if q > (n − 2)/2 and Sg ∈ L1(M, g)) and
g′ = u4/n−2g, we have:

mADM (g′) = mADM (g)− 2

(n− 2)ωn−1
lim

∮
Sr

(∂ru)dω0
r .

As a corollary: if g is the euclidean metric and u has harmonic-type asymptotics:

u = 1 +
A

rn−2
+O2(r−n+1),
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Then ∂ru = − (n−2)A
rn−1 + O1(r−n), and then: mADM (u4/n−2δ) = 2A. (Compare

with the Schwarzschild example.)

Proof. For the mass integrand:

∂ig
′
ij − ∂jg′ii = up−2[

4

n− 2
(
∂ju

u
gij −

∂ju

h
gii) + (∂igij − ∂jgii)].

And then straightforward calculation yields:

∂ig
′
ij−∂jg′ii = (1+O2(r−q))[−a∂ju+O(r−2q−1)]+(∂igij−∂jgii)], a =

4(n− 1)

n− 2

= −a∂ju+ (∂igij − ∂jgii) +O(r−2q−1).

Thus for the ADM mass:

mADM (g′) =
1

2ωn−1
lim

∮
Sr

[−a∂ju+ (∂igij − ∂jgii)]
xj

r
dω0

r

= − 2

(n− 2)ωn−1
lim

∮
Sr

(∂ru)dω0
r +mADM (g),

as claimed.

In situations when the ADM mass is not defined, we can give a geometric
interpretation of the integral of ∂ru over euclidean spheres, in terms of the
derivative of the ‘spherical area distortion function’ h(r):

h(r) =
volg(Sr)

ω0
r

=
1

ω0
r

∮
Sr

dωgr , ω0
r = ωn−1r

n−1.

We do this now for metrics (in an exterior euclidean domain) of the form:

g = u4/n−2(δ +O2(r−2)), u = 1 +Ar−k + o2(r−k).

In particular:

1

ωn−1rn−1

∮
Sr

(∂ru)dω0
r = −kAr−k−1 + o1(r−k−1).

The goal now is to relate the coefficient A to the area function h(r).

Proposition: Under the above conditions:

h(r) = 1+
a

2
Ar−k+o2(r−k), h′(r) = −ka

2
Ar−k−1+o1(r−k−1), a =

4(n− 1)

n− 2
,

and hence:
1

ωn−1rn−1

∮
Sr

(∂ru)dω0
r =

2

a
h′(r) + o1(r−k−1).
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Since the ADM mass (when defined) equals 2A, we see that positive mass implies
an eventually decreasing spherical area ratio. Quantitatively: if σ = a

2A is the
first nontrivial coefficient in the expansion of h(r), we have mADM = n−2

n−1σ.

Proof. The induced volume form on Sr is: dωgr = NgydVg, where Ngm the
g-unit normal to Sr, is:

Ng =
∇gr
|∇gr|g

, ∇gr = gij
xj

r
∂i, |∇gr|2g = gkj

xjxk

r2
,

since dr = r−2xkdxk, metric-independent. Thus:

Ng = u−2/n−2(∂r +O2(r−2)),

where the error term is absent if g is conformally flat. Thus:

dωgr = Ngy
√
gdnx = u

2n−2
n−2 dω0

r +O2(r−2−k)

(where the error term is absent in the conf. flat case). From the expansion of
u, this easily yields the desired expansion:

h(r) =
1

ωn−1rn−1

∮
Sr

u
2n−2
n−2 dω0

r +O2(r−2−k) = 1 +
2n− 2

n− 2
Ar−k + o2(r−k).

6.1. Green’s function and the conformal blowup.

It is a classical fact that, on a compact Riemannian manifold, an elliptic
operator of the form L = −∆g + h with h a positive function on M (so that
the strong maximum principle holds for L) admits a positive Green’s function
Γ = ΓP (with pole at an arbitrary point P ∈M), smooth inM\{P} with LΓ = 0
there, and satisfying LΓ = δP (Dirac mass at P ) in the sense of distributions,
that is: ∫

M

ΓP (x)Lf(x)dVg(x) = f(P ) ∀f ∈ C∞(M).

In particular, letting f ≡ 1, we have the normalization:
∫
M

ΓP (x)h(x)dVg(x) =
1. The symmetry condition ΓP (x) = Γx(P ) also holds.

It follows from this that the conformal Laplacian Lg = −a∆g+Sg also admits
a Green’s function, at least when Λ(M) > 0. Since Sg is not necessarily positive,
this requires a short argument, given in [L-P, Lemma 6.1]. The proof uses
existence for the subcritical Yamabe equation Ys and the conformal invariance
of Lg: if ḡ = u4/n−2g is a conformally related metric, we have:

Lḡ(u
−1f) = u1−pLgf, ∀f ∈ C∞(M).

It also uses the fact that Green’s functions for the conformal Laplacian of metrics
g and ḡ = u4/n−2g are related via:

ΓP (x) = u−1(P )u−1(x)ΓP (x).

11



Recall that in Rn the Green’s function Γ0
P for the Laplacian ∆0 with pole

at P (satisfying −∆0Γ0
P = δP ) is given by:

Γ0
P (x) =

1

(n− 2)ωn−1

1

rn−2
, r(x) = ||x− P ||.

Thus G0
P = (n− 2)ωn−1Γ0

P = r2−n satisfies −∆0G
0
P = (n− 2)ωn−1δP .

Setting GP = (n− 2)ωn−1aΓP for the conformal Laplacian, we have:

−∆gGP =
1

a
LgGP −

Sg
a
GP = (n− 2)ωn−1δP − (n− 2)ωn−1SgΓP ,

in the distributional sense. Thus we ‘expect’ asymptotics with leading term
r2−n for GP near P . In fact we have [L-P, Lemma 6.4]:

Lemma. In conformal normal coordinates at P , with r = d(·, P ) the radial
coordinate in a normal neighborhood U , we have the asymptotics as r ↓ 0:

(i) If n=3,4,5 or g is conformally flat (CF) in U :

rn−2GP = 1 +Arn−2 +O2(rn−1).

(ii) If n = 6:

rn−2GP = 1− cn|W (P )|2rn−2 log r +O2(rn−2), W = Weyl tensor.

(iii) If n ≥ 7:

rn−2GP = 1 + [cn|W (P )|2 − c̃nHess(S)|P (∂r, ∂r)]r
4 +O2(r5).

We abbreviate these asymptotics a r → 0 in the form (for n 6= 6):

rn−2GP = 1 +A(P )rk +O2(rk+1); k = n− 2, n = 3, 4, 5, CF ; k = 4, n ≥ 7. (*)

Remark: Due to the logarithmic term, treatment of the case n = 6 is slightly
different, but in inessential ways. The same results as for n ≥ 7 hold for n = 6,
but we have to omit it from the statements for this technical reason.

Conformal blowups. This construction associates to each compact manifold
(M, g) (with λ(M, [g]) > 0) and point P ∈ M a complete, non-compact one
(M̂, ĝ), with a single end. A neighborhood of the end in M̂ corresponds to a
punctured neighborhoord U \ {P} of P in M , and ĝ is asymptotically flat at its
end. Let GP be Green’s function for the conformal Laplacian at P , normalized
as above. We define:

(M̂, ĝ) = (M \ {P}, ĝ = G
4/n−2
P g).

To check that ĝ is conformally flat at its end, let (r, ω) be polar conformal normal
coordinates in U , and let M∞ = U \ {P} represent the end of M̂ , identified via
conformal normal coordinates with the complement of a ball in Rn. On M∞
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we introduce ‘inverted polar conformal normal coordinates’ z = (φ, ω), where
zi = r−2xi, ρ = |z| = r−1, xj = ρ−2zj . Define u(x) = rn−2GP (x) on U \ {P}.
We have:

ĝ = Gp−2g = up−2r(2−n)(p−2)g = up−2r−4g = up−2ρ4g,

ĝij = up−2g(∂zi , ∂zj ) = up−2(δik − 2
zizk

ρ2
)(δjl − 2

zjzl

ρ2
)gkl(z),

while gkl(x) = δkl+O1(r2) implies gkl(z) = δkl+O1(ρ−2). A short computation
then yields:

ĝij(z) = up−2(δij +O1(ρ−2))

(with the error term absent in the conformally flat case), where u has the ab-
breviated asymptotics given in (*) for n ≥ 6, as ρ→∞:

u(z) = 1 +A(P )ρ−k +O2(ρ−k−1), k = k(n) ≥ 1 (∗ ∗ ∗).

So we see ĝ(z) is asymptotically flat on M̂∞, of order q = min{2, k}, with
k = 1, 2, 3, q = 1, 2, 2 for n = 3, 4, 5 (resp.) and k = 4, hence q = 2 if n ≥ 7;
except in the case g conformally flat in U , when the order is q = n − 2 in all
dimensions.

The metric ĝ is scalar-flat (since LgGP = 0 on M \{P}), so the condition for
the ADM mass to be defined is q ≥ (n− 2)/2. This holds in dimensions n=3,4
or 5, or in the CF case. So a PMT argument will apply only in those cases. On
the other hand, the asymptotic expansion of the spherical volume ratio h(ρ) (as
given earlier) applies in all dimensions:

h(ρ) = 1 +
a

2
Aρ−k + o2(ρ−k), h′(ρ) = −ka

2
Aρ−k−1 + o1(ρ−k−1) (∗∗)

and we have:

1

ωn−1ρn−1

∮
Sρ

(∂ρu)dω0
ρ =

2

a
h′(ρ) + o1(ρ−k−1).

6.2 Definition and estimates for a test function.

Let uα(|z|) = ( α
α2+ρ2 )

n−2
2 (α > 0) be the one-parameter family of mini-

mizers for Sn (with its standard conformal structure), transferred to Rn via
stereographic projection. Recall :

−a∆0uα = 4n(n− 1)up−1
α , Λ = λ(Sn) = 4n(n− 1)||uα||p−2

p .

Fix R >> 1 large, and let M̂R = {z ∈ M̂∞; ρ(z) ≥ R}. Extend ρ to all of M̂ as
a positive smooth function. The test function φ : M̂ → R+ is defined on M̂∞
as:

φ(z) = uα(|z|), ρ(z) ≥ R; φ(z) = uα(R), ρ(z) ≤ R,
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and extend φ to the rest of M̂ as the constant uα(R). φ is not quite smooth,
only Lipschitz (or in W 1,2), but this is good enough. Note φ(z)→ 0 at infinity
with all its derivatives; so we may regard φ as a smooth function on M , with
φ(P ) = 0 and φ constant outside a small neighborhood of P . The strategy will
be to take R large, and then choose α >> R.

Underlying this argument is the following easily verified fact: λ(M, [g]) =
λ(M̂, ĝ).

Proposition. For n 6= 6, or g conformally flat in U , we have:

E(φ) ≤ Λ||φ||2p − Cnµα−k +O(α−k−1).

Here Cn depends only on dimension and µ = kA (for the A = A(P ) in (***)),
while k = n− 2 for n = 3, 4, 5, CF and k = 4 if n ≥ 7.

Proof. Here E(φ) is computed with respect to the metric ĝ in M̂ . Since ĝ is
scalar-flat on M̂ ,

E(φ) =

∫
M̂

a|∇φ|2ĝdVĝ =

∫
M̂∞

aĝρρ(∂ρuα)2updVg = a

∫
M̂R/2

(∂ρuα)2u2dnz.

Here the following facts were used (from left to right): φ is constant outside
the end M̂∞; ĝ = up−2g, so dVĝ = updVg and ĝρρ(z) = u−(p−2), since grr(x) =
1 (with no error terms) in normal coordinates; finally, dVg(z) = dnz up to
an arbitrarily small error term (neglected in the estimate), since we adopted
conformal normal coordinates in U .

Next we recall (∂ρuα)2 = |∇0uα|20 and integrate by parts in the euclidean
metric. The domain of integration is an n-dimensional euclidean annulusA(R,L) =
{z ∈ M̂∞;R ≤ |z| ≤ L}, where we’ll soon let L→∞.

∫
A(R,L)

|∇0uα|20u2dnz = −
∫
A(R,L)

uα(∆)0u
2dnz−

∫
A(R,L)

uα∂ρuα(∂ρu
2)dnz−

∫
SRtSL

uα(∂ρuα)u2dσ0.

On SL we use |∂ρuα| ≤ (n − 2)α
n−2
2 ρ1−n, |uα| ≤ α

n−2
2 ρ2−n, so uα|∂ρuα| is

bounded above on SL by (n−2)αn−2L3−2n, which integrated over SL isO(L2−n),
as L→∞.

On SR we use |∂ρuα| ≤ (n − 2)α
n−2
2 R and |uα| ≤ α−

n−2
2 , so their product

integrated over SR is O(Rnα−n), which vanishes if we take R large first, then
let α→∞. Thus the boundary terms don’t contribute.

−
∫
A(R,L

uα(∆)0u
2dnz = 4n(n− 1)

∫
A(R,L)

up−2
α (uαu)2dnz,

and this can be estimated via Hölder’s inequality, applied to f = up−2
α (in

Lq, q = p
p−2 ), and g = (uαu)2 (in Lq

′
, q′ = p

2 ). We find:∫
A

fgdnz ≤ ||f ||q||g||q′ = ||uα||p−2
Lp(A)(

∫
A

φpdVg)
2/p ≤ Λ||φ||2Lp(A).
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Letting L→∞, we conclude:

E(φ) ≤ Λ||φ||2p −
∫
A[R,∞)

auα(∂ρuα)(∂ρu
2)dnz +OR(α−n).

It remains to estimate the crucial term. Recall that under the asymptotics (∗∗∗)
for u, we have (for n 6= 6):

Lemma A:

1

ωρ

∮
Sρ

(∂ρu)dω0
ρ = −kAρ−k−1 +O1(ρ−k−2), ωρ = ωn−1ρ

n−1.

Thus we have the estimate:

a

∫
Sρ

∂ρu
2dω0

ρ = 2a

∫
Sρ

(1+O(ρ−k))(∂ρu)dω0
ρ = 2aωρ[

1

ωρ

∮
Sρ

(∂ρu)dω0
ρ+O(ρ−2k−1)]

= 2aωρ[−kAρ−k−1 +O(ρ−k−2)],

using Lemma A. Recalling that uα∂ρuα = −(n− 2)ρα−1( α
α2+ρ2 )n−1, we need a

‘calculus lemma’:
Lemma B:

1

C
α−k+1 ≤

∫ ∞
R

ρ−k(
α

α2 + ρ2
)n−1ρn−1dρ ≤ Cα−k+1,

where C > 1 depends only on n and R.

Thus we have the estimate:

−a
∫ ∞
R

uα(∂ρuα)(

∫
Sρ

∂ρu
2dω0

ρ)dρ

= (n− 2)

∫ ∞
R

ρα−1(
α

α2 + ρ2
)n−12aωρ[−kAρ−k−1 +O(ρ−k−2)]dρ

= −2aωn−1(n−2)kAα−1

∫ ∞
R

ρ−k(
α

α2 + ρ2
)n−1ρn−1dρ+Cα−1

∫ ∞
R

ρ−k−1(
α

α2 + ρ2
)n−1ρn−1dρ

= −cnkAα−k +O(α−k−1),

appealing to Lemma B twice. Thus we have:

E(φ) ≤ Λ||φ||2p − cnkAα−k +O(α−k−1),

establishing the proposition with µ = kA.

Conclusion of the solution of Yamabe’s problem. To establish that λ(M) < Λ
(if (M, [g]) is not conformally equivalent to the sphere), we have two cases.
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Case (i): n = 3, 4, 5 or g conformally flat in U . Then the conformal blowup
(M̂, ĝ) is an asymptotically flat manifold satisfying the conditions that make the
ADM mass well-defined. Since we are under conditions where the positive mass
theorem holds (recall Sĝ ≡ 0), and since we earlier established that mADM =

2A, it follows that A > 0 (hence µ > 0), or else (M̂, ĝ) is isometric to Rn with
the flat metric, which is only possible if (M, [g]) is the sphere with its standard
conformal class. And if A > 0, we can certainly take R large enough, then α
large enough, so that E(φ) < Λ||φ||2p, leading to λ(M) < Λ.

Case (ii): If n ≥ 6 and M is not locally conformally flat, the conclusion
A > 0 follows by picking a point P where the Weyl tensor does not vanish, and
recalling the precise expression for A (more details are needed here; in any case,
these cases were resolved in [Aubin 76]). Alternatively, if we know the spherical
area ratio function h(r) (for the conformal blowup) is eventually decreasing,
then it also follows that A > 0.
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