
FIRST AND SECOND VARIATIONS OF HYPERSURFACE VOLUME

We consider an oriented hypersurface Σn−1 ⊂Mn in an oriented Riemannian
manifold (M, g), endowing Σ with the induced Riemannian metric and Levi-
Civita connection. Σ is not assumed compact, and indeed we consider a bounded
domain Ω ⊂ Σ. The variation vector field X (‘velocity vector’) is not assumed
normal to Σ or with compact support in Ω, and Σ is not assumed minimal. Thus
there will be boundary terms and terms involving the tangential component XT

and mean curvature H. (Source: We combine elements from D. Lee’s book and
E. Kuwert’s thesis, while aiming to slightly simplify the calculation.)

1. Linear Algebra Review.

1. Let (E, g) be an n-dimensional real vector space, endowed with a choice
of orientation and a positive-definite inner product g; let (ei) be a g-orthonormal
positive frame, θi ∈ E∗ the dual co-frame. The g-volume form on E is:

ωE = θ1 ∧ . . . ∧ θn ∈ ΛnE∗.

Given an (n− 1)-dimensional subspace V ⊂ E, we consider the induced volume
form ωV ∈ Λn−1V ∗, which can be defined as follows: if v1, . . . , vn−1 are vectors
in V and ν is a choice of unit normal to V in E (defining the induced orientation
in V ), let:

ωV (v1, . . . , vn−1) = det(A), A = [v1| . . . |vn−1|ν], (by columns) .

Here the columns of the n×n matrix A are vectors in Rn, obtained by expressing
each vi and ν in the basis (ei). One easily sees that the n × n matrix AtA is
in ‘block form’: an (n − 1) × (n − 1) block with entries 〈vi, vj〉g and the n, n
entry |ν|2g = 1 (the other entries are zero). Thus, if we let Gij = 〈vi, vj〉g (an
(n− 1)× (n− 1) matrix), we have:

detG = detAtA = (detA)2,

and thus (assuming the (vi) are either linearly dependent, or a positive basis of
V to take the positive square root):

ωV (v1, . . . , vn−1) =
√

det〈vi, vj〉g, vi ∈ V ⊂ E.

2. Let A(t) be a C1 curve in GL+
n (n×n matrices with positive determinant).

We have the formula:

(detA(t))′ = tr(A′A−1) detA(t).

To see this, recall the Gram-Schmidt process defines a factorization A(t) =
U(t)T (t), with U(t) ∈ SOn and T (t) ∈ B+

n (group of upper-triangular matrices,
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with zeros below the diagonal and positive diagonal entries.) We have detA(t) =
detT (t), and thus:

(detA(t))′ = (detT (t))′ = (
t′11

t11
+. . .+

t′nn
tnn

)(t11(t) . . . tnn(t)) = tr(T ′T−1) detA(t).

On the other hand, from T = U−1A = U tA′ and T−1 = A−1U , we compute:

T ′ = (U t)′A+ U tA, T ′T−1 = (U t)′U + U tA′A−1U.

Since U tU = In, we have (U t)′U + U tU ′ = 0, and hence 2tr((U t)′U) =
tr[(U t)′U + U tU ′] = 0. We conclude tr(T ′T−1) = tr(U tA′A−1U) = tr(A′A−1),
as we wished to show.

3. In particular, if A(t) is a C1 curve in GL+
n with A(0) = In, we have

(detA)′(0) = tr(A′(0)), and compute the second derivative:

(detA)′′ = {tr(A′′A−1 − (A′)2A−2) + [tr(A′A−1)]2} detA(t)

= tr(A′′(0))− tr(A′(0))2 + (tr(A′(0))2

at t = 0. Now, if A(t) is symmetric, tr(A′(0)2) =
∑
i,j A

′(0)2
ij = |A′(0)|2, so we

conclude:
(detA)′′(0) = tr(A′′(0))− |A′(0)|2 + (tr(A′(0))2.

4. We are interested in the first and second derivatives of J(t) =
√

det〈ēi, ēj〉g
at t = 0. So set Aij(t) = 〈ēi, ēj〉g, with A(t) ∈ GL+

n starting at A(0) = In and
J2(t) = detA(t), J(0) = 1. Then starting from:

(J2)′ = 2JJ ′, (J2)′′ = 2JJ ′′ + 2(J ′)2,

we easily obtain:

J ′(0) =
1

2
tr(A′(0)), J ′′(0) =

1

2
[tr(A′′(0))− |A′(0)|2 +

1

2
(tr(A′(0))2].

2. Setting up the calculation.

We consider a bounded domain Ω ⊂ Σ, with unit outward normal η ∈ TΣ
(‘conormal’), while ν denotes the unit normal of Σ in M , defining its orientation.
DXY is the covariant derivative in M , its tangential component DT

XY (when
X,Y ∈ TΣ) the covariant derivative for the Levi-Civita connection of the in-
duced metric on Σ. The scalar second fundamental form is A(X,Y ) = 〈DXν, Y 〉,
and the mean curvature of Σ in M is its trace, H =

∑
iA(ei, ei).

Typically one starts from a variation (Ft) of Σ: a one-parameter family
of embeddings Ft : Σ → M , with F0 the inclusion map, also written F (q, t)
(q ∈ Σ, t ∈ I, an open interval containing 0). Then set X̄(q, t) = ∂tF (q, t), a
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‘vector field along F ’, meaning X̄(q, t) ∈ TF (q,t)M (definitely not the same as a
vector field on M , defined in a neighborhood of Σ.) This restricts, when t = 0,
to a vector field X ∈ TM|Σ, X(q) = X̄(q, 0).

Alternatively, one may start from a vector field X ∈ TM|Σ, extend it to a
vector field X̄ in a neighborhood of Σ, and let (Ft) be the local flow of X̄, a
one-parameter group of embeddings Ft : Σ→M , t ∈ I, F0 the inclusion. Some
terms in the second variation formula depend on the extension chosen. These
points of view are not equivalent; the first one is more general, so we’ll adopt
it, taking the variation (Ft) as given.

We are interested in the rates of change of volume of the sets Ωt = Ft(Ω) ⊂
Σt = Ft(Σ). The volume form ωΣt induced from ωM and the unit normal
to Σt is associated, at qt = F (q, t), with the (n − 1)-dimensional subspace
TqtΣt = dFt(q)[TqΣ]. We have:

vol(Ωt) =

∫
Ω

F ∗t ωΣt =

∫
Ω

J(q, t)ωΣ.

In the above expression, with ωM ∈ Ωn(M), ωΣ ∈ Ωn−1(Σ) the Riemannian
volume forms on M and Σ, we consider:

ωt = F ∗t ωΣt
∈ Ωn−1(Σ), ωt(q, t) = J(q, t)ωΣ(q),

and the first and second partial derivatives of the Jacobian function J at t = 0
and points q ∈ Σ:

aX(p) =
∂J

∂t
(q, 0), bX(q) =

∂2J

∂t2
(q, 0).

These are the integrands (over Σ) in the first and second variations of hyper-
surface volume.

To calculate in local coordinates, consider a local chart ϕ : U0 → U , ϕ(0) = p,
U0 ⊂ Rn−1, U ⊂ Σ. We may choose ϕ so that ei(x) = ∂xi

ϕ(x) ∈ TqΣ, q =
ϕ(x), defines a positive orthonormal frame at the point ϕ(0) = p ∈ U . (The
ei are ‘vector fields along ϕ’; but since ϕ is a local chart, we may think of
them as tangent vector fields in U ⊂ Σ.) In fact, choosing exponential normal
coordinates based at a fixed point p ∈ Σ, we may also assume that DT

v ei(p) = 0,
for any v ∈ TpΣ. From the local chart ϕ and the variation (Ft) we define a
smooth map (not always an immersion):

Φ : U0 × I →M, Φ(x, t) = Ft(ϕ(x)), Φt = Ft ◦ ϕ : U0 → Σt.

Extending the previously used notation, we set:

X̄(x, t) = ∂tΦ(x, t), ēi(x, t) = ∂xi
Φ(x, t) = dFt(ϕ(x))[ei(x)].

vector fields along Φ on M (sections of the pullback of the tangent bundle).
(And X(x) = X̄(x, 0).) Of course the ēi are not in general orthonormal, except
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at x = 0, t = 0. We have the well-known relation:

D

∂t

∂Φ

∂xi
(x, t) =

D

∂xi

∂Φ

∂t
(x, t).

This may be written in the form:

(DX̄ ēi)(x, t) = (DēiX̄)(x, t),

as an equality (in U0 × I) of vector fields along Φ. As for the volume under
variation, we have:

Φ∗tωΣt
= J(x, t)dn−1x, vol(Ft(U)) =

∫
U0

J(x, t)dn−1x.

where dn−1x is the volume form in U0 ⊂ Rn−1 and J(x, t) > 0 is the Jacobian.
We are interested in computing the first and second variation integrands (at
x = 0 in U0, corresponding to p ∈ Σ):

aX(0) =
∂J

∂t
(0, 0), bX(0) =

∂2J

∂t2
(0, 0),

where:

J(x, t) = ωΣt
(ē1(x, t), . . . , ēn−1(x, t)) =

√
det〈ēi(x, t), ēj(x, t)〉Φ∗g

as seen in (1.) of the previous section. Note the ēi(x, t) define a positive basis of
the subspace Txt

Σt = dFt(x)[TxΣ] ⊂ Txt
M,xt = Ft(x). (We henceforth identify

Φ∗g and g in the notation.)

Remark. It is incorrect to think of the ēi as vector fields on M , defined in
a neighborhood of Σ, and extending the frame ei on Σ. Here is the problem:
from [X̄, ēi]M (x) = 0 (which follows from ēi(x, t) = dFt(x)[ei(x)] ), a short
calculation shows that, on Σ (taking tangential and normal components, where
X = XT + φν and S : TΣ→ TΣ is the Weingarten operator):

[XT , ei]Σ = φ(Sei − (Dν ēi)
T ), ei(φ)ν = φ(Dν ēi)

⊥,

leading to the compatibility conditions:

φ(x) = 0⇒ ∇Σφ(x) = 0 and [XT , ei]Σ(x) = 0,

which are of course not assumed.

3. The first variation formula.

With Aij(x, t) = 〈ēi(x, t), ēj(x, t)〉g, we have:

∂Aij
∂t

= 〈DX̄ ēi, ēj〉+ 〈ēi, DX̄ ēj〉 = 〈DēiX̄, ēj〉+ 〈ēi, Dēj X̄〉
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Thus:
1

2
tr(

∂A

∂t
)(x, t) =

∑
i

〈DēiX̄, ēi〉.

Evaluate at t = 0, introducing the decompositionX = XT+φν, whereXT ∈ TΣ
and φ : Ω→ R:

aX(x) =
∂J

∂t |t=0
(x) =

1

2
tr(

∂A

∂t
)(x, 0) =

∑
i

〈DeiX, ei〉

= φ
∑
i

〈DT
eiν, ei〉+

∑
i

〈DT
eiX

T , ei〉 = φH + divΣX
T .

In integrated form, using the divergence theorem, we have the well-known ex-
pression:

d

dt
vol(ft(Ω))|t=0 =

∫
Ω

aXdµΣ =

∫
Ω

φHdµΣ +

∫
∂Ω

〈X, η〉dµ∂Ω.

4. The second variation, Part I: derivation of the index integrand.

We begin by computing the second derivative of Aij :

∂2

∂t2
〈ēi(x, t), ēj(x, t)〉 =

∂

∂t
〈DēiX̄, ēj〉+ (i↔ j)

= 〈DX̄DēiX̄, ēj〉+ 〈DēiX̄,DX̄ ēj〉

= 〈DēiDX̄X̄, ēj〉+RM (X̄, ēi, X̄, ēj) + 〈DēiX̄,Dēj X̄〉+ (i↔ j).

Define Z = DX̄X̄ ∈ TM , the ‘acceleration vector field’ of the variation, with
values in TM . (More precisely, a vector field along Φ, or section of Φ∗TM .)

Setting t = 0, we have:

∂2Aij
∂t2

(x, 0) = 〈DeiZ, ej〉+ 〈DejZ, ei〉+ 2〈DeiX,DejX〉 − 2RM (ei, X,X, ej).

Taking traces:

∂2tr(A)

∂t2
(x, 0) = 2divΣZ + 2|

∑
i

DeiX|2 − 2
∑
i

RM (ei, X,X, ei).

This is the first of three terms (see part 1, no.4) used in the computation of

bX(x) = ∂2J
∂t2 (x, 0). The other two terms are:

|∂A
∂t

(x, 0)|2 =
∑
i,j

(〈DeiX, ej〉+〈DejX, ei〉)2 = 2
∑
i

|DT
eiX|

2+2
∑
i,j

〈DeiX, ej〉〈DejX, ei〉

(
∂tr(A)

∂t
)2(x, 0) = 4(divΣX)2.
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Thus we have for the second variation integrand:

bX(x) =
∂J

∂t
(x, 0) =

1

2

∂2tr(A)

∂t2
(x, 0)− 1

2
|∂A
∂t

(x, 0)|2 +
1

4
(
∂tr(A)

∂t
)2(x, 0)

= divΣZ+(divΣX)2+
∑
i

|(DeiX)⊥|2−
∑
ij

〈DeiX, ej〉〈DejX, ei〉−
∑
i

RM (ei, X,X, ei).

The divergence of the acceleration field Z contributes only a boundary integral,
so we write this in the form:

bX = divΣZ + I(X,X),

where the ‘index integrand’ I(X,Y ) is defined as:

I(X,Y ) = (divΣX)(divΣY )+
∑
i

〈(DeiX)⊥, (DeiY )⊥〉−
∑
i,j

〈DeiX, ej〉〈DejY, ei〉−
∑
i

RM (ei, X, Y, ei).

Bearing in mind the decomposition X = XT +φν, the plan now is to understand
separately the terms I(φν, φν), I(XT , φν) and I(XT , XT ).

A. The index integrand on normal-normal terms.

This is quick, observing divΣ(φν) = φ(divΣν) = φH, 〈Dei(φν), ej〉 = φ〈Deiν, ej〉 =
φA(ei, ej) and Dei(φν))⊥ = ei(φ)ν. We find:

I(φν, φν) = |∇Σφ|2 − (RicM (ν, ν) + |A|2 −H2)φ2,

the classical formula for minimal surfaces, with the added term H2 in this more
general case.

B. The index integrand on tangential-normal terms. I(X,φν), X ∈ TΣ. We
have:∑
i

〈(DeiX)⊥, (Dei(φν))⊥〉 =
∑
i

〈(DeiX)⊥, ei(φ)ν〉 = 〈D∇ΣφX, ν〉 = −A(X,∇Σφ).

∑
i,j

〈DeiX, ej〉〈Dej (φν), ei〉 =
∑
i,j

〈DeiX, ej〉φA(ei, ej) = φ
∑
i

〈DΣ
eiX,S(ei)〉.

The other two terms are (divΣX)φH and the curvature term, both linear in φ.

We seek to combine the terms which do not involve ∇Σφ into a divergence
term. Recall the Codazzi equation:

(DΣ
XS)Y − (DΣ

Y S)X = RM (X,Y )ν, X, Y ∈ TΣ.

Thus, at x = 0 (corresponding to ϕ(0) = p ∈ Σ under the local chart ϕ for Σ):∑
i

〈Sei, DΣ
eiX〉+

∑
i

RM (ei, X, ν, ei) =
∑
i

〈Sei, DΣ
eiX〉+〈(D

Σ
eiS)X, ei〉−〈(DΣ

XS)ei, ei〉
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=
∑
i

[〈(DΣ
ei(SX), ei〉 −X〈Sei, ei〉 = divΣ(SX)−X(H),

(using DT
Xei(x) = 0 at the given point x = 0, ϕ(x) = p for X tangential, as we

may assume.) Combining these facts, we find:

I(X,φν) = (divΣX)(φH)−A(X,∇Σφ)− φ(divΣ(SX)−X(H))

= φ(HdivΣX +X(H)− divΣ(SX))−A(X,∇Σφ)

= φ(divΣ(HX)− divΣ(SX))−A(X,∇Σφ).

We can also write this in the form of [Lee, p.36], noting that:

divΣ(HφX)−HX(φ) = φdivΣ(HX), divΣ(φSX) = φdivΣ(SX)+A(X,∇Σφ).

We conclude:
I(X,φν) = divΣ(HφX − φSX)−HX(φ),

for X tangential.

C. The index integrand on tangential-tangential terms. We compute I(X,X),
assuming X ∈ TΣ.

∑
i

|(DeiX)⊥|2 =
∑
i

| ~A(ei, X)|2 = |S(X)|2.

And from the Gauss formula:∑
i

RM (ei, X,X, ei) = RicΣ(X,X) + |S(X)|2 −HA(X,X).

As observed earlier, since DēiX̄ = DX̄ ēi (as vector fields along Φ), we have
at points Φ(x, 0) = ϕ(x) ∈ U ⊂ Σ: DeiX = DX ēi, and if X is tangential in U0:
DeiX = DXei on Σ, in particular for the tangential components: DT

eiX = DT
Xei

on Σ.
On the other hand, we may assume at the point p = ϕ(0) ∈ Σ of calculation

we have DT
v ei(p) = 0, for any v ∈ TpΣ and all i. Thus the term involving the

sum over i, j of 〈DeiX, ej〉〈DejX, ei〉 does not contribute to index integrand, at
the point p.

After cancelation of the term |S(X)|2, we are left with:

I(X,X) = (divΣX)2 −RicΣ(X,X) +HA(X,X).

We expect this will turn out to be almost entirely a divergence term. So com-
pute:

divΣ((divΣX)X = (divΣX)2 +X(divΣX).

And again using the fact the frame (ei) is parallel at x = 0:

X(divΣX) =
∑
i

X〈DT
eiX, ei〉 =

∑
i

〈DT
XD

T
eiX, ei〉
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=
∑
i

[〈DT
eiD

T
XX, ei〉+RΣ(X, ei, X, ei)] = divΣ(DT

XX)−RicΣ(X,X),

and thus:

(divΣX)2 = divΣ((divΣX)X)− divΣ(DT
XX) +RicΣ(X,X),

giving, at the point p = ϕ(0):

I(X,X) = HA(X,X) + divΣ[(divΣX)X −DT
XX].

D. Putting everything together.

For a general variation vector field X = XT + φν, using the fact the index
integrand is linear over R (not over functions!) we have:

I(X,X) = I(φν, φν) + 2I(XT , φν) + I(XT , XT )

= |∇Σφ|2 − (RicM (ν, ν) + |A|2 −H2)φ2 − 2HXT (φ) +HA(XT , XT )

+divΣ[2HφXT − 2φS(XT ) + (divΣX
T )XT −DT

XTX
T ]

To compute the term divΣZ in bX , we let Z = ZT + ζν, ZT ∈ TΣ, and find:∑
i

〈DeiZ, ei〉 =
∑
i

〈DT
eiZ

T , ei〉+ ζH = divΣZ
T + ζH.

So the final expression for the second variation integrand is:

bX = ζH+|∇Σφ|2−(RicM (ν, ν)+|A|2−H2)φ2−2HXT (φ)+HA(XT , XT )+divΣ(cX),

cX = ZT + 2HφXT − 2φS(XT ) + (divΣX
T )XT −DT

XTX
T .

The integrated general second variation formula reads:

d2vol(ft(Ω))

dt2 |t=0
=

∫
Ω

{|∇Σφ|2 − (RicM (ν, ν) + |A|2 −H2)φ2

+H[ζ − 2XT (φ) +A(XT , XT )]}dµΣ +

∫
∂Ω

〈cX , η〉dµ∂Ω.

We see that in the minimal surface case, the acceleration vector field and tan-
gential components of X contribute only boundary terms.

Remark on the acceleration vector.

We may get some control on the terms of the decomposition Z = ZT + ζν
on Σ if we take the point of view that X is given on Σ, extended to X̄ in
a neighborhood of Σ, and (Ft) is the local flow of X̄, and take a particular
extension of X: extend ν to a neighborhood of Σ as a geodesic vector field ν̄,
that is, Dν̄ ν̄ = 0, then extend φ to be constant along normal geodesics (ν̄(φ̄) = 0)
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and extend X̄T by parallel transport: Dν̄X̄
T = 0. Finally, set X̄ = X̄T + φ̄ν̄,

extending the decomposition X = XT + φν on Σ. Then a simple calculation
yields, on Σ:

ZT = DT
XTX

T + φS(XT ), ζ = −A(XT , XT ) +XT (φ).

This leads to a simplification of terms in bX and cX :

bX = |∇Σφ|2 − (RicM (ν, ν) + |A|2 −H2)φ2 −HXT (φ) + divΣ(cX),

cX = 2HφXT − φS(XT ) + (divΣX
T )XT .

Example: scalar curvature of a rotationally symmetric metric.
The usual form of a rotationally symmetric metric in Rn is:

g = ds2 + r2(s)dω2,

where dω2 is the standard metric in Sn−1. Thus the (n−1)-dimensional volume
(‘area’) of the sphere {s = s0} in the metric g is ωn−1r(s)

n−1, and dr
ds (s0)

corresponds to a minimal surface at s0. If no such minimal surface exists, r is
monotone in s, and we can instead use r as a parameter (the ‘area radius’) and
write the metric in the form:

g =
dr2

V (r)
+ r2dω2,

dr

ds
=

√
V (r).

We can use the first and second variation formulas to compute the scalar cur-
vature Rg of g. The volume |Sr| at radius r is ωn−1r

n−1, and
√
V ∂r is a unit

normal vector, so first variation gives:

√
V ∂r|Sr| =

∫
Sr

Hrn−1dω, or H(r) =
n− 1

r

√
V .

The second fundamental form is A(ei, ej) = 1
r

√
V δij , so |A|2 = (n − 1) Vr2 and

|A|2 − H2 = −(n − 1)(n − 2) Vr2 . The scalar curvature of the induced metric

on Sr (which is the standard metric) is RΣ = (n−1)(n−2)
r2 . The second variation

formula:

√
V ∂r(

√
V ∂r)|Sr| = −ωn−1r

n−1[Ric(ν, ν) + |A|2 −H2],

quickly leads to:

n− 1

2r
V ′ +

(n− 1)(n− 2)

r2
V = −[Ric(ν, ν) + |A|2 −H2],

and combining with the above:

Ric(ν, ν) = −n− 1

2r
V ′.
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Now the scalar curvature of M = (Rn, g) may be obtained from the twice-traced
Gauss formula:

RM = RΣ+2Ric(ν, ν)+|A|2−H2 =
(n− 1)(n− 2)

r2
−n− 1

r
V ′−(n−1)(n−2)

V

r2
,

RM =
n− 1

r2
[(n−2)(1−V )−rV ′], or RM−2Ric(ν, ν) =

(n− 1)(n− 2)

r2
(1−V ).

Thus the differential equation giving metrics of constant scalar curvature RM ≡
κn(n− 1) is:

r2nκ = (n− 2)W + rW ′, W = 1− V,
which is easily solved, with general solution:

W = κr2 +
2m

rn−2
,

or

V = 1− 2m

rn−2
− κr2,

which is Schwarzschild if κ = 0, and Kottler (Anti-de Sitter-Schwarzschild/de
Sitter-Schwarzschild) if κ 6= 0.

Application: the PMT for spherically symmetric metrics.
For a metric of the above form, we have e = g − δ = ( 1

V − 1)dr2, and hence

eij = ( 1
V − 1)x

ixj

r2 and:

∂keij = (
1

V
− 1)

δikx
j + δjkx

i

r2
− [(

V ′

V 2
+

2

r2
(

1

V
− 1)]

xixjxk

r2
.

For the mass one-form, this gives (with implied summation over i):

∂irij − ∂jeii = (n− 1)(
1

V
− 1)

xj

r2
.

And for the mass integral over Sr:∮
Sr

(∂irij − ∂jeii)
xj

r
dσ0

r = (n− 1)ωn−1r
n−2 1− V

V
.

The asymptotic decay of g to δ takes the form: V = 1+O2(r−q, and this implies
1−V
V − (1 − V ) = (1 − V )( 1

V − 1) = O(r−2q). Since q > (n − 2)/2 is assumed,
this difference (times rn−2) vanishes in the limit, and we may write:

m(g) = lim
r→∞

1

2
rn−2(1− V ).

On the other hand, from the above: Rg ≥ 0 ⇔ (n − 2)(1 − V ) ≥ rV ′, or
rn−2(1− V ) is nondecrasing. Since the metric is defined in all of Rn:

0 = lim
r→0+

1

2
rn−2(1− V ) ≤ lim

r→∞

1

2
rn−2(1− V ) = m(g).

Additionally, if equality holds we have: 1
2r
n−2(1 − V ) ≡ m, a constant; equiv-

alently: V = 1 + 2m
rn−2 , so g is the spatial Schwarzschild metric with parameter

m (defined for r > (2m)1/n−2.)
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