FIRST AND SECOND VARIATIONS OF HYPERSURFACE VOLUME

We consider an oriented hypersurface $\Sigma^{n-1} \subset M^{n}$ in an oriented Riemannian manifold (M, g), endowing Σ with the induced Riemannian metric and LeviCivita connection. Σ is not assumed compact, and indeed we consider a bounded domain $\Omega \subset \Sigma$. The variation vector field X ('velocity vector') is not assumed normal to Σ or with compact support in Ω, and Σ is not assumed minimal. Thus there will be boundary terms and terms involving the tangential component X^{T} and mean curvature H. (Source: We combine elements from D. Lee's book and E. Kuwert's thesis, while aiming to slightly simplify the calculation.)

1. Linear Algebra Review.

1. Let (E, g) be an n-dimensional real vector space, endowed with a choice of orientation and a positive-definite inner product g; let $\left(e_{i}\right)$ be a g-orthonormal positive frame, $\theta_{i} \in E^{*}$ the dual co-frame. The g-volume form on E is:

$$
\omega_{E}=\theta_{1} \wedge \ldots \wedge \theta_{n} \in \Lambda^{n} E^{*}
$$

Given an $(n-1)$-dimensional subspace $V \subset E$, we consider the induced volume form $\omega_{V} \in \Lambda^{n-1} V^{*}$, which can be defined as follows: if v_{1}, \ldots, v_{n-1} are vectors in V and ν is a choice of unit normal to V in E (defining the induced orientation in V), let:

$$
\omega_{V}\left(v_{1}, \ldots, v_{n-1}\right)=\operatorname{det}(A), \quad A=\left[v_{1}|\ldots| v_{n-1} \mid \nu\right], \quad \text { (by columns) } .
$$

Here the columns of the $n \times n$ matrix A are vectors in R^{n}, obtained by expressing each v_{i} and ν in the basis $\left(e_{i}\right)$. One easily sees that the $n \times n$ matrix $A^{t} A$ is in 'block form': an $(n-1) \times(n-1)$ block with entries $\left\langle v_{i}, v_{j}\right\rangle_{g}$ and the n, n entry $|\nu|_{g}^{2}=1$ (the other entries are zero). Thus, if we let $G_{i j}=\left\langle v_{i}, v_{j}\right\rangle_{g}$ (an $(n-1) \times(n-1)$ matrix), we have:

$$
\operatorname{det} G=\operatorname{det} A^{t} A=(\operatorname{det} A)^{2}
$$

and thus (assuming the $\left(v_{i}\right)$ are either linearly dependent, or a positive basis of V to take the positive square root):

$$
\omega_{V}\left(v_{1}, \ldots, v_{n-1}\right)=\sqrt{\operatorname{det}\left\langle v_{i}, v_{j}\right\rangle_{g}}, \quad v_{i} \in V \subset E
$$

2. Let $A(t)$ be a C^{1} curve in $G L_{n}^{+}$($n \times n$ matrices with positive determinant). We have the formula:

$$
(\operatorname{det} A(t))^{\prime}=\operatorname{tr}\left(A^{\prime} A^{-1}\right) \operatorname{det} A(t)
$$

To see this, recall the Gram-Schmidt process defines a factorization $A(t)=$ $U(t) T(t)$, with $U(t) \in S O_{n}$ and $T(t) \in B_{n}^{+}$(group of upper-triangular matrices,
with zeros below the diagonal and positive diagonal entries.) We have $\operatorname{det} A(t)=$ $\operatorname{det} T(t)$, and thus:
$(\operatorname{det} A(t))^{\prime}=(\operatorname{det} T(t))^{\prime}=\left(\frac{t_{11}^{\prime}}{t_{11}}+\ldots+\frac{t_{n n}^{\prime}}{t_{n n}}\right)\left(t_{11}(t) \ldots t_{n n}(t)\right)=\operatorname{tr}\left(T^{\prime} T^{-1}\right) \operatorname{det} A(t)$.
On the other hand, from $T=U^{-1} A=U^{t} A^{\prime}$ and $T^{-1}=A^{-1} U$, we compute:

$$
T^{\prime}=\left(U^{t}\right)^{\prime} A+U^{t} A, \quad T^{\prime} T^{-1}=\left(U^{t}\right)^{\prime} U+U^{t} A^{\prime} A^{-1} U
$$

Since $U^{t} U=\mathbb{I}_{n}$, we have $\left(U^{t}\right)^{\prime} U+U^{t} U^{\prime}=0$, and hence $2 \operatorname{tr}\left(\left(U^{t}\right)^{\prime} U\right)=$ $\operatorname{tr}\left[\left(U^{t}\right)^{\prime} U+U^{t} U^{\prime}\right]=0$. We conclude $\operatorname{tr}\left(T^{\prime} T^{-1}\right)=\operatorname{tr}\left(U^{t} A^{\prime} A^{-1} U\right)=\operatorname{tr}\left(A^{\prime} A^{-1}\right)$, as we wished to show.
3. In particular, if $A(t)$ is a C^{1} curve in $G L_{n}^{+}$with $A(0)=\mathbb{I}_{n}$, we have $(\operatorname{det} A)^{\prime}(0)=\operatorname{tr}\left(A^{\prime}(0)\right)$, and compute the second derivative:

$$
\begin{aligned}
(\operatorname{det} A)^{\prime \prime}= & \left\{\operatorname{tr}\left(A^{\prime \prime} A^{-1}-\left(A^{\prime}\right)^{2} A^{-2}\right)+\left[\operatorname{tr}\left(A^{\prime} A^{-1}\right)\right]^{2}\right\} \operatorname{det} A(t) \\
& =\operatorname{tr}\left(A^{\prime \prime}(0)\right)-\operatorname{tr}\left(A^{\prime}(0)\right)^{2}+\left(\operatorname{tr}\left(A^{\prime}(0)\right)^{2}\right.
\end{aligned}
$$

at $t=0$. Now, if $A(t)$ is symmetric, $\operatorname{tr}\left(A^{\prime}(0)^{2}\right)=\sum_{i, j} A^{\prime}(0)_{i j}^{2}=\left|A^{\prime}(0)\right|^{2}$, so we conclude:

$$
(\operatorname{det} A)^{\prime \prime}(0)=\operatorname{tr}\left(A^{\prime \prime}(0)\right)-\left|A^{\prime}(0)\right|^{2}+\left(\operatorname{tr}\left(A^{\prime}(0)\right)^{2} .\right.
$$

4. We are interested in the first and second derivatives of $J(t)=\sqrt{\operatorname{det}\left\langle\bar{e}_{i}, \bar{e}_{j}\right\rangle_{g}}$ at $t=0$. So set $A_{i j}(t)=\left\langle\bar{e}_{i}, \bar{e}_{j}\right\rangle_{g}$, with $A(t) \in G L_{n}^{+}$starting at $A(0)=\mathbb{I}_{n}$ and $J^{2}(t)=\operatorname{det} A(t), J(0)=1$. Then starting from:

$$
\left(J^{2}\right)^{\prime}=2 J J^{\prime}, \quad\left(J^{2}\right)^{\prime \prime}=2 J J^{\prime \prime}+2\left(J^{\prime}\right)^{2}
$$

we easily obtain:

$$
J^{\prime}(0)=\frac{1}{2} \operatorname{tr}\left(A^{\prime}(0)\right), \quad J^{\prime \prime}(0)=\frac{1}{2}\left[\operatorname{tr}\left(A^{\prime \prime}(0)\right)-\left|A^{\prime}(0)\right|^{2}+\frac{1}{2}\left(\operatorname{tr}\left(A^{\prime}(0)\right)^{2}\right] .\right.
$$

2. Setting up the calculation.

We consider a bounded domain $\Omega \subset \Sigma$, with unit outward normal $\eta \in T \Sigma$ ('conormal'), while ν denotes the unit normal of Σ in M, defining its orientation. $D_{X} Y$ is the covariant derivative in M, its tangential component $D_{X}^{T} Y$ (when $X, Y \in T \Sigma)$ the covariant derivative for the Levi-Civita connection of the induced metric on Σ. The scalar second fundamental form is $A(X, Y)=\left\langle D_{X} \nu, Y\right\rangle$, and the mean curvature of Σ in M is its trace, $H=\sum_{i} A\left(e_{i}, e_{i}\right)$.

Typically one starts from a variation $\left(F_{t}\right)$ of Σ : a one-parameter family of embeddings $F_{t}: \Sigma \rightarrow M$, with F_{0} the inclusion map, also written $F(q, t)$ $(q \in \Sigma, t \in I$, an open interval containing 0$)$. Then set $\bar{X}(q, t)=\partial_{t} F(q, t)$, a
'vector field along F^{\prime}, meaning $\bar{X}(q, t) \in T_{F(q, t)} M$ (definitely not the same as a vector field on M, defined in a neighborhood of Σ.) This restricts, when $t=0$, to a vector field $X \in T M_{\mid \Sigma}, X(q)=\bar{X}(q, 0)$.

Alternatively, one may start from a vector field $X \in T M_{\mid \Sigma}$, extend it to a vector field \bar{X} in a neighborhood of Σ, and let $\left(F_{t}\right)$ be the local flow of \bar{X}, a one-parameter group of embeddings $F_{t}: \Sigma \rightarrow M, t \in I, F_{0}$ the inclusion. Some terms in the second variation formula depend on the extension chosen. These points of view are not equivalent; the first one is more general, so we'll adopt it, taking the variation $\left(F_{t}\right)$ as given.

We are interested in the rates of change of volume of the sets $\Omega_{t}=F_{t}(\Omega) \subset$ $\Sigma_{t}=F_{t}(\Sigma)$. The volume form $\omega_{\Sigma_{t}}$ induced from ω_{M} and the unit normal to Σ_{t} is associated, at $q_{t}=F(q, t)$, with the $(n-1)$-dimensional subspace $T_{q_{t}} \Sigma_{t}=d F_{t}(q)\left[T_{q} \Sigma\right]$. We have:

$$
\operatorname{vol}\left(\Omega_{t}\right)=\int_{\Omega} F_{t}^{*} \omega_{\Sigma_{t}}=\int_{\Omega} J(q, t) \omega_{\Sigma}
$$

In the above expression, with $\omega_{M} \in \Omega^{n}(M), \omega_{\Sigma} \in \Omega^{n-1}(\Sigma)$ the Riemannian volume forms on M and Σ, we consider:

$$
\omega_{t}=F_{t}^{*} \omega_{\Sigma_{t}} \in \Omega^{n-1}(\Sigma), \quad \omega_{t}(q, t)=J(q, t) \omega_{\Sigma}(q)
$$

and the first and second partial derivatives of the Jacobian function J at $t=0$ and points $q \in \Sigma$:

$$
a_{X}(p)=\frac{\partial J}{\partial t}(q, 0), \quad b_{X}(q)=\frac{\partial^{2} J}{\partial t^{2}}(q, 0)
$$

These are the integrands (over Σ) in the first and second variations of hypersurface volume.

To calculate in local coordinates, consider a local chart $\varphi: U_{0} \rightarrow U, \varphi(0)=p$, $U_{0} \subset R^{n-1}, U \subset \Sigma$. We may choose φ so that $e_{i}(x)=\partial_{x_{i}} \varphi(x) \in T_{q} \Sigma, q=$ $\varphi(x)$, defines a positive orthonormal frame at the point $\varphi(0)=p \in U$. (The e_{i} are 'vector fields along φ '; but since φ is a local chart, we may think of them as tangent vector fields in $U \subset \Sigma$.) In fact, choosing exponential normal coordinates based at a fixed point $p \in \Sigma$, we may also assume that $D_{v}^{T} e_{i}(p)=0$, for any $v \in T_{p} \Sigma$. From the local chart φ and the variation $\left(F_{t}\right)$ we define a smooth map (not always an immersion):

$$
\Phi: U_{0} \times I \rightarrow M, \quad \Phi(x, t)=F_{t}(\varphi(x)), \quad \Phi_{t}=F_{t} \circ \varphi: U_{0} \rightarrow \Sigma_{t} .
$$

Extending the previously used notation, we set:

$$
\bar{X}(x, t)=\partial_{t} \Phi(x, t), \quad \bar{e}_{i}(x, t)=\partial_{x_{i}} \Phi(x, t)=d F_{t}(\varphi(x))\left[e_{i}(x)\right]
$$

vector fields along Φ on M (sections of the pullback of the tangent bundle). (And $X(x)=\bar{X}(x, 0)$.) Of course the \bar{e}_{i} are not in general orthonormal, except
at $x=0, t=0$. We have the well-known relation:

$$
\frac{D}{\partial t} \frac{\partial \Phi}{\partial x_{i}}(x, t)=\frac{D}{\partial x_{i}} \frac{\partial \Phi}{\partial t}(x, t)
$$

This may be written in the form:

$$
\left(D_{\bar{X}} \bar{e}_{i}\right)(x, t)=\left(D_{\overline{e_{i}}} \bar{X}\right)(x, t),
$$

as an equality (in $U_{0} \times I$) of vector fields along Φ. As for the volume under variation, we have:

$$
\Phi_{t}^{*} \omega_{\Sigma_{t}}=J(x, t) d^{n-1} x, \quad \operatorname{vol}\left(F_{t}(U)\right)=\int_{U_{0}} J(x, t) d^{n-1} x
$$

where $d^{n-1} x$ is the volume form in $U_{0} \subset R^{n-1}$ and $J(x, t)>0$ is the Jacobian. We are interested in computing the first and second variation integrands (at $x=0$ in U_{0}, corresponding to $\left.p \in \Sigma\right)$:

$$
a_{X}(0)=\frac{\partial J}{\partial t}(0,0), \quad b_{X}(0)=\frac{\partial^{2} J}{\partial t^{2}}(0,0)
$$

where:

$$
J(x, t)=\omega_{\Sigma_{t}}\left(\bar{e}_{1}(x, t), \ldots, \bar{e}_{n-1}(x, t)\right)=\sqrt{\operatorname{det}\left\langle\bar{e}_{i}(x, t), \bar{e}_{j}(x, t)\right\rangle_{\Phi^{*} g}}
$$

as seen in (1.) of the previous section. Note the $\bar{e}_{i}(x, t)$ define a positive basis of the subspace $T_{x_{t}} \Sigma_{t}=d F_{t}(x)\left[T_{x} \Sigma\right] \subset T_{x_{t}} M, x_{t}=F_{t}(x)$. (We henceforth identify $\Phi^{*} g$ and g in the notation.)

Remark. It is incorrect to think of the \bar{e}_{i} as vector fields on M, defined in a neighborhood of Σ, and extending the frame e_{i} on Σ. Here is the problem: from $\left[\bar{X}, \bar{e}_{i}\right]_{M}(x)=0$ (which follows from $\bar{e}_{i}(x, t)=d F_{t}(x)\left[e_{i}(x)\right]$), a short calculation shows that, on Σ (taking tangential and normal components, where $X=X^{T}+\phi \nu$ and $S: T \Sigma \rightarrow T \Sigma$ is the Weingarten operator):

$$
\left[X^{T}, e_{i}\right]_{\Sigma}=\phi\left(S e_{i}-\left(D_{\nu} \bar{e}_{i}\right)^{T}\right), \quad e_{i}(\phi) \nu=\phi\left(D_{\nu} \bar{e}_{i}\right)^{\perp}
$$

leading to the compatibility conditions:

$$
\phi(x)=0 \Rightarrow \nabla^{\Sigma} \phi(x)=0 \text { and }\left[X^{T}, e_{i}\right]_{\Sigma}(x)=0
$$

which are of course not assumed.

3. The first variation formula.

With $A_{i j}(x, t)=\left\langle\bar{e}_{i}(x, t), \bar{e}_{j}(x, t)\right\rangle_{g}$, we have:

$$
\frac{\partial A_{i j}}{\partial t}=\left\langle D_{\bar{X}} \bar{e}_{i}, \bar{e}_{j}\right\rangle+\left\langle\bar{e}_{i}, D_{\bar{X}} \bar{e}_{j}\right\rangle=\left\langle D_{\bar{e}_{i}} \bar{X}, \bar{e}_{j}\right\rangle+\left\langle\bar{e}_{i}, D_{\bar{e}_{j}} \bar{X}\right\rangle
$$

Thus:

$$
\frac{1}{2} \operatorname{tr}\left(\frac{\partial A}{\partial t}\right)(x, t)=\sum_{i}\left\langle D_{\bar{e}_{i}} \bar{X}, \bar{e}_{i}\right\rangle .
$$

Evaluate at $t=0$, introducing the decomposition $X=X^{T}+\phi \nu$, where $X^{T} \in T \Sigma$ and $\phi: \Omega \rightarrow R$:

$$
\begin{aligned}
& a_{X}(x)=\frac{\partial J}{\partial t}{ }_{\mid t=0}(x)=\frac{1}{2} \operatorname{tr}\left(\frac{\partial A}{\partial t}\right)(x, 0)=\sum_{i}\left\langle D_{e_{i}} X, e_{i}\right\rangle \\
& =\phi \sum_{i}\left\langle D_{e_{i}}^{T} \nu, e_{i}\right\rangle+\sum_{i}\left\langle D_{e_{i}}^{T} X^{T}, e_{i}\right\rangle=\phi H+d i v_{\Sigma} X^{T}
\end{aligned}
$$

In integrated form, using the divergence theorem, we have the well-known expression:

$$
\frac{d}{d t} \operatorname{vol}\left(f_{t}(\Omega)\right)_{\mid t=0}=\int_{\Omega} a_{X} d \mu_{\Sigma}=\int_{\Omega} \phi H d \mu_{\Sigma}+\int_{\partial \Omega}\langle X, \eta\rangle d \mu_{\partial \Omega}
$$

4. The second variation, Part I: derivation of the index integrand.

We begin by computing the second derivative of $A_{i j}$:

$$
\begin{gathered}
\frac{\partial^{2}}{\partial t^{2}}\left\langle\bar{e}_{i}(x, t), \bar{e}_{j}(x, t)\right\rangle=\frac{\partial}{\partial t}\left\langle D_{\bar{e}_{i}} \bar{X}, \bar{e}_{j}\right\rangle+(i \leftrightarrow j) \\
=\left\langle D_{\bar{X}} D_{\bar{e}_{i}} \bar{X}, \bar{e}_{j}\right\rangle+\left\langle D_{\bar{e}_{i}} \bar{X}, D_{\bar{X}} \bar{e}_{j}\right\rangle \\
=\left\langle D_{\bar{e}_{i}} D_{\bar{X}} \bar{X}, \bar{e}_{j}\right\rangle+R^{M}\left(\bar{X}, \bar{e}_{i}, \bar{X}, \bar{e}_{j}\right)+\left\langle D_{\bar{e}_{i}} \bar{X}, D_{\bar{e}_{j}} \bar{X}\right\rangle+(i \leftrightarrow j) .
\end{gathered}
$$

Define $Z=D_{\bar{X}} \bar{X} \in T M$, the 'acceleration vector field' of the variation, with values in $T M$. (More precisely, a vector field along Φ, or section of $\Phi^{*} T M$.)

Setting $t=0$, we have:

$$
\frac{\partial^{2} A_{i j}}{\partial t^{2}}(x, 0)=\left\langle D_{e_{i}} Z, e_{j}\right\rangle+\left\langle D_{e_{j}} Z, e_{i}\right\rangle+2\left\langle D_{e_{i}} X, D_{e_{j}} X\right\rangle-2 R^{M}\left(e_{i}, X, X, e_{j}\right)
$$

Taking traces:

$$
\frac{\partial^{2} \operatorname{tr}(A)}{\partial t^{2}}(x, 0)=2 \operatorname{div}_{\Sigma} Z+2\left|\sum_{i} D_{e_{i}} X\right|^{2}-2 \sum_{i} R^{M}\left(e_{i}, X, X, e_{i}\right)
$$

This is the first of three terms (see part 1, no.4) used in the computation of $b_{X}(x)=\frac{\partial^{2} J}{\partial t^{2}}(x, 0)$. The other two terms are:

$$
\begin{gathered}
\left|\frac{\partial A}{\partial t}(x, 0)\right|^{2}=\sum_{i, j}\left(\left\langle D_{e_{i}} X, e_{j}\right\rangle+\left\langle D_{e_{j}} X, e_{i}\right\rangle\right)^{2}=2 \sum_{i}\left|D_{e_{i}}^{T} X\right|^{2}+2 \sum_{i, j}\left\langle D_{e_{i}} X, e_{j}\right\rangle\left\langle D_{e_{j}} X, e_{i}\right\rangle \\
\left(\frac{\partial t r(A)}{\partial t}\right)^{2}(x, 0)=4\left(d i v_{\Sigma} X\right)^{2}
\end{gathered}
$$

Thus we have for the second variation integrand:

$$
\begin{aligned}
& b_{X}(x)=\frac{\partial J}{\partial t}(x, 0)=\frac{1}{2} \frac{\partial^{2} \operatorname{tr}(A)}{\partial t^{2}}(x, 0)-\frac{1}{2}\left|\frac{\partial A}{\partial t}(x, 0)\right|^{2}+\frac{1}{4}\left(\frac{\partial \operatorname{tr}(A)}{\partial t}\right)^{2}(x, 0) \\
= & d i v_{\Sigma} Z+\left(d i v_{\Sigma} X\right)^{2}+\sum_{i}\left|\left(D_{e_{i}} X\right)^{\perp}\right|^{2}-\sum_{i j}\left\langle D_{e_{i}} X, e_{j}\right\rangle\left\langle D_{e_{j}} X, e_{i}\right\rangle-\sum_{i} R^{M}\left(e_{i}, X, X, e_{i}\right) .
\end{aligned}
$$

The divergence of the acceleration field Z contributes only a boundary integral, so we write this in the form:

$$
b_{X}=d i v_{\Sigma} Z+I(X, X)
$$

where the 'index integrand' $I(X, Y)$ is defined as:
$I(X, Y)=\left(\operatorname{div}_{\Sigma} X\right)\left(\operatorname{div}_{\Sigma} Y\right)+\sum_{i}\left\langle\left(D_{e_{i}} X\right)^{\perp},\left(D_{e_{i}} Y\right)^{\perp}\right\rangle-\sum_{i, j}\left\langle D_{e_{i}} X, e_{j}\right\rangle\left\langle D_{e_{j}} Y, e_{i}\right\rangle-\sum_{i} R^{M}\left(e_{i}, X, Y, e_{i}\right)$.
Bearing in mind the decomposition $X=X^{T}+\phi \nu$, the plan now is to understand separately the terms $I(\phi \nu, \phi \nu), I\left(X^{T}, \phi \nu\right)$ and $I\left(X^{T}, X^{T}\right)$.
A. The index integrand on normal-normal terms.

This is quick, observing $\operatorname{div}_{\Sigma}(\phi \nu)=\phi\left(\operatorname{div}_{\Sigma} \nu\right)=\phi H,\left\langle D_{e_{i}}(\phi \nu), e_{j}\right\rangle=\phi\left\langle D_{e_{i}} \nu, e_{j}\right\rangle=$ $\phi A\left(e_{i}, e_{j}\right)$ and $\left.D_{e_{i}}(\phi \nu)\right)^{\perp}=e_{i}(\phi) \nu$. We find:

$$
I(\phi \nu, \phi \nu)=\left|\nabla^{\Sigma} \phi\right|^{2}-\left(\operatorname{Ric}^{M}(\nu, \nu)+|A|^{2}-H^{2}\right) \phi^{2}
$$

the classical formula for minimal surfaces, with the added term H^{2} in this more general case.
B. The index integrand on tangential-normal terms. $I(X, \phi \nu), X \in T \Sigma$. We have:

$$
\begin{aligned}
& \sum_{i}\left\langle\left(D_{e_{i}} X\right)^{\perp},\left(D_{e_{i}}(\phi \nu)\right)^{\perp}\right\rangle=\sum_{i}\left\langle\left(D_{e_{i}} X\right)^{\perp}, e_{i}(\phi) \nu\right\rangle=\left\langle D_{\nabla^{\Sigma} \phi} X, \nu\right\rangle=-A\left(X, \nabla^{\Sigma} \phi\right) . \\
& \sum_{i, j}\left\langle D_{e_{i}} X, e_{j}\right\rangle\left\langle D_{e_{j}}(\phi \nu), e_{i}\right\rangle=\sum_{i, j}\left\langle D_{e_{i}} X, e_{j}\right\rangle \phi A\left(e_{i}, e_{j}\right)=\phi \sum_{i}\left\langle D_{e_{i}}^{\Sigma} X, S\left(e_{i}\right)\right\rangle .
\end{aligned}
$$

The other two terms are $\left(\operatorname{div}_{\Sigma} X\right) \phi H$ and the curvature term, both linear in ϕ.
We seek to combine the terms which do not involve $\nabla^{\Sigma} \phi$ into a divergence term. Recall the Codazzi equation:

$$
\left(D_{X}^{\Sigma} S\right) Y-\left(D_{Y}^{\Sigma} S\right) X=R^{M}(X, Y) \nu, \quad X, Y \in T \Sigma
$$

Thus, at $x=0$ (corresponding to $\varphi(0)=p \in \Sigma$ under the local chart φ for Σ):

$$
\sum_{i}\left\langle S e_{i}, D_{e_{i}}^{\Sigma} X\right\rangle+\sum_{i} R^{M}\left(e_{i}, X, \nu, e_{i}\right)=\sum_{i}\left\langle S e_{i}, D_{e_{i}}^{\Sigma} X\right\rangle+\left\langle\left(D_{e_{i}}^{\Sigma} S\right) X, e_{i}\right\rangle-\left\langle\left(D_{X}^{\Sigma} S\right) e_{i}, e_{i}\right\rangle
$$

$$
=\sum_{i}\left[\left\langle\left(D_{e_{i}}^{\Sigma}(S X), e_{i}\right\rangle-X\left\langle S e_{i}, e_{i}\right\rangle=\operatorname{div}_{\Sigma}(S X)-X(H)\right.\right.
$$

(using $D_{X}^{T} e_{i}(x)=0$ at the given point $x=0, \varphi(x)=p$ for X tangential, as we may assume.) Combining these facts, we find:

$$
\begin{aligned}
I(X, \phi \nu) & =\left(\operatorname{div}_{\Sigma} X\right)(\phi H)-A\left(X, \nabla^{\Sigma} \phi\right)-\phi\left(\operatorname{div}_{\Sigma}(S X)-X(H)\right) \\
= & \phi\left(H \operatorname{div}_{\Sigma} X+X(H)-\operatorname{div}_{\Sigma}(S X)\right)-A\left(X, \nabla^{\Sigma} \phi\right) \\
& =\phi\left(\operatorname{div}_{\Sigma}(H X)-\operatorname{div}_{\Sigma}(S X)\right)-A\left(X, \nabla^{\Sigma} \phi\right)
\end{aligned}
$$

We can also write this in the form of [Lee, p.36], noting that:

$$
\operatorname{div}_{\Sigma}(H \phi X)-H X(\phi)=\phi \operatorname{div}_{\Sigma}(H X), \quad \operatorname{div}_{\Sigma}(\phi S X)=\phi \operatorname{div}_{\Sigma}(S X)+A\left(X, \nabla^{\Sigma} \phi\right)
$$

We conclude:

$$
I(X, \phi \nu)=\operatorname{div}_{\Sigma}(H \phi X-\phi S X)-H X(\phi)
$$

for X tangential.
C. The index integrand on tangential-tangential terms. We compute $I(X, X)$, assuming $X \in T \Sigma$.

$$
\sum_{i}\left|\left(D_{e_{i}} X\right)^{\perp}\right|^{2}=\sum_{i}\left|\vec{A}\left(e_{i}, X\right)\right|^{2}=|S(X)|^{2}
$$

And from the Gauss formula:

$$
\sum_{i} R^{M}\left(e_{i}, X, X, e_{i}\right)=\operatorname{Ric}^{\Sigma}(X, X)+|S(X)|^{2}-H A(X, X)
$$

As observed earlier, since $D_{\bar{e}_{i}} \bar{X}=D_{\bar{X}} \bar{e}_{i}$ (as vector fields along Φ), we have at points $\Phi(x, 0)=\varphi(x) \in U \subset \Sigma: D_{e_{i}} X=D_{X} \bar{e}_{i}$, and if X is tangential in U_{0} : $D_{e_{i}} X=D_{X} e_{i}$ on Σ, in particular for the tangential components: $D_{e_{i}}^{T} X=D_{X}^{T} e_{i}$ on Σ.

On the other hand, we may assume at the point $p=\varphi(0) \in \Sigma$ of calculation we have $D_{v}^{T} e_{i}(p)=0$, for any $v \in T_{p} \Sigma$ and all i. Thus the term involving the sum over i, j of $\left\langle D_{e_{i}} X, e_{j}\right\rangle\left\langle D_{e_{j}} X, e_{i}\right\rangle$ does not contribute to index integrand, at the point p.

After cancelation of the term $|S(X)|^{2}$, we are left with:

$$
I(X, X)=\left(d i v_{\Sigma} X\right)^{2}-\operatorname{Ric}^{\Sigma}(X, X)+H A(X, X)
$$

We expect this will turn out to be almost entirely a divergence term. So compute:

$$
\operatorname{div}_{\Sigma}\left(\left(\operatorname{div}_{\Sigma} X\right) X=\left(\operatorname{div}_{\Sigma} X\right)^{2}+X\left(\operatorname{div}_{\Sigma} X\right)\right.
$$

And again using the fact the frame $\left(e_{i}\right)$ is parallel at $x=0$:

$$
X\left(d i v_{\Sigma} X\right)=\sum_{i} X\left\langle D_{e_{i}}^{T} X, e_{i}\right\rangle=\sum_{i}\left\langle D_{X}^{T} D_{e_{i}}^{T} X, e_{i}\right\rangle
$$

$$
=\sum_{i}\left[\left\langle D_{e_{i}}^{T} D_{X}^{T} X, e_{i}\right\rangle+R^{\Sigma}\left(X, e_{i}, X, e_{i}\right)\right]=\operatorname{div}_{\Sigma}\left(D_{X}^{T} X\right)-\operatorname{Ric}^{\Sigma}(X, X),
$$

and thus:

$$
\left(\operatorname{div}_{\Sigma} X\right)^{2}=\operatorname{div}_{\Sigma}\left(\left(d i v_{\Sigma} X\right) X\right)-\operatorname{div}_{\Sigma}\left(D_{X}^{T} X\right)+\operatorname{Ric}^{\Sigma}(X, X),
$$

giving, at the point $p=\varphi(0)$:

$$
I(X, X)=H A(X, X)+\operatorname{div}_{\Sigma}\left[\left(\operatorname{div}_{\Sigma} X\right) X-D_{X}^{T} X\right] .
$$

D. Putting everything together.

For a general variation vector field $X=X^{T}+\phi \nu$, using the fact the index integrand is linear over R (not over functions!) we have:

$$
\begin{gathered}
I(X, X)=I(\phi \nu, \phi \nu)+2 I\left(X^{T}, \phi \nu\right)+I\left(X^{T}, X^{T}\right) \\
=\left|\nabla^{\Sigma} \phi\right|^{2}-\left(\operatorname{Ric}^{M}(\nu, \nu)+|A|^{2}-H^{2}\right) \phi^{2}-2 H X^{T}(\phi)+H A\left(X^{T}, X^{T}\right) \\
+d i v_{\Sigma}\left[2 H \phi X^{T}-2 \phi S\left(X^{T}\right)+\left(d i v_{\Sigma} X^{T}\right) X^{T}-D_{X^{T}}^{T} X^{T}\right]
\end{gathered}
$$

To compute the term $\operatorname{div}_{\Sigma} Z$ in b_{X}, we let $Z=Z^{T}+\zeta \nu, Z^{T} \in T \Sigma$, and find:

$$
\sum_{i}\left\langle D_{e_{i}} Z, e_{i}\right\rangle=\sum_{i}\left\langle D_{e_{i}}^{T} Z^{T}, e_{i}\right\rangle+\zeta H=\operatorname{div}_{\Sigma} Z^{T}+\zeta H .
$$

So the final expression for the second variation integrand is:

$$
\begin{gathered}
b_{X}=\zeta H+\left|\nabla^{\Sigma} \phi\right|^{2}-\left(R i c^{M}(\nu, \nu)+|A|^{2}-H^{2}\right) \phi^{2}-2 H X^{T}(\phi)+H A\left(X^{T}, X^{T}\right)+d i v_{\Sigma}\left(c_{X}\right), \\
c_{X}=Z^{T}+2 H \phi X^{T}-2 \phi S\left(X^{T}\right)+\left(d i v_{\Sigma} X^{T}\right) X^{T}-D_{X^{T}}^{T} X^{T} .
\end{gathered}
$$

The integrated general second variation formula reads:

$$
\begin{aligned}
& \left.\frac{d^{2} v o l\left(f_{t}(\Omega)\right)}{d t^{2}} \right\rvert\, t=0 \\
& \quad+H\left[\zeta-2 X_{\Omega}^{T}(\phi)+A\left(\left.X^{\Sigma} \phi\right|^{2}-\left(\text { Ric }^{M}(\nu, \nu)+|A|^{2}-H^{2}\right)\right]\right\} d \mu_{\Sigma}+\int_{\partial \Omega}\left\langle c_{X}, \eta\right\rangle d \mu_{\partial \Omega} .
\end{aligned}
$$

We see that in the minimal surface case, the acceleration vector field and tangential components of X contribute only boundary terms.

Remark on the acceleration vector.

We may get some control on the terms of the decomposition $Z=Z^{T}+\zeta \nu$ on Σ if we take the point of view that X is given on Σ, extended to \bar{X} in a neighborhood of Σ, and $\left(F_{t}\right)$ is the local flow of \bar{X}, and take a particular extension of X : extend ν to a neighborhood of Σ as a geodesic vector field $\bar{\nu}$, that is, $D_{\bar{\nu}} \bar{\nu}=0$, then extend ϕ to be constant along normal geodesics $(\bar{\nu}(\bar{\phi})=0)$
and extend \bar{X}^{T} by parallel transport: $D_{\bar{\nu}} \bar{X}^{T}=0$. Finally, set $\bar{X}=\bar{X}^{T}+\bar{\phi} \bar{\nu}$, extending the decomposition $X=X^{T}+\phi \nu$ on Σ. Then a simple calculation yields, on Σ :

$$
Z^{T}=D_{X^{T}}^{T} X^{T}+\phi S\left(X^{T}\right), \quad \zeta=-A\left(X^{T}, X^{T}\right)+X^{T}(\phi)
$$

This leads to a simplification of terms in b_{X} and c_{X} :

$$
\begin{gathered}
b_{X}=\left|\nabla^{\Sigma} \phi\right|^{2}-\left(\operatorname{Ric}^{M}(\nu, \nu)+|A|^{2}-H^{2}\right) \phi^{2}-H X^{T}(\phi)+\operatorname{div}_{\Sigma}\left(c_{X}\right) \\
c_{X}=2 H \phi X^{T}-\phi S\left(X^{T}\right)+\left(\operatorname{div}_{\Sigma} X^{T}\right) X^{T}
\end{gathered}
$$

Example: scalar curvature of a rotationally symmetric metric.
The usual form of a rotationally symmetric metric in R^{n} is:

$$
g=d s^{2}+r^{2}(s) d \omega^{2}
$$

where $d \omega^{2}$ is the standard metric in S^{n-1}. Thus the $(n-1)$-dimensional volume ('area') of the sphere $\left\{s=s_{0}\right\}$ in the metric g is $\omega_{n-1} r(s)^{n-1}$, and $\frac{d r}{d s}\left(s_{0}\right)$ corresponds to a minimal surface at s_{0}. If no such minimal surface exists, r is monotone in s, and we can instead use r as a parameter (the 'area radius') and write the metric in the form:

$$
g=\frac{d r^{2}}{V(r)}+r^{2} d \omega^{2}, \quad \frac{d r}{d s}=\sqrt{V(r)}
$$

We can use the first and second variation formulas to compute the scalar curvature R_{g} of g. The volume $\left|S_{r}\right|$ at radius r is $\omega_{n-1} r^{n-1}$, and $\sqrt{V} \partial_{r}$ is a unit normal vector, so first variation gives:

$$
\sqrt{V} \partial_{r}\left|S_{r}\right|=\int_{S_{r}} H r^{n-1} d \omega, \text { or } H(r)=\frac{n-1}{r} \sqrt{V}
$$

The second fundamental form is $A\left(e_{i}, e_{j}\right)=\frac{1}{r} \sqrt{V} \delta_{i j}$, so $|A|^{2}=(n-1) \frac{V}{r^{2}}$ and $|A|^{2}-H^{2}=-(n-1)(n-2) \frac{V}{r^{2}}$. The scalar curvature of the induced metric on S_{r} (which is the standard metric) is $R^{\Sigma}=\frac{(n-1)(n-2)}{r^{2}}$. The second variation formula:

$$
\sqrt{V} \partial_{r}\left(\sqrt{V} \partial_{r}\right)\left|S_{r}\right|=-\omega_{n-1} r^{n-1}\left[\operatorname{Ric}(\nu, \nu)+|A|^{2}-H^{2}\right]
$$

quickly leads to:

$$
\frac{n-1}{2 r} V^{\prime}+\frac{(n-1)(n-2)}{r^{2}} V=-\left[\operatorname{Ric}(\nu, \nu)+|A|^{2}-H^{2}\right]
$$

and combining with the above:

$$
\operatorname{Ric}(\nu, \nu)=-\frac{n-1}{2 r} V^{\prime}
$$

Now the scalar curvature of $M=\left(R^{n}, g\right)$ may be obtained from the twice-traced Gauss formula:
$R^{M}=R^{\Sigma}+2 \operatorname{Ric}(\nu, \nu)+|A|^{2}-H^{2}=\frac{(n-1)(n-2)}{r^{2}}-\frac{n-1}{r} V^{\prime}-(n-1)(n-2) \frac{V}{r^{2}}$,
$R^{M}=\frac{n-1}{r^{2}}\left[(n-2)(1-V)-r V^{\prime}\right]$, or $R^{M}-2 \operatorname{Ric}(\nu, \nu)=\frac{(n-1)(n-2)}{r^{2}}(1-V)$.
Thus the differential equation giving metrics of constant scalar curvature $R^{M} \equiv$ $\kappa n(n-1)$ is:

$$
r^{2} n \kappa=(n-2) W+r W^{\prime}, \quad W=1-V
$$

which is easily solved, with general solution:

$$
W=\kappa r^{2}+\frac{2 m}{r^{n-2}}
$$

or

$$
V=1-\frac{2 m}{r^{n-2}}-\kappa r^{2}
$$

which is Schwarzschild if $\kappa=0$, and Kottler (Anti-de Sitter-Schwarzschild/de Sitter-Schwarzschild) if $\kappa \neq 0$.

Application: the PMT for spherically symmetric metrics.
For a metric of the above form, we have $e=g-\delta=\left(\frac{1}{V}-1\right) d r^{2}$, and hence $e_{i j}=\left(\frac{1}{V}-1\right) \frac{x^{i} x^{j}}{r^{2}}$ and:

$$
\partial_{k} e_{i j}=\left(\frac{1}{V}-1\right) \frac{\delta_{i k} x^{j}+\delta_{j k} x^{i}}{r^{2}}-\left[\left(\frac{V^{\prime}}{V^{2}}+\frac{2}{r^{2}}\left(\frac{1}{V}-1\right)\right] \frac{x^{i} x^{j} x^{k}}{r^{2}}\right.
$$

For the mass one-form, this gives (with implied summation over i):

$$
\partial_{i} r_{i j}-\partial_{j} e_{i i}=(n-1)\left(\frac{1}{V}-1\right) \frac{x^{j}}{r^{2}} .
$$

And for the mass integral over S_{r} :

$$
\oint_{S_{r}}\left(\partial_{i} r_{i j}-\partial_{j} e_{i i}\right) \frac{x^{j}}{r} d \sigma_{r}^{0}=(n-1) \omega_{n-1} r^{n-2} \frac{1-V}{V} .
$$

The asymptotic decay of g to δ takes the form: $V=1+O_{2}\left(r^{-q}\right.$, and this implies $\frac{1-V}{V}-(1-V)=(1-V)\left(\frac{1}{V}-1\right)=O\left(r^{-2 q}\right)$. Since $q>(n-2) / 2$ is assumed, this difference (times r^{n-2}) vanishes in the limit, and we may write:

$$
m(g)=\lim _{r \rightarrow \infty} \frac{1}{2} r^{n-2}(1-V)
$$

On the other hand, from the above: $R^{g} \geq 0 \Leftrightarrow(n-2)(1-V) \geq r V^{\prime}$, or $r^{n-2}(1-V)$ is nondecrasing. Since the metric is defined in all of R^{n} :

$$
0=\lim _{r \rightarrow 0_{+}} \frac{1}{2} r^{n-2}(1-V) \leq \lim _{r \rightarrow \infty} \frac{1}{2} r^{n-2}(1-V)=m(g)
$$

Additionally, if equality holds we have: $\frac{1}{2} r^{n-2}(1-V) \equiv m$, a constant; equivalently: $V=1+\frac{2 m}{r^{n-2}}$, so g is the spatial Schwarzschild metric with parameter m (defined for $r>(2 m)^{1 / n-2}$.)

