FIRST AND SECOND VARIATIONS OF HYPERSURFACE VOLUME

We consider an oriented hypersurface ¥"~! € M™ in an oriented Riemannian
manifold (M, g), endowing ¥ with the induced Riemannian metric and Levi-
Civita connection. Y is not assumed compact, and indeed we consider a bounded
domain Q C . The variation vector field X (‘velocity vector’) is not assumed
normal to X or with compact support in §2, and ¥ is not assumed minimal. Thus
there will be boundary terms and terms involving the tangential component X*
and mean curvature H. (Source: We combine elements from D. Lee’s book and
E. Kuwert’s thesis, while aiming to slightly simplify the calculation.)

1. Linear Algebra Review.

1. Let (E,g) be an n-dimensional real vector space, endowed with a choice
of orientation and a positive-definite inner product g; let (e;) be a g-orthonormal
positive frame, 6; € E* the dual co-frame. The g-volume form on E is:

wE:01/\.../\0n6A"E*.

Given an (n — 1)-dimensional subspace V' C E, we consider the induced volume
form wy € A"~V*, which can be defined as follows: if vq,...,v,_1 are vectors
in VV and v is a choice of unit normal to V in E (defining the induced orientation
in V), let:

wy(v1y...,0p—1) =det(A), A=[vi]...|vn—1|v], (by columns) .

Here the columns of the nxn matrix A are vectors in R™, obtained by expressing
each v; and v in the basis (e;). One easily sees that the n x n matrix A4 is
in ‘block form” an (n — 1) x (n — 1) block with entries (v;,v,), and the n,n
entry [v]2 = 1 (the other entries are zero). Thus, if we let Gi; = (v;,v;), (an
(n —1) x (n — 1) matrix), we have:

det G = det A'A = (det A)?,

and thus (assuming the (v;) are either linearly dependent, or a positive basis of
V to take the positive square root):

wy (v, ..., 0p—1) = y/det{v;,v5)g, v, €V CE.

2. Let A(t) be a C* curve in GL;} (nxn matrices with positive determinant).
We have the formula:

(det A(t)) = tr(A’A™1) det A(t).

To see this, recall the Gram-Schmidt process defines a factorization A(t) =
U(t)T(t), with U(t) € SO,, and T'(t) € B; (group of upper-triangular matrices,



with zeros below the diagonal and positive diagonal entries.) We have det A(t) =
det T'(t), and thus:

(det A(t))" = (det T(t)) = (%4‘. . .+?’—”)(t11(t) oty () = tr(T'T™) det A(2).

On the other hand, from T'=U"'A = U*A’ and T~! = A~'U, we compute:
T =UYA+U'A, T'T'=UYU+U'AAU

Since U'U = 1, we have (U")'U + U'U’ = 0, and hence 2tr((U')'U) =

tr[(UY)'U + U'U’] = 0. We conclude tr(T'T~Y) = tr(U'A’A7IU) = tr(A’A7Y),

as we wished to show. O

3. In particular, if A(¢) is a C! curve in GL} with A(0) = I,,, we have
(det A)'(0) = tr(A’(0)), and compute the second derivative:

(det A)" = {tr(A" A" — (A")2A72) + [tr(A’A7H))* Y det A(2)

= tr(A"(0)) — tr(A'(0))* + (tr(4'(0))?

at t = 0. Now, if A(t) is symmetric, tr(A’(0)%) = 3, . A'(0)7; = [A’(0)[*, so we
conclude:
(det A)"(0) = trr(A"(0)) — |A(0)|*> + (tr(A’(0))2.

4. We are interested in the first and second derivatives of J(t) = \/det(é;, &;),4
at t = 0. So set A;;(t) = (€;,€;)4, with A(t) € GL;} starting at A(0) = I, and
J%(t) = det A(t), J(0) = 1. Then starting from:

(J*) =2JJ, (J*) =2JJ"+2(J)?,
we easily obtain:

T(0) = Sr(A©0), J(0) = Jr(A”(0) ~ A O + (i (A(0))]

2. Setting up the calculation.

We consider a bounded domain 2 C ¥, with unit outward normal n € TX
(‘conormal’), while v denotes the unit normal of ¥ in M, defining its orientation.
DxY is the covariant derivative in M, its tangential component DLY (when
X,Y € TY) the covariant derivative for the Levi-Civita connection of the in-
duced metric on . The scalar second fundamental form is A(X,Y) = (Dxv,Y),
and the mean curvature of ¥ in M is its trace, H = ), A(e;, €;).

Typically one starts from a variation (F}) of ¥: a one-parameter family
of embeddings F; : ¥ — M, with Iy the inclusion map, also written F'(q,t)
(¢ € ,t € I, an open interval containing 0). Then set X(q,t) = 0,F(q,t), a



‘vector field along F’, meaning X (q,t) € Tr(q,ryM (definitely not the same as a
vector field on M, defined in a neighborhood of ¥.) This restricts, when ¢t = 0,
to a vector field X € TM5, X(q) = X(q,0).

Alternatively, one may start from a vector field X € T'Mx, extend it to a
vector field X in a neighborhood of ¥, and let (F}) be the local flow of X, a
one-parameter group of embeddings F; : X — M, t € I, F the inclusion. Some
terms in the second variation formula depend on the extension chosen. These
points of view are not equivalent; the first one is more general, so we’ll adopt
it, taking the variation (F}) as given.

We are interested in the rates of change of volume of the sets ; = F;(Q2) C
¥; = Fi(¥). The volume form wy, induced from wy; and the unit normal
to X; is associated, at ¢ = F(q,t), with the (n — 1)-dimensional subspace
T, 2 = dFy(q)[T,X]. We have:

vol(Qt):/Ft*wgt :/J(q,t)wg.
Q Q

In the above expression, with wy; € Q*(M),ws, € Q"71(X) the Riemannian
volume forms on M and X, we consider:

we = Fws, € Q"7H(E), wila.t) = J(q ws(a),

and the first and second partial derivatives of the Jacobian function J at ¢ =0
and points g € X

oJ 0%J
= 5(970)7 bX(C]) = ﬁ

These are the integrands (over X) in the first and second variations of hyper-
surface volume.

ax(p) (¢,0).

To calculate in local coordinates, consider a local chart ¢ : Uy — U, ¢(0) = p,
Up C R"~1U C ¥. We may choose ¢ so that e;(z) = 9,,0(z) € T,X,q =
(z), defines a positive orthonormal frame at the point ¢(0) = p € U. (The
e; are ‘vector fields along ¢’; but since ¢ is a local chart, we may think of
them as tangent vector fields in U C X.) In fact, choosing exponential normal
coordinates based at a fixed point p € 3, we may also assume that DI'e;(p) = 0,
for any v € T,3. From the local chart ¢ and the variation (F;) we define a
smooth map (not always an immersion):

O:UyxI— M, ®Ot)=F(elx)), P=Fop:Uy— 2.
Extending the previously used notation, we set:
X(z,t) = 0,®(w,t), &(x,t) = 0y, ®(z,t) = dFy(o(x))[es(z)].

vector fields along ® on M (sections of the pullback of the tangent bundle).
(And X (x) = X(x,0).) Of course the &; are not in general orthonormal, except



at x = 0,t = 0. We have the well-known relation:

Dod  y D2
ot oz, T or, ot

(z,t).
This may be written in the form:
(Dxeéi)(z,t) = (De, X)(x,1),

as an equality (in Uy x I) of vector fields along ®. As for the volume under
variation, we have:

Brws, = J(z,0)d" z, vol(F(U)) = / Tz, t)d" Lz
Uo
where d" !z is the volume form in Uy C R"~! and J(z,t) > 0 is the Jacobian.
We are interested in computing the first and second variation integrands (at
x = 0 in Uy, corresponding to p € X):
aJ 0?J
0) = —-(0,0), bx(0) =—=5(0,0),
ax(0) = Z2(0,0), bx(0) = Z5(0,0)

where:

J(a1) = e, (@12 0). ... ena(2,1)) = \/det(ei(z. £), 5z, £)) g

as seen in (1.) of the previous section. Note the &;(x,t) define a positive basis of
the subspace T,, %t = dFy(z)[T,X] C Ty, M, xy = Fi(x). (We henceforth identify
®*g and ¢ in the notation.)

Remark. It is incorrect to think of the €; as vector fields on M, defined in
a neighborhood of ¥, and extending the frame e; on X. Here is the problem:
from [X,&;]a(z) = 0 (which follows from &;(x,t) = dFy(z)[e;(x)] ), a short
calculation shows that, on ¥ (taking tangential and normal components, where
X =XT 4+ ¢vand S:TE — TY is the Weingarten operator):

[XT,eils = 6(Se; — (Dve)T),  ei(@)v = d(Dye),
leading to the compatibility conditions:
H(z) = 0= VZ¢(x) =0 and [X7T,e;]s(z) =0,
which are of course not assumed.

3. The first variation formula.
With A;j(x,t) = (&:(x, 1), €;(x,t)),, we have:

OA,; o _ _ _ B _
31:] = (Dxéi,€;) + (&, Dxe;) = (D¢, X, &) + (€i, De; X)




Thus: L 94
(5@ = > (De, X&)

Evaluate at t = 0, introducing the decomposition X = X7 +¢v, where X7 € TS
and ¢ : Q — R:

aJ 1, 09A

7) = 5tr(5)@,0) = YD X )

ax(x) = E‘t:() 5

=63 (D v,e) + S (DIXT, e;) = H + divs X
i i

In integrated form, using the divergence theorem, we have the well-known ex-
pression:

d
£U01(ft(9))\t:o=/gaxduz =/§Z</>Hd/tz+/m<Xﬂ7>dan-

4. The second variation, Part I: derivation of the index integrand.

We begin by computing the second derivative of A;;:

0? _ 0 _— . .
5 (Gi(,1),€(,1)) = 5o {De. X, &5) + (0 & J)
= <DXDéiX7éj> + <DEiX7DX'éj>
= <D€iDXXaéj> +RM(X7é’iaXaéj) + <D51X7DC}X> + (Z H])
Define Z = Dy X € TM, the ‘acceleration vector field’ of the variation, with
values in TM. (More precisely, a vector field along ®, or section of ®*T'M.)
Setting ¢t = 0, we have:

ot?

2,0) = (De, Z,e;) + (De. Z,e;) +2(De, X, De. X) — 2RM (e;, X, X, e).
i J J @ J J

Taking traces:

9%tr(A)
ot

(2,0) = 2divs Z + 2| Y D, X|* = 2)  RM(e;, X, X, ¢:).
% i

This is the first of three terms (see part 1, no.4) used in the computation of
bx(z) = %(m, 0). The other two terms are:

0A
|§(x,0)|2 - Z((Deix, ej)+(De, X, ;) = QZ DT X242 Z(Deix, ej)(De, X, €;)
i,j i 1,J
Otr(A) o : 2
( 9t )¥(x,0) = 4(divs X)”.



Thus we have for the second variation integrand:

_ o
ot

(2,0) = 19%r(A) (2,0) 1 %(aj,O)F 1 ,0tr(A)

bx(z) 2 o2 2ot

= divs Z+(divs X)*+>_ [(De, X)**=) (De, X, ;)(De, X, €)=Y RM(ei, X, X, ¢5).
i ij i
The divergence of the acceleration field Z contributes only a boundary integral,

so we write this in the form:

bX = diUEZ+I(X7X),

where the ‘index integrand’ I(X,Y") is defined as:
I(X,Y) = (divs X)(divsY )+ ((De,X)*, (De,Y) )= (Do, X,e;)(De,Y,e5)—>  RM (e, X, Y €;).
i ij i

Bearing in mind the decomposition X = X7 +¢v, the plan now is to understand
separately the terms I(¢v, ¢v), [(XT, ¢v) and I(XT, XT).

A. The index integrand on normal-normal terms.

This is quick, observing divs (¢v) = ¢(divsv) = ¢H, (De,(¢v),e;) = ¢(De, v, e;) =
dA(ei,e;) and D, (¢v))t = ei(¢)v. We find:

I(¢v, ¢v) = |VZ[* — (Ric" (v,v) + |A]* — H?)$",

the classical formula for minimal surfaces, with the added term H? in this more
general case.

B. The index integrand on tangential-normal terms. 1(X, ¢v), X € TX. We
have:

D A(De, X) (Dey(90)) 1) = D A(De, X ei(@)v) = (DyzgX,v) = —A(X, V79).

Z<D€7‘,X7 ej><D€j (st)a ei> = Z<D€1Xa ej>¢A(ei7 ej) = ¢Z<D§;X7 S(el»
,J 1,J i
The other two terms are (divs X)¢pH and the curvature term, both linear in ¢.

We seek to combine the terms which do not involve V>¢ into a divergence
term. Recall the Codazzi equation:

(DXS)Y — (D3¥S8)X = RM(X,Y), X,Y €TX.
Thus, at = 0 (corresponding to ¢(0) = p € 3 under the local chart ¢ for ¥):

Z<S€i,D2X>+Z RM(ei,X, v, ei) = Z<S€1,D§1X>+<(DSELS)X7 €i>_<(D§(S)€i,ei>

3 3 ?



= ZK(DQ (5X),e;) — X(Ses, e;) = divs(SX) — X (H),

(using D%e;(x) = 0 at the given point x = 0, p(z) = p for X tangential, as we
may assume.) Combining these facts, we find:
I(X, ¢v) = (divs X)(¢H) — A(X, VZ¢) — ¢(dive(SX) — X (H))
= ¢(Hdivs X + X (H) — divs(SX)) — A(X,VZ9)

= ¢(divs(HX) — divs(SX)) — A(X, VZ6).
We can also write this in the form of [Lee, p.36], noting that:
divs(HpX)—HX (¢) = ¢divs (HX), divs (¢SX) = ¢pdivs (SX)+A(X, VZ ).
We conclude:

I(X, ¢v) = divs(HpX — ¢SX) — HX(¢),
for X tangential.

C. The index integrand on tangential-tangential terms. We compute I (X, X),
assuming X € TX.

DD, X)) =) | Ales, X)IP = [S(X).
And from the Gauss formula:

> BM(e;, X, X, e;) = Ric™(X, X) +|S(X)]* - HA(X, X).

As observed earlier, since Dg, X = Dgé; (as vector fields along ®), we have
at points ®(x,0) = p(z) € U C X: D, X = Dxé;, and if X is tangential in Up:
D., X = Dxe; on ¥, in particular for the tangential components: DeTiX = D%e;
on X.

On the other hand, we may assume at the point p = ¢(0) € ¥ of calculation
we have DTe;(p) = 0, for any v € T,,> and all 4. Thus the term involving the
sum over 4, j of (D, X, e;)(D; X, e;) does not contribute to index integrand, at
the point p.

After cancelation of the term |S(X)|?, we are left with:
(X, X) = (divg X)? — Ric* (X, X) + HA(X, X).

We expect this will turn out to be almost entirely a divergence term. So com-
pute:
divs ((divs X)X = (divs X)* + X (divs X).

And again using the fact the frame (e;) is parallel at z = 0:

X(divgX) =Y X(DI X e;) =Y (DYDI X e;)

7 K2



= (DIDYX e;) + R¥(X,e;, X, ¢;)] = divs(DY X) — Ric*(X, X),

and thus:
(divg X)? = divs ((divs X) X)) — divs (DY X) + Ric® (X, X),
giving, at the point p = ¢(0):

I(X,X) = HA(X, X) + divs[(divs X)X — D% X].

D. Putting everything together.

For a general variation vector field X = X7 + ¢v, using the fact the index
integrand is linear over R (not over functions!) we have:

I(X, X) = I(¢v, ¢v) + 21(XT, dv) + I(XT, XT)
= |VZ¢|* — (Ric" (v,v) + |A]? — H*)¢* —2HX " (¢) + HA(XT, XT)
+divg2HXT — 2¢S(XT) + (divg XT)XT — DL XT]
To compute the term divsZ in by, we let Z = ZT + (v, ZT € T, and find:

> (De,Z,e;) =Y (DEZ" ei) + CH = divs Z" + CH.

K2 ?

So the final expression for the second variation integrand is:

bx = CH+|VZ¢*—(Ric™ (v,v)+|AP—H?)¢* —2H X" (¢)+ HAX, XT)+divs(cx),
ex =27 +2H¢XT — 20S(XT) 4 (divg XT)XT — D, XT.

The integrated general second variation formula reads:

Cmozd(twlmo - /Q{\VZ¢|2 = (Ric™ (v,v) + |A]* = H?)¢”

FHIC — 2X7T(6) + ACXT, X7 }dus + /a {ex.mdpon.

We see that in the minimal surface case, the acceleration vector field and tan-
gential components of X contribute only boundary terms.

Remark on the acceleration vector.

We may get some control on the terms of the decomposition Z = Z7 + (v
on ¥ if we take the point of view that X is given on ¥, extended to X in
a neighborhood of ¥, and (F}) is the local flow of X, and take a particular
extension of X: extend v to a neighborhood of ¥ as a geodesic vector field 7,
that is, Dy = 0, then extend ¢ to be constant along normal geodesics (7(¢) = 0)



and extend X7 by parallel transport: Dy X7 = 0. Finally, set X = X7 + 7,
extending the decomposition X = X7 + ¢v on ¥. Then a simple calculation
yields, on X:

Z' = DL XT +¢S(XT), ¢=—-AXT, XT)+ XT(9).
This leads to a simplification of terms in by and cx:
bx = |VZ¢|? — (Ric™ (v,v) + |A]? — H*)¢?* — HXT (¢) + divs(cx),
cx = 2HoXT — ¢S(XT) + (divg XT)XT.

Ezample: scalar curvature of a rotationally symmetric metric.
The usual form of a rotationally symmetric metric in R™ is:

g = ds® 4+ 12(s)dw?,

where dw? is the standard metric in S"~1. Thus the (n— 1)-dimensional volume
(‘area’) of the sphere {s = so} in the metric g is w,—17r(s)"!, and 9 (sq)
corresponds to a minimal surface at sg. If no such minimal surface exists, r is
monotone in s, and we can instead use r as a parameter (the ‘area radius’) and
write the metric in the form:

dr? dr

= 2dw?, — = ,
9=yt g =VVO)

We can use the first and second variation formulas to compute the scalar cur-
vature R, of g. The volume |S,| at radius 7 is w,—17"~!, and V'V, is a unit
normal vector, so first variation gives:

VVa,|S,| :/ Hr" Ydw, or H(r) = n; 1\/‘7.
Sy

The second fundamental form is A(e;, e;) = 1v/Vé;;, so |42 = (n — 1) and

r2
|A|? — H* = —(n — 1)(n — 2)%. The scalar curvature of the induced metric

on S, (which is the standard metric) is R> = "=1(n=2)

formula:

. The second variation

VVO,.(VV8,)|Sr| = —wn 17" [Ric(v,v) + |A]? — H?,
quickly leads to:

n—lV,+(n—1)(n—2)

o 2 V = —[Ric(v,v) + |A]? — H?],

and combining with the above:

n—1_,

Ric(v,v) = — 5




Now the scalar curvature of M = (R", g) may be obtained from the twice-traced
Gauss formula:

RM = R 42Riclw, ) +ap—r? = O 0y )Y
RM = nT_zl[(n—Q)(l—V)—rV’], or RM —2Ric(v,v) = W(I—V)

Thus the differential equation giving metrics of constant scalar curvature RM =
kn(n —1) is:

ok =(n-2)W+rW', W=1-1V,
which is easily solved, with general solution:

2
W = HT’z + 77”??2,
or 5
m 2
= TR
which is Schwarzschild if ¥ = 0, and Kottler (Anti-de Sitter-Schwarzschild/de
Sitter-Schwarzschild) if x # 0.

V=1-

Application: the PMT for spherically symmetric metrics.
For a metric of the above form, we have e = g — § = (& — 1)dr?, and hence

i v
€ij = (% - 1)‘70‘76 and:

7«.2
1 Sipwd + 810 %4 2 1 xiad gk
Opeij = (V - 1)77“2 - [(ﬁ + ﬁ(v —1)] PR
For the mass one-form, this gives (with implied summation over ¢):
1 2l
81"/“1‘]‘ — 8jeii = (’I’L — 1)(V — 1)ﬁ

And for the mass integral over S,

w2l =V

J
f. ((%n»j — 8jeii)x7dcr79 = (’I”L - 1)wn_1r %

T

The asymptotic decay of g to § takes the form: V' = 1405 (r~9, and this implies
LY —1-V)=(1-V)(& —1) =0(r27). Since ¢ > (n — 2)/2 is assumed,
this difference (times r™~2) vanishes in the limit, and we may write:

: 1 n—2
m(g) = rlggo 3" (1-V).
On the other hand, from the above: RY > 0 & (n—2)(1 —-V) > rV’', or

r"~2(1 — V) is nondecrasing. Since the metric is defined in all of R™:

1 1
0= lim —r"%(1-V)< lim §r"_2(1 - V) =mlg).

r—04 T—00
Additionally, if equality holds we have: %r”’z(l — V) = m, a constant; equiv-
alently: V =1+ T%—Tz, so g is the spatial Schwarzschild metric with parameter

m (defined for r > (2m)'/n=2))
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