TOPICS FOR STUDENT PRESENTATIONS, MATH 668-SPRING 2023

1. Ricci curvature and the ADM mass (NATHAN, TARIQ)

Goal: theorems 4.2 and 4.4 in R. Bartik's *The Mass of An Asymptotically Flat Manifold* (CPAM 1986) and Lemma 2.1 + Theorem 2.3 in M.Herzlich's *Computing Asymptotic Invariants with the Ricci tensor*, etc. (Annales IHP 2016.)—omit the center of mass.

2. Brown-York mass and isoperimetric mass (BEN, STEVE)

Paper: X. Fang, Y. Shi, L-F Tam, *Large sphere and small sphere limits of the Brown-York mass,* ArXiv 0711.2252v1 (2011) Focus on: Theorem 2.1 and Corollary 2.3 of Theorem 2.2 (equality of the isoperimetric mass and the ADM mass in the AF case.)

3. Isoperimetric comparison/ Inverse mean curvature flow (SATHYA, IVY)

Papers: a) H. Bray, F. Morgan, An isoperimetric comparison theorem for Schwarzschild space and other manifolds, Proceedings AMS 2001. (Theorem 2.1, Corollaries 2.3, 2.6)
b) K-K Wong, P. Miao: A new monotone quantity along the Inverse Mean Curvature Flow in Rⁿ, Pacific J. Math (2014) (Theorem 1, also Prop. 1, time permitting.)

4. Spacetime Penrose inequality, constraint equations (BRYAN, GEORGE)

Goals: a) Sections 2.1, 2.2 (Derivation of the 3+1 decomposition of the Einstein equations, and of the constraint equations.) R. Bartnik, J. Isenberg: *The Constraint Equations, in* the Einstein equations and the Large- Scale behavior of gravitational fields (P. Crusciel, H. Friedrich, eds. *b)The spacetime Penrose inequality* (section 7.6 in Dan Lee's book, and Marc Mars' 2009 survey `The Penrose Inequality'. (Classical & Quantum Gravity)—sections 3 and 4. (Explain the conjecture, describe the proof in the rotationally symmetric case.)