ASCOLI-ARZELA THEOREM-notes

If (X, d) is a metric space, (E, ||-||) a Banach space, the space C%(X) of
bounded continuous functions from X to F (with the supremum norm) is a
Banach space, usually infinite dimensional. Thus we don’t expect arbitrary
bounded sets in C%(X) to have compact closure.

It is very useful to have a criterion that guarantees a sequence in C%(X)
has a convergent subsequence (meaning, uniformly convergent in X). Al-
though ‘bounded’ is not enough, it turns out that a necessary and sufficient
criterion exists.

Definitions. In the following definitions, we emphasize sequential com-
pactness. This is equivalent to compactness (covering definition) for second-
countable spaces, a hypothesis that is satisfied in the cases we consider.

(i) A subset A C E of a Banach space is precompact if its closure A is
compact; equivalently, if any sequence (v,) in A has a convergent subse-
quence. (The limit may fail to be in A.)

A family F C C’%(X ) is precompact if any sequence (fy)p>1 of func-
tions in F has a convergent subsequence (that is, a subsequence converging
uniformly in X to a function f € C%(X), not necessarily in F).

(ii) Given a family F C C%(X) and x € X, we set:

F(z)={v € E;v= f(x) for some f € F} CE; F(X)= U F(z).
reX

(iii)F € CY%(X) is equicontinuous at z¢ € X if for all € > 0 there exists
a6 = d(e,xp) > 0 so that

(Vo € X)[d(z,z0) <0 = (Vf € F||f(z) = fzo)l| < €.

(The point, of course, is that the same ¢ works for all f € F.)

(iv) F C C%(X ) is uniformly equicontinuous on a subset A C X if for
all € > 0 there exists a 0 = d(e) > 0 so that

(Va,y € A)[d(z,y) <6 = (Vf € Fl|f(z) = f(y)ll <€

Exercise 1. If (X,d) is a compact metric space, any family F C C%(X)
which is equicontinuous at each z € X is, in fact, uniformly equicontinuous
on X.



Arzela-Ascoli theorem. Let (X, d) be a compact metric space. Then
F C Cg(X) is precompact provided F satisfies:

(i) F(x) is precompact in E, for each z € X and

(ii)F is equicontinuous at each x € X.

Conversely, if F is precompact, then it is uniformly equicontinuous on
X, and F(X) is precompact in E.

That the conditions (i) and (ii) are natural follows from the following
exercises:

Exercise 2. Let (X,d) be a metric space. If a sequence (fp)n>1 of
functions in Cg(X) converges to f € Cg(X) uniformly on X, then the
family F = {f1, fo,..., fn,... f} is equicontinuous at each z¢y € X. (Hint:
3e argument, using that f is continuous at x.)

Ezample. The sequence f,(x) = Sm(Tm)(x € R,n > 1) converges to zero

uniformly on R, hence is equicontinuous at each =z € R.

Ezample. The sequence f,(x) = % (n > 1,2 € R) is uniformly equicon-
tinuous in each compact interval [—M, M] C R. (This is seen directly from
the definition.)

Exercise 3. If (f,) is a sequence in C%(X ) and f, — f uniformly on
X, then the same family F as in Exercise 2 satisfies: F(X) is a precompact
subset of E.

Case of R". If F is a finite-dimensional Banach space, a subset A C F
is precompact if and only if it is bounded (Bolzano-Weierstrass). We have:

Corollary: Ascoli-Arzela in R™: Let (X, d) be a compact metric space.
Then F C C(X; R") is precompact provided F satisfies:

(i) F(x) is a bounded subset of R", for each z € X (‘F is equibounded’)
and

(ii).F is equicontinuous at each = € X.

Conversely, if F is precompact, then it is uniformly equicontinuous on
X, and F(X) is bounded in R".

Main example of equicontinuity. A family F C CY(U, F) of C* functions
from an open convexrset U C E of a Banach space to a Banach space F' (think
of E=R" or R, and F' = R™ if you want) is automatically equicontinuous
(uniformly on each compact set K C U), provided we have a bound of the
type:

|f'(z)]] < Mg for x € K, for each K C U compact ,



where the same My works for all f € F. (Note we always have this bound
for a constant M depending on K and on f, by continuity of the differential):

f':U—= L(EF)
The reason is the Mean Value Inequality: for x,y € K we have:

1f (@) = fW)ll < sup{||f'(2)l; 2 € K}Hl2 — yll < Mkllz —yll,

where K C U is any compact subset containing the line segment from x
to y. If this bound on f’ holds, and in in the finite-dimensional case, the
condition ‘F(z) is bounded, for each z € U’, only needs to be checked at
one point xg € U. This follows directly from

1F@)[] < [1f (zo)l| + M| — ol|

(with K C U compact, containing the line segment from xg to x.)

Derivative bounds of this kind often arise in the context of solutions to
differential equations.

Exercise 4. The sequence of functions f,,(x) = nz? has bounded deriva-
tives at the point 0 but is not equicontinuous at 0 (prove this). Why does
this not contradict the above discussion?

The proof of (the main direction of) the Ascoli-Arzela theorem follows
three steps:

1) Equicontinuity + pointwise convergence on a dense subset = uniform
convergence on any compact set.

2) Precompactness of {f,(d)},>1 in E for each d in a countable set D
= pointwise convergence on D for a subsequence.

3) Compact metric spaces are separable (that is, one may find a countable
dense subset.) (Exercise 5.)

Proposition 1. Let (X, d) a metric space, D C X a dense subset, (f)n>1
a sequence in Cg(X), equicontinuous at each x € X. Then if f,, converges
pointwise at each d € D, then in fact (f,) converges uniformly in each
compact subset K C X.

Proof. Let € > 0 and K C X compact be given. We need to show
|fn(z) — fm(x)| is small for all z € K, if m,n > N, where N = N(e).

First, for each d € D: |f,,(d) — fm(d)| < € for m,n > N(d).

By equicontinuity, for each z € X we may find an open ball Bs(x) C X so
that | fn(y) — fu(z)| < e for alln > 1, and all y € Bs(x), § = d(x). Taking a



finite subcover of the covering of K by these balls, we have K C UM, Bs. (z;).
By density, we may find, for each i = 1,... M, a point d; € B;,(x;) N D.

If z € K, choosing an i so that z € B, (z;), considering the correspond-
ing d; € DN Bs,(,) and letting N = max{N(d;),1 <i < M}, we have, for
m,n > N:

[fn(2) = fm(@)] < |fo(@) = fo(@i)| + [fo(@i) = foldo)] + [ fuldi) = fn(di)]
+|fm(d1) - fm(xz)| + |fm(xz) - fm($)| < 567

so (fn) is Cauchy uniformly on K, as desired.

Remark: Lebesgue number of a covering. This concept is often useful in
proofs involving compact sets. A number r > 0 is a Lebesgue number of an
open covering X C UyeaU)y (of a metric space X) if any two points of X
that are r-close (d(x,y) < r) are in the same U,.

Not every open covering (even a finite one) has a Lebesgue number (ex-
ample: the open covering of R\ {0} by Uy = {z > 0}, Uz = {z < 0}).

Any open covering K C UxeaUy of a compact set K has a Lebesgue
number. If not, it would be possible to find z,,y, € K with d(z,,yn) <
1/n, but (for any n > 1 no Uy containing both x,, and y,. Passing to a
subsequence we have z,,; — z9 € K, and hence y,, — xo. Let Uy be a
set in the covering containing zg. Then w,; and yn; are both in Uy for j
sufficiently large, contradiction.

Proposition 2. (Cantor-Tychonoff). Let D be a countable set. Any
sequence of functions f, : D — E such that the set {f,(d);n > 1} is
precompact for each d € D has a subsequence which is pointwise convergent
in D.

Proof. Standard ‘diagonal argument’. The details:

Let D = {dy,dsa,...}. Then (fn(di))n>1 is precompact in E, so there
exists N1 C N so that (fn(d1))nen, converges to a point in F, which we call
f(dy).

Since (fn(d2))n>1 is precompact in E, we may find Ny C Nj so that
(fn(d2))nep, converges in E, and we call the limit f(ds).

Proceeding in this fashion, we define f(d,) for each n > 1. Now define
an infinite set Ng C N as follows: for each i > 1, we let the i** element of
Ny be the i element of the set N;. We claim (fn(di))nen, converges to
f(d;), for each i > 1.



Indeed it suffices to observe that, beginning with its i*" element, Ny is
a subset of N;. Given € > 0, find m; > i so that n € N;;,N > m; =
|fn(d;) — f(d;)] < €. Then the same is true if n > m; and n € Np.

Proof of the Ascoli-Arzela theorem. Let F C Cg(X) satisfy conditions (i)
and (ii) in the theorem. Let D C X be a countable dense set (using the fact
X is separable.). Then if (fy,)n>1 is a sequence in F, since the set { fy,(d) }n>1
is precompact in E for each d € D (and D is countable), by Proposition 2
a subsequence of (f,) converges pointwise in D to f : D — E. Since D is
dense in X, equicontinuity of F at each point of X and Proposition 1 imply
we may extend f from D to a (continuous) function f : X — F, so that the
same subsequence of (fy,) converges to f, uniformly on X.

For the converse, suppose F is (sequentially) precompact in Cg(X),
where X is compact metric. If F is not uniformly equicontinuous on X,
we may find an ¢y > 0 and, for each integer n > 1, a function f, € F and
points x,,y, € X so that d(z,,y,) < % but |fn(xn) — fu(yn)| > €. By
pre compactness, a subsequence of (f,) converges uniformly to f € Cg(X),
uniformly in X. f is uniformly continuous on X (since X is compact), yet
d(xpn, yn) — 0 while |f(zn) — f(yn)| > €0, contradiction.

If 7(X) is not precompact, we may find sequences (f,) in F and (z,,)
in X so that the sequence f,(z,) in E has no convergent subsequence. But
F is assumed precompact, so (f,) has a subsequence converging uniformly
to a continuous function f, while a further subsequence of (z,,) converges to
xo € X (by compactness). This implies a subsequence of (f,,(z,)) converges
to f(zop), contradiction.

It is important for many applications to extend the theorem to the case
where X is not compact.

Recall a metric space (or Hausdorff topological space) X is locally com-
pact if each point has a relatively compact open neighborhood (that is, one
with compact closure.)

Ezercise. Let X be locally compact, C' C X a compact subset. Then we
may find an open set V' containing C, with compact closure V.

Definition. A locally compact metric space (X,d) is o-compact (pro-
nounced ‘sigma-compact’) if it is the union of countably many compact sub-
sets: X = U;>1 K, with K; C X compact (and we may assume K; C K;i1).

Proposition. X (locally compact) is o-compact if (and only if) X can be



written as a countable union X = U2, U; of relatively compact open sets
U;, where U; C U; 41 for each ¢ > 1.

Proof. Only one direction requires proof. Assume X = Up,>1K,, with
each K, compact. From the exercise, there is a relatively compact open set
U, containing K. Proceeding inductively, we choose U1 to be a relatively
compact open set containing the compact set U,_1NK,. The sets U, clearly
satisfy the claim. ([Dugundji’s Topology, p.241])

Ezercise. Let X be locally compact and o-compact, and consider sets
U, as in the proposition. Show that any compact set C' C X is contained
in some U,,. (Hint: consider the open covering of {U, N C;n > 1} of C.)

We say a sequence of functions f, : X — FE (X metric, £ Banach)
converges to f : X — E wuniformly on compact sets if (Ve > 0)(VK C X
compact), we may find an N > 1 (depending on € and on K) so that:

n> N = sup||fale) — F@)]] < e
zeK

Theorem. Let X be a o-compact metric space, F C C(X; E) a family of
continuous functions (E Banach). If F is equicontinuous at each z € X and
F(x) is precompact in E for each € X, then any sequence of functions in
F has a subsequence converging uniformly on compact sets (to a function
feC(X;E)).

Proof. Follows from the Ascoli-Arzela theorem and a diagonal argument
(like the one used in Proposition 2.)

Exercise 6. Prove this theorem in detail, following the idea just given.

Exercise 7. Prove that any c— compact metric space is separable (i.e.,
contains a countable dense subset.)

An extension of Arzela-Ascoli.

Definition. Let (fn)n>1 be a sequence of continuous functions in RV .
We say f,, converges “partially uniformly on compact sets” if there exists
an open set A C RN and fy: A — R continuous, so that f, — fo uniformly
on compact subsets of A and |f,| — oo uniformly on compact subsets of
RN\ A. (Note that A may be empty.)

Proposition. Let F C C(R"™) be a family of functions, uniformly
equicontinuous on compact subsets of RY. Then any sequence of functions
of F converges partially uniformly on compact sets.



Proof. Consider the uniformly continuous function ¢ : R — (—1,1),
(2/m)arctanx. Let G be the family of continuous functions from R to
(—1,1): G = {¢o f;f € F}. Since any g € G satisfies |g| < 1 on R",
the hypotheses of the usual Arzela-Ascoli are satisfied. Hence if (f,,) is any
sequence in F, the sequence g, = ¢ o f, : RV — (-1, 1) has a subsequence
gn; converging uniformly on compact subsets of RY to a continuous function
go: RN — [-1,1].

Let A = g;'(—1,1) (open in RY), RN\ A = g7 '({~1,1}) (closed in
RYN). Then the sequence ¢~! o (9n;)ja = (fn;)|a converges uniformly on
compact subsets of A to fo := ¢! o (go)a.

It is also easy to show that |f,;| — oo, uniformly on compact subsets of
RV\ A.

Translation families. For f € UC(RY) (uniformly continuous, not
necessarily bounded) the translation family is 7; = {fi;;t € RV} C UC(RN),
fi(x) = f(x—t). Clearly T; satisfies the hypothesis of the proposition, hence
is sequentially precompact in the sense of partial uniform convergence on
compact sets.

An example from the Calculus of Variations. Consider the varia-
tional problem (optimizing in a set of functions):

1
minimize ®[f] := /_1 f(t)dt

over the setF = {f : [-1,1] — [0, 1] continuous , f(—1) = f(1) = 1}.

1) Considering the sequence f,(x) = 2" in [-1, 1], we see that the infimum
is 0 and it is not attained within this family (since the area under the graph
is always positive).

2) If we add the condition that f is Lipschitz in [—1, 1] (with constant
¢ > 0), the Ascoli-Arzela theorem implies any minimizing sequence has a

uniformly convergent subsequence. Thus the infimum is achieved (for this
family): a minimizer of ® can be found in the class

F.={f € F|f is c-Lipschitz in[—1, 1]}.

3) In fact it is easy to see that (under a c-Lipschitz condition) the infimum
is attained by an even in x, piecewise-linear function. (Graphs drawn in
class.)



Exercise 8. For each ¢ > 0, let f.: [-1,1] — [0,1] be the ¢-Lipschitz
function:
fC<m) :max{l—i—c(\:c\ _1)70}7 T e [_171]

(i) Sketch the graph of f., in the cases ¢ > 1, c=1,c< 1.

(ii) Prove that if f(1) =1, f(z) > 0 in [0,1] and f is ¢-Lipschitz in [0, 1],
then f > f.in [0,1]. (And similarly in [—1,0].)

(iii) Explain why this implies that, for any f € F., ®[f] > ®[f.]. Thus f. is
a minimizer of ® in F.. Compute the minimum value ®[f].

Problems.

1. Show there does not exist a sequence of continuous functions f, :
[0,1] — R converging pointwise to the function f : [0,1] — R given by
f(z) =0 for = rational, f(x) =1 for x irrational.

2. Given f : R — R an arbitrary function, consider the sequence of
translates f,(z) = f(x +n), n > 1. Then f, converges uniformly on [0, c0)
to the constant function L if, and only if, lim, ,~ f(x) = L.

3. If each f,, : X — E (X metric, EF Banach) is uniformly continuous
on X and f, — f uniformly on X, then f is uniformly continuous on X.(X
is a metric space.)

4. There is no sequence of polynomials converging either to 1/x or to
sin(1/z) uniformly on the open interval (0,1).

5. Find a sequence of functions f, : [0, 1] — R which converges uniformly

n (0,1), but not on [0, 1].
6. If f, — f uniformly on X (where f,,f : X — E, X metric, E
Banach) and g, — g uniformly on E (g,,¢9: C — V, C C E, F,V Banach)

where f,(X) C C, f(X) C C and g is uniformly continuous on X, then
gn © fn, = g o f uniformly on X. Do we need to assume anything about the

Jny for gn?

7. A monotone sequence of real-valued functions is uniformly convergent
provided it has a subsequence with this property.

8. If a sequence of real-valued monotone functions (with domain R)
converges pointwise to a continuous function on an interval I C R, then the
convergence is uniform on each compact subset of I.

9. If lim f,(c) = L exists (for some ¢ € R, where f, : [ — R and
I C R is an interval containing ¢) and the sequence of first derivatives (f})



converges to 0 uniformly on I, then f, — L uniformly on each compact
subset of I. Example: fy(x) = sin().

10. A sequence of polynomials of degree < k, uniformly bounded in a
compact interval, is equicontinuous on this interval.

11. Let (f,) be an equicontinuous and pointwise bounded sequence of
functions in Cg(X) (E Banach and finite-dimensional , X compact metric.)
If every uniformly convergent subsequence has the same limit f € Cg(X),
then f, converges to f uniformly on X.



