COMPACTNESS, COUNTABILITY, FUNCTION SPACES:
EXAMPLES

Ezxamples 1 to 4 consider metrizability for the pointwise and uniform
topologies.

Ex 1. X = F,(R, R) is not first countable.

Recall the notation for a local basis at f € X for the topology of point-
wise convergence:

Ap(ty, .. tiser, .. e0) ={9 € X5 |g(ts) — f(ts)| < e,i=1,...,k).

Let f € X, suppose we had {Vi,...,V,,...} countable basis at f. Each
V,, would contain an element of the local basis at f for the pointwise topol-
ogy:
A, = Af(tnl, ces bk €nly - .- ,Enk) C V.

Thus the A,, would also form a countable basis of neighborhoods of f.

The set of all £ appearing in these sets is also countable, so there exists
to € R not occurring in any of them. Consider the basis set Ay = A (o, 1).
For functions in A,, there is no restriction on the value at tg, so certainly
there is g, € A, with |gn(to) — f(to)| > 1, so g, & Ao, showing Ay is not
contained in any A,. So the A, can’t be a local basis at f.

This argument also works to show the compact space F,(R; [0,1]) is not
first countable, hence not metrizable.

Ex 2. Againlet X = F,(R, R), and let S C X be the set of characteristic
functions of finite sets. Claim: The constant function ¢ =1 € X is in the
closure of S, but is not the pointwise limit of functions in S.

Indeed given any basic neighborhood A = Ay(t1,...,t,,¢€), the charac-
teristic function of the set {t1,...,t,} isin ANS. Now if f,, € S, fr, = ¢
pointwise on R, the set of ¢ € R such that f,(t) # 0 for some n is count-
able, so there exists tg € R such that f,(tg) = 0 for all n. This contradicts
fn(to) — 1.

Ex. 3. The uniform topology in F,, = F,(X,Y) is metrizable (X : set;
(Y, d) metric space.)

If d is a bounded metric (or if X is a finite set), we can just take the sup
metric:

d(f,g) = sup d(f(x), g(x)).

zeX



But if X is infinite and (Y, d) unbounded, the supremum is not neces-
sarily finite, so we can’t just take the sup metric. Recall a local basis for F,
at f is given by the sets:

By(6) = {g € Furd(f(c), g(x)) < e, ¥z € X}.

Definition: two metrics d,d’ in Y are uniformly equivalent if the identity
is a uniform homeomorphism. (A homeomorphism f of metric spaces is uni-
form if both f and f~! are uniformly continuous.) For example, the metrics

d(z,y), min{d(z,y), 1}, 1i(d$(ﬁ)y) are all uniformly equivalent (exercise.)

Proposition. If M, N are metric spaces and ¢ : M — N is uniformly
continuous, the map induced by composition

SO*Z‘FU<X7M)_>'FU(X7N)7 @*(f):(/)of

is continuous. This is very easy to prove (try it!) The converse holds if X
is infinite.

As a corollary, if ¢ is a uniform homeomorphism, ¢, is a homeomor-
phism. If ¢ is bounded (for instance if dy is bounded), then ¢, maps
Fu(X, M) to B,(X, N), the space of bounded maps, with the uniform topol-
ogy (which is metrizable via the sup norm.)

Thus two uniformly equivalent metrics in Y define equivalent topologies
in F,(X,Y), and if one of them is bounded we have that F,(X,Y) and
B,(X,Y) are homeomorphic, the latter space being explicitly metrizable
(when Y is given a bounded metric).

Since any metric in Y is uniformly equivalent to a bounded one, we see
that F,(X,Y) is always metrizable.

The following example shows this argument utterly fails, without the
assumption of uniform equivalence of the metrics.

Ex. 4. Let X be an infinite set. Then F,(X,R) (where R has the
usual metric d(z,y) = |z — y|) is disconnected, since the subspace B, (X, R)
(bounded functions) is open, closed, non-empty, and not the whole space.
Let h: R — (—1,1) be the homeomorphism h(z) = z/(1+|z|), and define in
R the bounded metric di(z,y) = |h(x) — h(y)|, which is equivalent to d, but
not uniformly. (The identity (R,d;) — (R, d) is not uniformly continuous.)

Let Ry = (R,d;). Then F, (X, R;) is metrizable (since d; is bounded),
and in fact hs @ Fu(X, R1) — Fu(X,(—1,1)) is an isometry (between d;
and d), in particular a homeomorphism. Now F,(X,(—1,1)) is a convex



subset of the normed vector space B, (X, R), in particular a connected space.
Hence F, (X, R1) is connected as well, and so cannot be homeomorphic to
Fu(X, R).

This example should be carefully compared with the argument in Ex-
ample 3.

Examples 5, 6 review the topic ‘compactness v. sequential compactness’.

Ex. 5 Compactness vs. sequential compactness. Consider the conditions
(for a given space X). Note: sequences always assumed injective.

(1) Every sequence in X has a cluster point (z is a cluster point of (x,)
if any open neighborhood of x contains infinitely many x,,.)

(2) Every sequence in X has a subsequence converging to a point of X
(sequential compactness.)

(3) X is compact.

Then:

a) (3)= (1), for any space:

Proof: If (z,,) has no cluster point, for all x there is an open neighbor-
hood V, containing only finitely many sequence elements. Taking a finite
subcover, we see this would imply the set {x,,;n > 1} is finite, contradiction.

b) (2)= (1), for any space (clear);
c) If X is first-countable, (1)= (2). In particular, for 1st countable
spaces, compact implies sequentially compact.

Proof: Let z be a cluster point of (zy), (V});>1 a countable basis of
neighborhoods of x, where we may assume V;4; C V;. Form a subsequence
in the following way: take m; so that z,, € Vi, then na > n; so that
Tny € Va2,.0y njp1 >y so that z,,,, € Vjy1, etc. Then z,, — z as j — oo.

Note that for the compact space F,(R, [0, 1])), the characteristic function
Xq of the rationals is a cluster point of the set of continuous functions
(see Example 6 below), but there is no sequence of continuous functions
converging pointwise to g.

d) If X is second countable, all are equivalent. (L.e. (1) or (2) imply
(3), in particular compact and sequentially compact are equivalent for 2nd
countable spaces (for example, for separable metric spaces).

Proof: Let C be an open cover of X. Second countable implies Lin-
delof [Munkres p. 190-191], so there exists a countable subcover {U;}i>1.
Proceeding by contradiction, assume there is no finite subcover. Then take
x1 € Up,x0 € Uy \ Us,x3 € Us \ (Ul U Ug), Ty € U, \ (U1 Uu...uJ Un—1)7



... This defines an infinite sequence (z,) so that x,, € U,, if n > m. Let x
be a cluster point of the sequence. Then z € U; for some i (since the {U;}
cover X), and then z,, € U; for some n > i, contradiction.

Ex. 6. Consider again the compact space X = F,(R,[0,1]). Let
{rn}n>1 be an enumeration of the rationals. For each E; = {r1,...,r;},
let f; € X be the characteristic function of E;. Then f; converges pointwise
to the characteristic function xg € X of the rationals, and on the other
hand each f; is the pointwise limit of a sequence of continuous functions in
X. Soif § C X is the set of continuous functions, x¢ is a cluster point of X:
any neighborhood of x¢g contains infinitely many points of S (check this.)
However, x¢g cannot be the pointwise limit of any sequence in S, since it is
discontinuous everywhere. (Recall the set of continuity of a pointwise limit
of continuous functions is ‘residual’.)

Examples 7, 8, 9 refer to compactly generated spaces.
Ex. 7. First countable spaces X are compactly generated.

Let F' C X such that FNC is closed in C, for each C' C X compact. To
show I is sequentially closed in X, let x, be a sequence in F, and assume
limz, =z in X. Let C' = {z,,;n > 1} U{a}. Then C is compact: if U/ is an
open cover of C, we may, for each n, pick U, € U so that x,, € Uy; and also
Up € U containing x. Now let N be such that x,, € Uy for n > N. Then
Uy, Uy, ...U, is a finite subcover of C.

Thus F'N C is (sequentially) closed in C' (first countability is inherited
by subspaces.) Since z, € FNC, also z € FNC, proving x € F, so F is
sequentially closed.

Ex 8. Locally compact spaces X are compactly generated.

Let A C X be such that AN C is open in C, for all C C X compact.
Given z € A, we want to find W open in X and containing x, so that
W C A.

Since X is locally compact, there exist V open in X and C' compact in
X, sothat z € V C C. Then ANC is open in C (in the subspace topology),
while x € AN C. So there exists U open in X and containing = so that
UNC CANC. Now let W =UnNYV, clearly open in X and containing .
WcUandWcVcC,soWcUnC cC A.

Ex. 9. Ezample of a non-compactly generated space [Willard 43H, p.
289

X = Fp(R, R) (pointwise convergence) is not compactly generated. To



see this consider the set:
T={feX;(3n>1)(3F C R)card (F) <n, f(z) =0on F, f(xr) =n on R\F}.

(That is, T is the set of functions equal to zero on a finite set, and equal to
an upper bound for the cardinality of that set elsewhere.)

Then T is not closed (the identically 0 function is in the closure of T', but
not in 7'.) But T'N C' is compact (in particular closed in C), for all C C X
compact. (Exercise). Outline: Note that if C' is compact, for each € R
there exists an M, > 0 so that | f(z)| < M,, for all f € C. The definition of
T then implies that, for each € R, the image {f(z); f € TNC} is a finite,
hence compact subset of R. By Tychonoft’s theorem, T'N C' is compact.

The next examples 10, 11, 12 consider separability of certain function
spaces with compact domain (with uniform topology, given by a metric or a
norm. )

Ex. 10. The theorem in this example is of great importance in appli-
cations. For example, it implies the Banach space C'(K, R") (C! functions
with values in R", defined on a compact convex K C R™, with the C' sup
norm) is separable.

Theorem. Let K be a compact metric space, (M, d) a separable metric
space (in particular, with countable basis). The metric space X = C, (K, M)
(continuous functions, uniform topology, sup metric) has countable basis.

Preliminary remark: If L C K is compact and f(L) C U, where U C M
is open, then if € = dist(f(L),M \ U) (a positive number, since f(L) is
compact) we have d(f,g) < e = f(L) C U. Indeed, if z € L and y € M \ U:

d(g(x),y) =z d(f(x),y)—d(f(z),9(x)) = d(f(L), M\U)—d(f,g) > e—e =0,
so necessarily g(x) # y, showing g(x) € U.
Proof of theorem. Let B be a countable basis for M.

For each n > 1, fix once and for all a decomposition K = K{'U... UK},
where diam(K") < 1/n and p = p(n). (This is possible since K is ‘totally
bounded’). For each n > 1 and each p-tuple o0 = (By, ..., B)) of elements
of B (with the same cardinality p = p(n)), let

A(n,0) ={f € C(K;M); f(K]") C Bi;i=1,...,p}.

Clearly the collection of all such A(n, o) (for varying n and o) is countable.
(Since, for each n > 1, there are only countably many p(n)-tuples of sets



drawn from the countable collection B). We claim this collection is a basis
of open sets for X.

The A(n, o) are open: if f € A(n,o), f(K") is a compact subset of B;,
so d(f(K["),M \ B;) = ¢; > 0, and if ¢ = min; ¢; and d(f,g) < ¢, then also
g(K!) C B; foralli=1,...,p (by the preliminary remark), so g € A(n, o).

To prove A is a basis, it suffices to show that for each f € X and € > 0,
we may find A(n,o) so that f € A(n,o) and A(n,o) C By(e). Given the
former, for the latter it suffices to show diam(A(n,o)) < e. We know the
compact set f(K) C M is contained in the union of a finite number of sets
of B, each with diameter < e.

(Why? For each y € M, the open ball of center y and radius €¢/3 is a
union of sets from B, all necessarily with diameter less than e, and one of
which contains y. Thus M is covered by open sets from B with diameter
less than e.)

Let 1 be a Lebesgue number of this finite open cover of f(K).

By uniform continuity of f, there exists an n > 1 so that in the decom-
position K = K'U...U K} we have diam(f(K]")) <nforalli=1,...,p,
and hence each f(K]') is contained in a single set of this open cover of f(K),
giving sets By,..., B, in B so that f(K') C B; (and diam(B;) < €). This
defines a p-tuple o of sets in B so f € A(n, o).

In addition, if g,h € A(n,o) and z € K, then € K]' for some ¢ and
both g and h map K" to B;, so d(g(z), h(x)) < € (since diam(B;) < €). This
shows diam(A(n, o)) < €, as desired. This concludes the proof.

Ezample: In particular, the metric space C'(K) of continuous R-valued
functions in K has a countable basis, and hence is separable.

Ex. 11. (Ezample of an inseparable metric space of continuous func-
tions.) If, instead, we exchange M and K and consider X = C(M,K) (M
separable metric, K compact metric), then X (with the sup metric, or uni-
form convergence) is not necessarily separable. For an example, consider

X = Cyu(R,[0,1]) (with the sup metric).

The set P(Z) of subsets of Z is uncountable. To each S C Z, associate
a piecewise linear function fg which is 1 on S, 0 on Z\ S. Then if S; # S
are two different subsets of Z, d(fs,, fs,) = 1. So the set of all fg is an
uncountable, discrete subset of the metric space X, and therefore X cannot
be separable (exercise.) In particular, it follows that, unlike F,(R, [0, 1])
(pointwise convergence), F, (R, [0,1]) is not compact. (Since compact metric



spaces are always separable—proof?)

Note that this example also shows the Banach space C%(R,R) (con-
tinuous bounded functions, with the sup norm) is not separable. Another
example (with a compact domain!) is given next.

Ex.12. For fixed 0 < a < 1, consider the space E, = C*[0,1] of real-
valued Hélder-continuous functions on the unit interval, with the norm:

111 = 1£0)] + sup L= TL2)]

T1F£T2 ’xl _xQ‘a

It is easy to show this is a Banach space, and we claim it is not separable.
The argument is the same as in the preceding example: we find an uncount-
able family {fi};c(,1) in Ea, with pairwise unit distance from each other.
Namely, consider:

file)=0,0<z<t; fi(x)=(z—-0)%t<z<1

We have: (i) f; € Eq, with |[f¢|| = 1. (DIF0 <t <t/ <1, ||fy — fel| > 1.
Thus FE, is not separable.
To see this, note that a simple computation gives:

|(fe — f) (&) = (fe — f)E)]

(' =)

Uo—fill = sup [Tr = 1)) = (v = f)(2)l

>
T1#T2 |$1 _x2|a

=t

Remarks: (i) Spaces of Holder-continuous functions are ubiquitous in
PDE (where they are needed for sharp regularity results), usually with a
different norm:

11l = | flloup + sup LE =T 2]

T1#T2 ‘ml _$2|a

It is still true the space is inseparable for this norm: since it dominates the
earlier norm, a countable dense set in this norm would also be dense for the
earlier one.

(ii) Exactly the same argument, in the case a = 1, shows that the space
of Lipschitz functions in [0, 1] (with the usual norm, which makes it a Banach
space) is also not separable. (Exercise.)

In the next examples we consider the questions of metrizability and
countable basis for the spaces F,, (X, M), C, (X, M),Cc(X, M) (X: top. space,
(M, d): metric space.

IRCEDE
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For the pointwise topology, we just use known facts about the product
topology to conclude:

For M metric (and with more than one point!), F,(X, M) is metrizable
if and only if X is countable (and then there is a natural metric.) And
Fp(X, M) is second-countable if, and only if, X is countable and M is sep-
arable.

For the uniform topology: C,(X, M) is always metrizable by the sup
metric, replacing d by a uniformly equivalent bounded metric, if needed, as
discussed in Example 3. (And this metric will be complete, if the metric
on M is.) And we saw in Example 10 that C,(X, M) is second countable
(equivalently: separable), if X is compact metric and M is separable metric.
On the other hand, Example 11 shows this fails if X is not compact.

Turning to the u.o.c topology, we focus on the case: X locally compact
and o-compact. Then there exists a compact exhaustion:

X = U K;; K; compact , K; Cint(K;i1).
i>1
Examples 13, 1} deal with metrizability and separability for the topology

of uniform convergence on compact sets.

Ex. 13. If X is locally compact, o-compact (for instance, a topological
manifold), then C.(X, M) is second-countable if M is separable metric.

For each i > 1, let B; be a countable basis for C,(K;, M) (using Example
10.) Then B = |J;», B; is a countable basis for C.(X,M). To see this,
consider a basic open neighborhood By(K,¢€) of f € C.(X,M), and pick
some i > 1 so that K C K;. (Note: we need local compactness for this.)
Let g; = fik,. Then:

B¢(K,€) D By, (Ki e) = {h € C(K;, M);d(h(x),gi(x)) < €,z € K;}.

And this latter set (a basis element for the uniform topology over K;) is the
union of (countably many) open sets in B;.

Ex. 14. If X is locally compact, o-compact, (M,d) metric, then
Ce(X, M) is metrizable with a natural metric (complete, if the metric on
M is.)

Indeed, we may take on C.(X, M) the metric:

— 1 sup d(f(x),g(x))
i—1 2t zeK; 1+ d(f(-f),g(l’)) '

d(f,g) =



The last two examples answer questions raised in class:
Ex. 15 A subset of the real line which is both residual and a nullset.

Let {ry,72,...} be an enumeration of the rationals, and for each n > 1
and j > 1 let I,,; be an open interval with center ry, length 1/ 2"+J. Then
Aj =U,>1 Inj is open and dense in R, hence A = (1,5, A; is residual in R.
But also A C U, ; Inj, and ), ;length(I,;) = =
small, taking j large enough.

Corollary: Any subset of R is the union of a nullset and a set of first
category. (Ref: J.C. Oxtoby, Measure and Category, Springer-Verlag 1980,

p.5.)

Ex. 16. There exists a function f, differentiable in [0,1], whose deriva-
tive does not have constant sign on any non-degenerate interval in [0,1].
(Ref: Twelve Landmarks of Twentieth Century Analysis by Choimet and
Queffélec, p.116.)

can be made arbitrarily



