
COMPACTNESS, COUNTABILITY, FUNCTION SPACES:
EXAMPLES

Examples 1 to 4 consider metrizability for the pointwise and uniform
topologies.

Ex 1. X = Fp(R,R) is not first countable.

Recall the notation for a local basis at f ∈ X for the topology of point-
wise convergence:

Af (t1, . . . tk; ϵ1, . . . , ϵk) = {g ∈ X; |g(ti)− f(ti)| < ϵi, i = 1, . . . , k).

Let f ∈ X, suppose we had {V1, . . . , Vn, . . .} countable basis at f . Each
Vn would contain an element of the local basis at f for the pointwise topol-
ogy:

An = Af (tn1, . . . , tnk; ϵn1, . . . , ϵnk) ⊂ Vn.

Thus the An would also form a countable basis of neighborhoods of f .
The set of all t appearing in these sets is also countable, so there exists

t0 ∈ R not occurring in any of them. Consider the basis set A0 = Af (t0, 1).
For functions in An there is no restriction on the value at t0, so certainly
there is gn ∈ An with |gn(t0) − f(t0)| ≥ 1, so gn ̸∈ A0, showing A0 is not
contained in any An. So the An can’t be a local basis at f .

This argument also works to show the compact space Fp(R; [0, 1]) is not
first countable, hence not metrizable.

Ex 2. Again letX = Fp(R,R), and let S ⊂ X be the set of characteristic
functions of finite sets. Claim: The constant function g ≡ 1 ∈ X is in the
closure of S, but is not the pointwise limit of functions in S.

Indeed given any basic neighborhood A = Ag(t1, . . . , tn, ϵ), the charac-
teristic function of the set {t1, . . . , tn} is in A ∩ S. Now if fn ∈ S, fn → g
pointwise on R, the set of t ∈ R such that fn(t) ̸= 0 for some n is count-
able, so there exists t0 ∈ R such that fn(t0) = 0 for all n. This contradicts
fn(t0) → 1.

Ex. 3. The uniform topology in Fu = Fu(X,Y ) is metrizable (X: set;
(Y, d) metric space.)

If d is a bounded metric (or if X is a finite set), we can just take the sup
metric:

d(f, g) = sup
x∈X

d(f(x), g(x)).
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But if X is infinite and (Y, d) unbounded, the supremum is not neces-
sarily finite, so we can’t just take the sup metric. Recall a local basis for Fu

at f is given by the sets:

Bf (ϵ) = {g ∈ Fu; d(f(c), g(x)) < ϵ,∀x ∈ X}.

Definition: two metrics d, d′ in Y are uniformly equivalent if the identity
is a uniform homeomorphism. (A homeomorphism f of metric spaces is uni-
form if both f and f−1 are uniformly continuous.) For example, the metrics

d(x, y), min{d(x, y), 1}, d(x,y)
1+d(x,y) are all uniformly equivalent (exercise.)

Proposition. If M,N are metric spaces and φ : M → N is uniformly
continuous, the map induced by composition

φ∗ : Fu(X,M) → Fu(X,N), φ∗(f) = φ ◦ f

is continuous. This is very easy to prove (try it!) The converse holds if X
is infinite.

As a corollary, if φ is a uniform homeomorphism, φ∗ is a homeomor-
phism. If φ is bounded (for instance if dN is bounded), then φ∗ maps
Fu(X,M) to Bu(X,N), the space of bounded maps, with the uniform topol-
ogy (which is metrizable via the sup norm.)

Thus two uniformly equivalent metrics in Y define equivalent topologies
in Fu(X,Y ), and if one of them is bounded we have that Fu(X,Y ) and
Bu(X,Y ) are homeomorphic, the latter space being explicitly metrizable
(when Y is given a bounded metric).

Since any metric in Y is uniformly equivalent to a bounded one, we see
that Fu(X,Y ) is always metrizable.

The following example shows this argument utterly fails, without the
assumption of uniform equivalence of the metrics.

Ex. 4. Let X be an infinite set. Then Fu(X,R) (where R has the
usual metric d(x, y) = |x− y|) is disconnected, since the subspace Bu(X,R)
(bounded functions) is open, closed, non-empty, and not the whole space.
Let h : R → (−1, 1) be the homeomorphism h(x) = x/(1+ |x|), and define in
R the bounded metric d1(x, y) = |h(x)−h(y)|, which is equivalent to d, but
not uniformly. (The identity (R, d1) → (R, d) is not uniformly continuous.)

Let R1 = (R, d1). Then Fu(X,R1) is metrizable (since d1 is bounded),
and in fact h∗ : Fu(X,R1) → Fu(X, (−1, 1)) is an isometry (between d1
and d), in particular a homeomorphism. Now Fu(X, (−1, 1)) is a convex
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subset of the normed vector space Bu(X,R), in particular a connected space.
Hence Fu(X,R1) is connected as well, and so cannot be homeomorphic to
Fu(X,R).

This example should be carefully compared with the argument in Ex-
ample 3.

Examples 5, 6 review the topic ‘compactness v. sequential compactness’.

Ex. 5 Compactness vs. sequential compactness. Consider the conditions
(for a given space X). Note: sequences always assumed injective.

(1) Every sequence in X has a cluster point (x is a cluster point of (xn)
if any open neighborhood of x contains infinitely many xn.)

(2) Every sequence in X has a subsequence converging to a point of X
(sequential compactness.)

(3) X is compact.
Then:
a) (3)⇒ (1), for any space:

Proof: If (xn) has no cluster point, for all x there is an open neighbor-
hood Vx containing only finitely many sequence elements. Taking a finite
subcover, we see this would imply the set {xn;n ≥ 1} is finite, contradiction.

b) (2)⇒ (1), for any space (clear);
c) If X is first-countable, (1)⇒ (2). In particular, for 1st countable

spaces, compact implies sequentially compact.

Proof: Let x be a cluster point of (xn), (Vj)j≥1 a countable basis of
neighborhoods of x, where we may assume Vj+1 ⊂ Vj . Form a subsequence
in the following way: take n1 so that xn1 ∈ V1, then n2 > n1 so that
xn2 ∈ V2,..., nj+1 > nj so that xnj+1 ∈ Vj+1, etc. Then xnj → x as j → ∞.

Note that for the compact space Fp(R, [0, 1])), the characteristic function
χQ of the rationals is a cluster point of the set of continuous functions
(see Example 6 below), but there is no sequence of continuous functions
converging pointwise to g.

d) If X is second countable, all are equivalent. (I.e. (1) or (2) imply
(3), in particular compact and sequentially compact are equivalent for 2nd
countable spaces (for example, for separable metric spaces).

Proof: Let C be an open cover of X. Second countable implies Lin-
delöf [Munkres p. 190-191], so there exists a countable subcover {Ui}i≥1.
Proceeding by contradiction, assume there is no finite subcover. Then take
x1 ∈ U1, x2 ∈ U1 \ U2, x3 ∈ U3 \ (U1 ∪ U2), ...xn ∈ Un \ (U1 ∪ . . . ∪ Un−1),
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...This defines an infinite sequence (xn) so that xn ̸∈ Um if n > m. Let x
be a cluster point of the sequence. Then x ∈ Ui for some i (since the {Ui}
cover X), and then xn ∈ Ui for some n > i, contradiction.

Ex. 6. Consider again the compact space X = Fp(R, [0, 1]). Let
{rn}n≥1 be an enumeration of the rationals. For each Ej = {r1, . . . , rj},
let fj ∈ X be the characteristic function of Ej . Then fj converges pointwise
to the characteristic function χQ ∈ X of the rationals, and on the other
hand each fj is the pointwise limit of a sequence of continuous functions in
X. So if S ⊂ X is the set of continuous functions, χQ is a cluster point of X:
any neighborhood of χQ contains infinitely many points of S (check this.)
However, χQ cannot be the pointwise limit of any sequence in S, since it is
discontinuous everywhere. (Recall the set of continuity of a pointwise limit
of continuous functions is ‘residual’.)

Examples 7, 8, 9 refer to compactly generated spaces.

Ex. 7. First countable spaces X are compactly generated.

Let F ⊂ X such that F ∩C is closed in C, for each C ⊂ X compact. To
show F is sequentially closed in X, let xn be a sequence in F , and assume
limxn = x in X. Let C = {xn;n ≥ 1} ∪ {x}. Then C is compact: if U is an
open cover of C, we may, for each n, pick Un ∈ U so that xn ∈ Un; and also
U0 ∈ U containing x. Now let N be such that xn ∈ U0 for n ≥ N . Then
U0, U1, . . . Un is a finite subcover of C.

Thus F ∩ C is (sequentially) closed in C (first countability is inherited
by subspaces.) Since xn ∈ F ∩ C, also x ∈ F ∩ C, proving x ∈ F , so F is
sequentially closed.

Ex 8. Locally compact spaces X are compactly generated.

Let A ⊂ X be such that A ∩ C is open in C, for all C ⊂ X compact.
Given x ∈ A, we want to find W open in X and containing x, so that
W ⊂ A.

Since X is locally compact, there exist V open in X and C compact in
X, so that x ∈ V ⊂ C. Then A∩C is open in C (in the subspace topology),
while x ∈ A ∩ C. So there exists U open in X and containing x so that
U ∩ C ⊂ A ∩ C. Now let W = U ∩ V , clearly open in X and containing x.
W ⊂ U and W ⊂ V ⊂ C, so W ⊂ U ∩ C ⊂ A.

Ex. 9. Example of a non-compactly generated space [Willard 43H, p.
289]

X = Fp(R,R) (pointwise convergence) is not compactly generated. To
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see this consider the set:

T = {f ∈ X; (∃n ≥ 1)(∃F ⊂ R)card (F ) ≤ n, f(x) = 0 on F, f(x) = n on R\F}.

(That is, T is the set of functions equal to zero on a finite set, and equal to
an upper bound for the cardinality of that set elsewhere.)

Then T is not closed (the identically 0 function is in the closure of T , but
not in T .) But T ∩ C is compact (in particular closed in C), for all C ⊂ X
compact. (Exercise). Outline: Note that if C is compact, for each x ∈ R
there exists an Mx > 0 so that |f(x)| ≤ Mx, for all f ∈ C. The definition of
T then implies that, for each x ∈ R, the image {f(x); f ∈ T ∩C} is a finite,
hence compact subset of R. By Tychonoff’s theorem, T ∩ C is compact.

The next examples 10, 11, 12 consider separability of certain function
spaces with compact domain (with uniform topology, given by a metric or a
norm.)

Ex. 10. The theorem in this example is of great importance in appli-
cations. For example, it implies the Banach space C1(K,Rn) (C1 functions
with values in Rn, defined on a compact convex K ⊂ Rm, with the C1 sup
norm) is separable.

Theorem. Let K be a compact metric space, (M,d) a separable metric
space (in particular, with countable basis). The metric spaceX = Cu(K,M)
(continuous functions, uniform topology, sup metric) has countable basis.

Preliminary remark: If L ⊂ K is compact and f(L) ⊂ U , where U ⊂ M
is open, then if ϵ = dist(f(L),M \ U) (a positive number, since f(L) is
compact) we have d(f, g) < ϵ ⇒ f(L) ⊂ U . Indeed, if x ∈ L and y ∈ M \U :

d(g(x), y) ≥ d(f(x), y)−d(f(x), g(x)) ≥ d(f(L),M \U)−d(f, g) > ϵ−ϵ = 0,

so necessarily g(x) ̸= y, showing g(x) ∈ U .

Proof of theorem. Let B be a countable basis for M .

For each n ≥ 1, fix once and for all a decomposition K = Kn
1 ∪ . . .∪Kn

p ,
where diam(Kn

i ) < 1/n and p = p(n). (This is possible since K is ‘totally
bounded’). For each n ≥ 1 and each p-tuple σ = (B1, . . . , Bp) of elements
of B (with the same cardinality p = p(n)), let

A(n, σ) = {f ∈ C(K;M); f(Kn
i ) ⊂ Bi, i = 1, . . . , p}.

Clearly the collection of all such A(n, σ) (for varying n and σ) is countable.
(Since, for each n ≥ 1, there are only countably many p(n)-tuples of sets
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drawn from the countable collection B). We claim this collection is a basis
of open sets for X.

The A(n, σ) are open: if f ∈ A(n, σ), f(Kn
i ) is a compact subset of Bi,

so d(f(Kn
i ),M \ Bi) = ϵi > 0, and if ϵ = mini ϵi and d(f, g) < ϵ, then also

g(Kn
i ) ⊂ Bi for all i = 1, . . . , p (by the preliminary remark), so g ∈ A(n, σ).

To prove A is a basis, it suffices to show that for each f ∈ X and ϵ > 0,
we may find A(n, σ) so that f ∈ A(n, σ) and A(n, σ) ⊂ Bf (ϵ). Given the
former, for the latter it suffices to show diam(A(n, σ)) < ϵ. We know the
compact set f(K) ⊂ M is contained in the union of a finite number of sets
of B, each with diameter < ϵ.

(Why? For each y ∈ M , the open ball of center y and radius ϵ/3 is a
union of sets from B, all necessarily with diameter less than ϵ, and one of
which contains y. Thus M is covered by open sets from B with diameter
less than ϵ.)

Let η be a Lebesgue number of this finite open cover of f(K).

By uniform continuity of f , there exists an n ≥ 1 so that in the decom-
position K = Kn

i ∪ . . . ∪Kn
p we have diam(f(Kn

i )) < η for all i = 1, . . . , p,
and hence each f(Kn

i ) is contained in a single set of this open cover of f(K),
giving sets B1, . . . , Bp in B so that f(Kn

i ) ⊂ Bi (and diam(Bi) < ϵ). This
defines a p-tuple σ of sets in B so f ∈ A(n, σ).

In addition, if g, h ∈ A(n, σ) and x ∈ K, then x ∈ Kn
i for some i and

both g and h map Kn
i to Bi, so d(g(x), h(x)) < ϵ (since diam(Bi) < ϵ). This

shows diam(A(n, σ)) < ϵ, as desired. This concludes the proof.

Example: In particular, the metric space C(K) of continuous R-valued
functions in K has a countable basis, and hence is separable.

Ex. 11. (Example of an inseparable metric space of continuous func-
tions.) If, instead, we exchange M and K and consider X = C(M,K) (M
separable metric, K compact metric), then X (with the sup metric, or uni-
form convergence) is not necessarily separable. For an example, consider
X = Cu(R, [0, 1]) (with the sup metric).

The set P(Z) of subsets of Z is uncountable. To each S ⊂ Z, associate
a piecewise linear function fS which is 1 on S, 0 on Z \ S. Then if S1 ̸= S2

are two different subsets of Z, d(fS1 , fS2) = 1. So the set of all fS is an
uncountable, discrete subset of the metric space X, and therefore X cannot
be separable (exercise.) In particular, it follows that, unlike Fp(R, [0, 1])
(pointwise convergence), Fu(R, [0, 1]) is not compact. (Since compact metric
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spaces are always separable–proof?)
Note that this example also shows the Banach space Cb

u(R,R) (con-
tinuous bounded functions, with the sup norm) is not separable. Another
example (with a compact domain!) is given next.

Ex.12. For fixed 0 < α < 1, consider the space Eα = Cα[0, 1] of real-
valued Hölder-continuous functions on the unit interval, with the norm:

||f || = |f(0)|+ sup
x1 ̸=x2

|f(x1)− f(x2)|
|x1 − x2|α

.

It is easy to show this is a Banach space, and we claim it is not separable.
The argument is the same as in the preceding example: we find an uncount-
able family {ft}t∈(0,1) in Eα, with pairwise unit distance from each other.
Namely, consider:

ft(x) = 0, 0 ≤ x ≤ t; ft(x) = (x− t)α, t ≤ x ≤ 1.

We have: (i) ft ∈ Eα, with ||ft|| = 1. (ii)If 0 < t < t′ < 1, ||ft′ − ft|| ≥ 1.
Thus Eα is not separable.

To see this, note that a simple computation gives:

||ft′−ft|| = sup
x1 ̸=x2

|(ft′ − ft)(x1)− (ft′ − ft)(x2)|
|x1 − x2|α

≥ |(ft′ − ft)(t)− (ft′ − ft)(t
′)|

|t′ − t|α
=

(t′ − t)α

(t′ − t)α
= 1.

Remarks: (i) Spaces of Hölder-continuous functions are ubiquitous in
PDE (where they are needed for sharp regularity results), usually with a
different norm:

||f ||Cα = ||f ||sup + sup
x1 ̸=x2

|f(x1)− f(x2)|
|x1 − x2|α

.

It is still true the space is inseparable for this norm: since it dominates the
earlier norm, a countable dense set in this norm would also be dense for the
earlier one.

(ii) Exactly the same argument, in the case α = 1, shows that the space
of Lipschitz functions in [0, 1] (with the usual norm, which makes it a Banach
space) is also not separable. (Exercise.)

In the next examples we consider the questions of metrizability and
countable basis for the spaces Fp(X,M), Cu(X,M), Cc(X,M) (X: top. space,
(M,d): metric space.
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For the pointwise topology, we just use known facts about the product
topology to conclude:

For M metric (and with more than one point!), Fp(X,M) is metrizable
if and only if X is countable (and then there is a natural metric.) And
Fp(X,M) is second-countable if, and only if, X is countable and M is sep-
arable.

For the uniform topology: Cu(X,M) is always metrizable by the sup
metric, replacing d by a uniformly equivalent bounded metric, if needed, as
discussed in Example 3. (And this metric will be complete, if the metric
on M is.) And we saw in Example 10 that Cu(X,M) is second countable
(equivalently: separable), if X is compact metric and M is separable metric.
On the other hand, Example 11 shows this fails if X is not compact..

Turning to the u.o.c topology, we focus on the case: X locally compact
and σ-compact. Then there exists a compact exhaustion:

X =
⋃
i≥1

Ki; Ki compact , Ki ⊂ int(Ki+1).

Examples 13, 14 deal with metrizability and separability for the topology
of uniform convergence on compact sets.

Ex. 13. If X is locally compact, σ-compact (for instance, a topological
manifold), then Cc(X,M) is second-countable if M is separable metric.

For each i ≥ 1, let Bi be a countable basis for Cu(Ki,M) (using Example
10.) Then B =

⋃
i≥1 Bi is a countable basis for Cc(X,M). To see this,

consider a basic open neighborhood Bf (K, ϵ) of f ∈ Cc(X,M), and pick
some i ≥ 1 so that K ⊂ Ki. (Note: we need local compactness for this.)
Let gi = f|Ki

. Then:

Bf (K, ϵ) ⊃ Bgi(Ki, ϵ) = {h ∈ C(Ki,M); d(h(x), gi(x)) < ϵ, x ∈ Ki}.

And this latter set (a basis element for the uniform topology over Ki) is the
union of (countably many) open sets in Bi.

Ex. 14. If X is locally compact, σ-compact, (M,d) metric, then
Cc(X,M) is metrizable with a natural metric (complete, if the metric on
M is.)

Indeed, we may take on Cc(X,M) the metric:

d(f, g) =
∞∑
i=1

1

2i
sup
x∈Ki

d(f(x), g(x))

1 + d(f(x), g(x))
.
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The last two examples answer questions raised in class:

Ex. 15 A subset of the real line which is both residual and a nullset.

Let {r1, r2, . . .} be an enumeration of the rationals, and for each n ≥ 1
and j ≥ 1 let Inj be an open interval with center rn, length 1/2n+j . Then
Aj =

⋃
n≥1 Inj is open and dense in R, hence A =

⋂
j≥1Aj is residual in R.

But also A ⊂
⋃

n,j Inj , and
∑

n,j length(Inj) =
1
2j

can be made arbitrarily
small, taking j large enough.

Corollary: Any subset of R is the union of a nullset and a set of first
category. (Ref: J.C. Oxtoby, Measure and Category, Springer-Verlag 1980,
p.5.)

Ex. 16. There exists a function f , differentiable in [0,1], whose deriva-
tive does not have constant sign on any non-degenerate interval in [0,1].
(Ref: Twelve Landmarks of Twentieth Century Analysis by Choimet and
Queffélec, p.116.)

9


