

## **MATH 562, SPRING 2026- TOPICS**

- 1-topologies on spaces of maps
- 2-theorems of Arzela-Ascoli and Stone-Weierstrass
- 3-Baire spaces, generic properties
- 4-differentiable manifolds and differentiable maps
- 5-tangent space, differential of a map, tangent bundle, vector bundles
- 6-IFT, local forms of immersions and submersions/submanifolds and embeddings
- 7-transversality and regular values
- 8-paracompactness, partitions of unity, applications (Riem. metrics, embeddings into  $R^n$ )
- 9-semicontinuous functions, Whitney topology on spaces of differentiable maps
- 10-stability of immersions, embeddings, transversality
- 11-approximations and smoothing
- 12-manifolds with boundary, transversality with boundary
- 13-one-manifolds, nonexistence of retractions, Brouwer fixed-point theorem
- 14-genericity of transversality (parametric), homotopy transversality theorem
- 15-Nullsets on manifolds, Sard's theorem
- 16-Whitney's embedding and immersion theorems
- 17-mod 2 intersection theory/mod 2 degree and winding number
- 18-smooth Jordan-Brouwer theorem and Borsuk-Ulam theorem
- 19-covering automorphisms/properly discontinuous group actions and regular covers
- 20-existence of simply-connected covering spaces/regular covers and normal subgroups
- 21-orientable manifolds, oriented double cover, orientation induced by a map/on the bdry
- 22-oriented intersection theory
- 23-Brouwer degree and applications; oriented winding number
- 24-Hopf's theorem on maps from  $n$ -dimensional manifolds to the  $n$ -sphere
- 25-Index of vector field singularities and Euler characteristic; Lefschetz fixed point theory

## **MATH 562, SPRING 2026-SYLLABUS**

Instructor: Dr. Alex Freire, Ayres 325, [afreire@utk.edu](mailto:afreire@utk.edu)

<https://web.math.utk.edu/~freire>

Office Hours: Tu+Th, 2:30 to 3:30, or by appointment (email)

Lectures: Tu +Th, 11:20—12:35, Academic Resources Building 400

Grading: based on problem sets and a final exam

Due dates for problem sets: 10 problems by March 5 (before Spring Break), an additional 10 problems by May 5 (last day). 2 problems from each of 10 problem sets. (Individual work.)

Final exam: date TBA (during finals week)

## **REFERENCES**

[Munkres] J. Munkres, Topology-sect 46, 47, 48

[Lima] E.L. Lima, Fundamental Groups and Covering Spaces (AK Peters, 2003)-ch. 4&5

[GP] V. Guillemin, D. Pollack, Differential Topology (**main reference**)-Ch. 1,2,3

[Milnor] J. Milnor, Topology from the Differentiable Viewpoint

[Hirsch] M. Hirsch, Differential Topology (Springer)-ch. 1 to ch. 5

Lecture notes posted on the course page