NOTES ON P.BERARD’S SURVEY

Main theorem. Let (M",g) be a compact Riemannian manifold without
boundary, satisfying the Ricci curvature lower bound:

Ficmin(M)diam(M)? > —(n — 1)a?.

Let F be a rank [ Riemannian vector bundle over M, with Riemannian connec-
tion V. Suppose Ap is a second-order elliptic differential operator on smooth
sections s of F, satisfying the pointwise Bochner-type identity:

Aps=V*Vs+ Rs,

where V*Vs = — 3. V2 _ s is the ‘connection Laplacian’ of V ((e;) an arbi-
trary local orthonormal frame) and R a zero-order operator depending on the
curvature tensor of g and on V. Denote by H the kernel of Ag.

Then there exists a positive number A(n, «) so that:
Rumindiam(M)? > —A? with 0 < A < A(n,a) = dim(H) < 1.

Here Rpnin = min{(Rps,s);p € M, |s|(p) = 1.}

More precisely, there exists a constant b = b(n, «, A) such that dim(H) < bl;
and b — 1 when A — 0.

Remark: For instance, if Ay is the Hodge Laplacian on p-forms, this says we
can get universal bounds on betti numbers, even when the curvature operator is
allowed to be a little bit negative. (cp. Gromoll-Meyer’s theorem.) It’s a kind
of ‘stability result’ for the Bochner method.

1. Isoperimetric profile and the Sobolev constant. For ¢ > 1 and
1 < ¢ < p such that % =1 _ 1 define:
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We have the Sobolev inequality corresponding to the embedding W14 — LP:

Spa(M) = sup{ 12 p e Wra(ary, £ £ 0, /M =0y},

||f||p < Sp,q(M)deHq + UOZ(M)_I/anHQ'

Theorem 1. (1) Suppose we have the inequality of isoperimetric profiles:
har(s) > hs}wé(s), s €[0,1],

for some R > 0. Then:
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(This is proved by rearrangement of f to a function f* on S7%.)



(i) Sp,q(SE) = Sp,q(S™), ak.a. ‘Sobolev quotients at the critical exponent
are dilation-invariant’ (Proved by a scaling argument- easy exercise.)
(iil) It follows from (i) and (ii) that:
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Sp.qa(M) )" 8pq(S™) = vol(M) /" RSy, 4 (S™vol (™) /™.
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(iv) In particular, under the assumption in (i) on isoperimetric profiles, the

Sobolev inequality for ¢ = 2,p = ffz reads:

1fIl 2o, < wol(M)™V"[Rop|ldf|la +[|fll2], 0w =S 20 5(S™)vol(S™)/™.

2. Ricci lower bound controls the isoperimetric profile.

Theorem 2. [Bérard-Besson-Gallot, Inventiones 1985] Suppose we have the
Ricci lower bound:
ricmindiam(M)? > —(n — 1)a?.

Then there exists a positive constant a(n, ) so that:
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diam(M) > a(n, ).
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a(n.a) o We have:

Equivalently, with R =

hM(S) > hslr%(s) = R_lhsn(s).

3. Kato’s inequalities. £ — M Riemannnian vector bundle, with Rie-
mannian connection V. s € I'(E) smooth section. Assume M compact (for
simplicity). Although |s|? is a smooth function on M, in general [s| is not
smooth (since s may have zeros), only locally Lipschitz (in particular differen-

tiable a.e.), since:
[Isl(z) = [s[(y)] < [s(x) = s(y)I.

First Kato inequality. The distributional derivative d|s| is in L?(M), and satis-
fies, pointwise a.e.:
ldls|| < [Vs].

Proof. Consider, for € > 0, the smooth function f. = (|s|? +¢)/2. Let (e;) be a
local o.n. frame. We have:

(Vess) _ [eslsl _ o

ei(fe) = (‘5‘2+6)1/2 ~ (|s]? +6)1/2 hS

Adding over i, we conclude: |df.| < |Vs|, pointwise on M.



Let d|s| be the distributional derivative of |s|, and let o € Q}, be a ‘test
1-form’ (smooth, with compact support.) Then, as a linear functional,

(dis)ia] = [ (G lshy =tim [ (Ga)s. =tim [ (adf).
M € Jm € Jm
Thus:
@shlel] <tim [ alldrd < [ Jalldr < [ JalVs| < o]Vl
€ M M M
Thus in fact d|s| is defined in L?(M), and satisfies the pointwise a.e. bound
dls|| < |Vs].

Consider now the distribution A|s|, which is in the L? Sobolev space H 1 (M),
the dual of H!(M). We have:
Second Kato inequality. |s|Als| > —(V*Vs,s),

as distributions (this means |s|(Als|)[¢] > #(V*Vs, s), for any smooth nonneg-
ative test function ¢ > 0).

Proof. (i) It is easy to show that d|s|? = 2|s|d|s| as distributions; that is, for
any smooth test 1-form a:

/ 15?60 = 2 / sl{dls], ).
M M

(We already know d|s| is in L?Q},, so the integral is defined.) First, for any
smooth 1-form o:

d(als]) = |s|da — {a, d|s|])  as distributions.

This implies that, for smooth 1-forms a:

[ st sia) = [ isiisla) = [ o0~ [ (slals),

/ 15?60 = 2 / (Islov, d]s]) = / (,2]s/d]s]),
M M M
as claimed.

(ii) We have: 2|s|Als| + 2|d|s||> = Als|? (in the sense of distributions for
Als).

Proof: Let ¢ be a smooth test function (with compact support.) We may
pair the H! function 2¢|s| with the H~! distribution A|s|, and by definition
the pairing is:

or:

(Als)26]s]) = /N {dols). dis) = =2 /M¢|d|s||2 2 /M 1s/(deb, d]s])-



Hence, using (i):

2(As])[6]s[]+2 /M¢|d|s||2=—2 /M|s|<d¢7d|s|>= / (dé, d|s|?) / S(A[s]?)

as claimed.

(iii) We have the pointwise equality of smooth functions:
Als|? = —2(V*Vs, s) + 2| Vs|?.
Combining this with (ii) we have the equality (in the sense of distributions):
—(V"Vs,s) +|Vs|> = [s|Als| + |d]s||*.
And now use the first Kato inequality to estimate:
|s|Als| = —(V*Vs, s) + |Vs]? — |d|s||* > —(V*Vs, s),

(as distributions), as claimed.

Lemma 3. In the setting of the main theorem, suppose the curvature
operator in the Weitzenbock formula admits the lower bound:

Rmin Z _/\2-

Then if s € H (i.e., Ags = 0), the Weitzenbock formula and Kato’s second
inequality imply:

[s|Als| > —(V*Vs,s) = (Rs,s) > —)\2|3|2,

in the distribution sense. We claim this implies |s| satisfies the differential
inequality (also in the sense of distributions):

—Als| < Ms|.

Proof. We need to show that for any smooth function 1) > 0, we have:

dls|,d A2 )
/M< 5], du) < /M|s|w

The distributional inequality |s|Als| > —A2|s|? means that, for any smooth
¢ > 0, we have:

S S S 2: S S 2 52 .
/M<d¢,| B |>+/M¢|d| I /M<d<¢| ). dlsl) < A /||¢>

With f. = \/|s|? + € as before, let ¢ = % Using;:

dy .
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we find:

(dg, |s|dls]) + ¢ldls||* = <d1/)7| |d|8|> f3\ s|?|d]s||* + \d\8\|27
and this converges boundedly a.e. (as € — 0) to (di, d|s|). In addition,
st = L o

also boundedly a.e. We conclude:

| disiaey <02 [ s

4. Moser iteration. It’s a classical PDE result that W12 weak solutions
of second-order linear elliptic equations satisfy L°° bounds in terms of their
L? norms. The following theorem records the dependence of these bounds on
Sobolev embedding constants.

as claimed.

Theorem 4. Let f > 0 be continuous and in W12(M), and satisfy the
elliptic inequality —Af < af (in the sense of distributions), where a > 0 is a
constant. Then f satisfies:

B, (x)
14

113 < 1113,

where V = vol(M), x = 'yVl/"\/a, By (z) =112 (1+ \/%)Q/pi with p = %5
pl_

(n > 3) and ~ the constant in the Sobolev inequality:

1 l2p < Adfll2 + V™| £]]2

Remark: 1t’s a good Calculus exercise to verify that the infinite product defining
B, () is indeed convergent.

Proof. The distributional inequality —Af < af yields (with f as test func-
tion, after approximation by smooth positive functions): ||df||2 < v/a||f]|2; and
using f2#~1 as test function (k > 1 not necessarily an integer):

lldf*|l2 < \[\/THJCHM

Using the Sobolev inequality for f*, we find:

1/ ¥ 12 < Alldfllz + V2|41
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using ||f[[3, = ||f*[l2. Note also that ||f]|2xp = [|f*]]5,", so:

= (wa + VY I£115 = ( + LV f 15,

xk
V2k—1
Since p > 1, this is a gain of integrability (with ratio p from the right-hand side

to the left), and so we may iterate this estimate for k = 1,p,p?, ..., obtaining,
successively:

1 fllorp < (1 + VWAV AR | flok == 21V "% || £k

1fll2p < 22V I f]l2
1/ ll2p < 2V Y"1 fll2p

_ 2
1fllzps < 252V 77| f]2p2

and so on; taking the infinite product, and recalling || f||oc = limg— o0 || f]lq, We
find:
1flloe < (202 )V 21 fll2 = Bu() 2V =2 2,

where we also used the elementary fact:

1 11 11 p 1
—1 —_— —_— .. = — = = -
n( +p+p2+ ) T

(recall p = -25).

n—2

Remark: Tt is easy to show that lim,_,o, By () =1, and in fact

B, (z) < B,(1)z" for > 1.

5. Estimating dimension in terms of the ratio of norms L>°/L2.

Given a finite-dimensional subspace F' C C*(E) of smooth sections, let
{e1,...,en} be a basis for F, orthonormal in the L? sense:

<%®w=&@@@@%ﬂww=%-

We claim that the function f(x) = Zf;l le;(x)]? is independent of the choice of
basis. Indeed, since F' is finite-dimensional, any other basis (f;) of F satisfies:

fi= E ajjej, 1=1,...,N, for constants a;;.
J

Then the requirement that the new basis also be L?-orthonormal easily implies
AA" = It Ais orthogonal; and therefore > |fi(@)]2 =3, |ei(z)]?, for all .



In fact, the sum f has an intrinsic description, obtained by expressing or-
thogonal projection from sections of E to F' as an integral operator:

(res)a) = s s)azee) = 3 [ st sole@ldiuns(s) = [ bl lsldino),

B M

where the ‘kernel’ of prr (in the sense of integral operators, which is confusing
terminology here) is:
k(z,y) = Zei(y)* ® ei(x) € L(Ey, Ey).
The trace of k is defined as:
(trk)(z,y) = Z(k(xvy)[ej(y)], ¢j(2)) B, = Z<6j(y)7 ei(y) g, (ei(x), e;(2)) .
J i,
Then one easily computes:

N

/M<trk><x, Ddun() =3 le@)? = £(2).

i=1

Main Lemma. If F C C*°(E) is a finite-dimensional space of smooth sections,
we have (with | = rank(FE)):

dim(F) s|

2
1 538 € I, s #0}.

< wol(M) sup{ 5]
L2

Proof. Let xg € M be a point of maximum for f; consider the evaluation
map evy, : ' — Eg ,s — s(xo); let m be its rank, so m < [. Consider an
L2-orthonormal basis {fi,..., fm} of Ker(ev,,)* C F, and complete it to an
L?-orthonormal basis (f;) of F. Since f can also be computed in this basis, we
have:

F(xo) =Y Ifilwo)* < mmax sup |f;|(xo)?
i=1 toeeM

2
S o0

< lsup{||8||go;s S ||S||L2 = 1} = lsup{ ||5|2 ;s EF, s £ O}
12

On the other hand, we have:

dim(F) = /M fdunr < wvol(M) f(zo).

This concludes the proof.
6. Proof of the main theorem.

We apply the main lemma to the space H = Ker(Ap) of smooth sections
of E, known to be finite-dimensional. By Lemma 3 (Kato inequalities) and the



hypothesized lower bound on R,ip, if s € H , |s] is, in the sense of distributions,
a nonnegative solution of the inequality:

A2

—Als| < Ns|, M= -—=
sl < Al diam(M)?

Thus Theorem 4 (Moser iteration) implies that if s € H is non-zero,

|Is][3 B ()
x o ,
|[s]]5 2 vol(M)

A
z = yuol(M)M"\, X = diam (M)’

Here 7 is the constant in the Sobolev embedding W12 < L7~2. By Theorem
1(iv) (Sobolev constant),

v = vol(M)~Y"Ra,,

R given by Theorem 2 (Ricci control of isoperimetric profile): R = %. It
follows that:
_1/ndiam(M) A onl\
= vol(M)~"/" ———L o, vol (M)"/" ==
© = vol(M) a(n, a) onvol(M) diam(M)  a(n, )

and, from the main lemma:

dim(H)
< B, =b(n,a, A
l - '(a(n7a)) (n, . 4)
Since Bn(z) — 1 as * — 04, we may find A = A(n,«) so that if A < A,

dimf(m < B and hence dimH < [, as we wished to show.



