
NOTES ON P.BÉRARD’S SURVEY

Main theorem. Let (Mn, g) be a compact Riemannian manifold without
boundary, satisfying the Ricci curvature lower bound:

ricmin(M)diam(M)2 ≥ −(n− 1)α2.

Let E be a rank l Riemannian vector bundle over M , with Riemannian connec-
tion ∇. Suppose ∆H is a second-order elliptic differential operator on smooth
sections s of E, satisfying the pointwise Bochner-type identity:

∆Hs = ∇∗∇s+Rs,

where ∇∗∇s = −
∑
i∇2

ei,eis is the ‘connection Laplacian’ of ∇ ((ei) an arbi-
trary local orthonormal frame) and R a zero-order operator depending on the
curvature tensor of g and on ∇. Denote by H the kernel of ∆H .

Then there exists a positive number A(n, α) so that:

Rmindiam(M)2 > −Λ2 with 0 < Λ < A(n, α) ⇒ dim(H) ≤ l.

Here Rmin = min{⟨Rps, s⟩; p ∈M, |s|(p) = 1.}

More precisely, there exists a constant b = b(n, α,Λ) such that dim(H) ≤ bl;
and b→ 1 when Λ → 0+.

Remark: For instance, if ∆H is the Hodge Laplacian on p-forms, this says we
can get universal bounds on betti numbers, even when the curvature operator is
allowed to be a little bit negative. (cp. Gromoll-Meyer’s theorem.) It’s a kind
of ‘stability result’ for the Bochner method.

1. Isoperimetric profile and the Sobolev constant. For q > 1 and
1 < q < p such that 1

p = 1
q −

1
n , define:

Sp,q(M) = sup{ ||f ||p
||df ||q

; f ∈W 1,q(M), f ̸≡ 0,

∫
M

f = 0}.

We have the Sobolev inequality corresponding to the embedding W 1,q ↪→ Lp:

||f ||p ≤ Sp,q(M)||df ||q + vol(M)−1/n||f ||q.

Theorem 1. (i) Suppose we have the inequality of isoperimetric profiles:

hM (s) ≥ hSn
R
(s), s ∈ [0, 1],

for some R > 0. Then:

Sp,q(M) ≤ (
vol(M)

vol(SnR)
)−1/nSp,q(S

n
R).

(This is proved by rearrangement of f to a function f∗ on SnR.)
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(ii) Sp,q(S
n
R) = Sp,q(S

n), a.k.a. ‘Sobolev quotients at the critical exponent
are dilation-invariant’ (Proved by a scaling argument- easy exercise.)

(iii) It follows from (i) and (ii) that:

Sp,q(M) ≤ (
vol(M)

vol(SnR)
)−1/nSp,q(S

n) = vol(M)−1/nRSp,q(S
n)vol(Sn)1/n.

(iv) In particular, under the assumption in (i) on isoperimetric profiles, the
Sobolev inequality for q = 2, p = 2n

n−2 reads:

||f || 2n
n−2

≤ vol(M)−1/n[Rσn||df ||2 + ||f ||2], σn = S 2n
n−2 ,2

(Sn)vol(Sn)1/n.

2. Ricci lower bound controls the isoperimetric profile.

Theorem 2. [Bérard-Besson-Gallot, Inventiones 1985] Suppose we have the
Ricci lower bound:

ricmindiam(M)2 ≥ −(n− 1)α2.

Then there exists a positive constant a(n, α) so that:

diam(M)
hM (s)

hSn(s)
≥ a(n, α).

Equivalently, with R = diam(M)
a(n,α) , we have:

hM (s) ≥ hSn
R
(s) = R−1hSn(s).

3. Kato’s inequalities. E → M Riemannnian vector bundle, with Rie-
mannian connection ∇. s ∈ Γ(E) smooth section. Assume M compact (for
simplicity). Although |s|2 is a smooth function on M , in general |s| is not
smooth (since s may have zeros), only locally Lipschitz (in particular differen-
tiable a.e.), since:

||s|(x)− |s|(y)| ≤ |s(x)− s(y)|.

First Kato inequality. The distributional derivative d|s| is in L2(M), and satis-
fies, pointwise a.e.:

|d|s|| ≤ |∇s|.

Proof. Consider, for ϵ > 0, the smooth function fϵ = (|s|2 + ϵ)1/2. Let (ei) be a
local o.n. frame. We have:

ei(fϵ) =
⟨∇eis, s⟩

(|s|2 + ϵ)1/2
≤ |∇eis||s|

(|s|2 + ϵ)1/2
≤ |∇eis|.

Adding over i, we conclude: |dfϵ| ≤ |∇s|, pointwise on M .

2



Let d|s| be the distributional derivative of |s|, and let α ∈ Ω1
M be a ‘test

1-form’ (smooth, with compact support.) Then, as a linear functional,

(d|s|)[α] :=
∫
M

⟨δα, |s|⟩ = lim
ϵ

∫
M

(δα)fϵ = lim
ϵ

∫
M

⟨α, dfϵ⟩.

Thus:

|(d|s|)[α]| ≤ lim
ϵ

∫
M

|α||dfϵ| ≤
∫
M

|α||dfϵ| ≤
∫
M

|α||∇s| ≤ ||α||L2 ||∇s||L2 .

Thus in fact d|s| is defined in L2(M), and satisfies the pointwise a.e. bound
|d|s|| ≤ |∇s|.

Consider now the distribution ∆|s|, which is in the L2 Sobolev spaceH−1(M),
the dual of H1(M). We have:

Second Kato inequality. |s|∆|s| ≥ −⟨∇∗∇s, s⟩,

as distributions (this means |s|(∆|s|)[ϕ] ≥ ϕ⟨∇∗∇s, s⟩, for any smooth nonneg-
ative test function ϕ ≥ 0).

Proof. (i) It is easy to show that d|s|2 = 2|s|d|s| as distributions; that is, for
any smooth test 1-form α:∫

M

|s|2δα = 2

∫
M

|s|⟨d|s|, α⟩.

(We already know d|s| is in L2Ω1
M , so the integral is defined.) First, for any

smooth 1-form α:

δ(α|s|) = |s|δα− ⟨α, d|s|⟩ as distributions.

This implies that, for smooth 1-forms α:∫
M

⟨d|s|, |s|α⟩ =
∫
M

|s|δ(|s|α) =
∫
M

|s|2δα−
∫
M

⟨|s|α, d|s|⟩,

or: ∫
M

|s|2δα = 2

∫
M

⟨|s|α, d|s|⟩ =
∫
M

⟨α, 2|s|d|s|⟩,

as claimed.
(ii) We have: 2|s|∆|s| + 2|d|s||2 = ∆|s|2 (in the sense of distributions for

∆|s|).
Proof: Let ϕ be a smooth test function (with compact support.) We may

pair the H1 function 2ϕ|s| with the H−1 distribution ∆|s|, and by definition
the pairing is:

(∆|s|)[2ϕ|s|] := −
∫
M

⟨d(2ϕ|s|), d|s|⟩ = −2

∫
M

ϕ|d|s||2 − 2

∫
M

|s|⟨dϕ, d|s|⟩.
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Hence, using (i):

2(∆|s|)[ϕ|s|]+2

∫
M

ϕ|d|s||2 = −2

∫
M

|s|⟨dϕ, d|s|⟩ = −
∫
M

⟨dϕ, d|s|2⟩ =
∫
M

ϕ(∆|s|2),

as claimed.

(iii) We have the pointwise equality of smooth functions:

∆|s|2 = −2⟨∇∗∇s, s⟩+ 2|∇s|2.

Combining this with (ii) we have the equality (in the sense of distributions):

−⟨∇∗∇s, s⟩+ |∇s|2 = |s|∆|s|+ |d|s||2.

And now use the first Kato inequality to estimate:

|s|∆|s| = −⟨∇∗∇s, s⟩+ |∇s|2 − |d|s||2 ≥ −⟨∇∗∇s, s⟩,

(as distributions), as claimed.

Lemma 3. In the setting of the main theorem, suppose the curvature
operator in the Weitzenböck formula admits the lower bound:

Rmin ≥ −λ2.

Then if s ∈ H (i.e., ∆Hs = 0), the Weitzenböck formula and Kato’s second
inequality imply:

|s|∆|s| ≥ −⟨∇∗∇s, s⟩ = ⟨Rs, s⟩ ≥ −λ2|s|2,

in the distribution sense. We claim this implies |s| satisfies the differential
inequality (also in the sense of distributions):

−∆|s| ≤ λ2|s|.

Proof. We need to show that for any smooth function ψ ≥ 0, we have:∫
M

⟨d|s|, dψ⟩ ≤ λ2
∫
M

|s|ψ.

The distributional inequality |s|∆|s| ≥ −λ2|s|2 means that, for any smooth
ϕ ≥ 0, we have:∫

M

⟨dϕ, |s|d|s|⟩+
∫
M

ϕ|d|s||2 =

∫
M

⟨d(ϕ|s|), d|s|⟩ ≤ λ2
∫

|s|2ϕ.

With fϵ =
√
|s|2 + ϵ as before, let ϕ = ψ

fϵ
. Using:

dϕ =
dψ

fϵ
− ψdfϵ

f2ϵ
, dfϵ =

|s|d|s|
fϵ
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we find:

⟨dϕ, |s|d|s|⟩+ ϕ|d|s||2 = ⟨dψ, |s|
fϵ
d|s|⟩ − ψ

f3ϵ
|s|2|d|s||2 + ψ

fϵ
|d|s||2,

and this converges boundedly a.e. (as ϵ→ 0) to ⟨dψ, d|s|⟩. In addition,

|s|2ϕ =
|s|2ψ
fϵ

→ |s|ψ,

also boundedly a.e. We conclude:∫
M

⟨d|s|, dψ⟩ ≤ λ2
∫
M

|s|ψ,

as claimed.

4. Moser iteration. It’s a classical PDE result that W 1,2 weak solutions
of second-order linear elliptic equations satisfy L∞ bounds in terms of their
L2 norms. The following theorem records the dependence of these bounds on
Sobolev embedding constants.

Theorem 4. Let f ≥ 0 be continuous and in W 1,2(M), and satisfy the
elliptic inequality −∆f ≤ af (in the sense of distributions), where a ≥ 0 is a
constant. Then f satisfies:

||f ||2∞ ≤ Bn(x)

V
||f ||22,

where V = vol(M), x = γV 1/n
√
a, Bn(x) = Π∞

i=0(1+
xpi√
2pi−1

)2/p
i

with p = n
n−2

(n ≥ 3) and γ the constant in the Sobolev inequality:

||f ||2p ≤ γ||df ||2 + V −1/n||f ||2.

Remark: It’s a good Calculus exercise to verify that the infinite product defining
Bn(x) is indeed convergent.

Proof. The distributional inequality −∆f ≤ af yields (with f as test func-
tion, after approximation by smooth positive functions): ||df ||2 ≤

√
a||f ||2; and

using f2k−1 as test function (k ≥ 1 not necessarily an integer):

||dfk||2 ≤
√
a

k√
2k − 1

||f ||k2k.

Using the Sobolev inequality for fk, we find:

||fk||2p ≤ γ||df ||2 + V −1/n||fk||2

≤ γ
√
a

k√
2k − 1

||f ||k2k + V −1/n||fk||2
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= (γ
√
a

k√
2k − 1

+ V −1/n)||f ||k2k = (
xk√
2k − 1

+ 1)V −1/n||f ||k2k,

using ||f ||k2k = ||fk||2. Note also that ||f ||2kp = ||fk||1/k2p , so:

||f ||2kp ≤ (1 +
xk√
2k − 1

)1/kV − 1
nk ||f ||2k := zkV

− 1
nk ||f ||2k.

Since p > 1, this is a gain of integrability (with ratio p from the right-hand side
to the left), and so we may iterate this estimate for k = 1, p, p2, . . ., obtaining,
successively:

||f ||2p ≤ z1V
−1/n||f ||2

||f ||2p2 ≤ zpV
−1/np||f ||2p

||f ||2p3 ≤ zp2V
−1/np2 ||f ||2p2

and so on; taking the infinite product, and recalling ||f ||∞ = limq→∞ ||f ||q, we
find:

||f ||∞ ≤ (Π∞
i=0zpi)V

−1/2||f ||2 = Bn(x)
1/2V −1/2||f ||2,

where we also used the elementary fact:

1

n
(1 +

1

p
+

1

p2
+ . . .) =

1

n

1

1− 1
p

=
p

n(p− 1)
=

1

2

(recall p = n
n−2 ).

Remark: It is easy to show that limx→0+ Bn(x) = 1, and in fact

Bn(x) ≤ Bn(1)x
n for x ≥ 1.

5. Estimating dimension in terms of the ratio of norms L∞/L2.

Given a finite-dimensional subspace F ⊂ C∞(E) of smooth sections, let
{e1, . . . , eN} be a basis for F , orthonormal in the L2 sense:

⟨ei, ej⟩L2 =

∫
M

⟨ei(x), ej(x)⟩Ex
dµM (x) = δij .

We claim that the function f(x) =
∑N
i=1 |ei(x)|2 is independent of the choice of

basis. Indeed, since F is finite-dimensional, any other basis (fi) of F satisfies:

fi =
∑
j

aijej , i = 1, . . . , N, for constants aij .

Then the requirement that the new basis also be L2-orthonormal easily implies
AAt = I: A is orthogonal; and therefore

∑
j |fj(x)|2 =

∑
i |ei(x)|2, for all x.
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In fact, the sum f has an intrinsic description, obtained by expressing or-
thogonal projection from sections of E to F as an integral operator:

(prF s)(x) =
∑
i

⟨ei, s⟩L2ei(x) =
∑
i

∫
M

⟨ei(y), s(y)⟩ei(x)dµM (y) =

∫
M

k(x, y)[s(y)]dµM (y),

where the ‘kernel’ of prF (in the sense of integral operators, which is confusing
terminology here) is:

k(x, y) =
∑
i

ei(y)
∗ ⊗ ei(x) ∈ L(Ey, Ex).

The trace of k is defined as:

(trk)(x, y) =
∑
j

⟨k(x, y)[ej(y)], ej(x)⟩Ex
=

∑
i,j

⟨ej(y), ei(y)⟩Ey
⟨ei(x), ej(x)⟩Ex

.

Then one easily computes:∫
M

(trk)(x, y)dµM (y) =

N∑
i=1

|ei(x)|2 = f(x).

Main Lemma. If F ⊂ C∞(E) is a finite-dimensional space of smooth sections,
we have (with l = rank(E)):

dim(F )

l
≤ vol(M) sup{ ||s||

2
∞

||s||2L2

; s ∈ F, s ̸≡ 0}.

Proof. Let x0 ∈ M be a point of maximum for f ; consider the evaluation
map evx0

: F → Ex0
, s 7→ s(x0); let m be its rank, so m ≤ l. Consider an

L2-orthonormal basis {f1, . . . , fm} of Ker(evxo
)⊥ ⊂ F , and complete it to an

L2-orthonormal basis (fi) of F . Since f can also be computed in this basis, we
have:

f(x0) =

m∑
i=1

|fi(x0)|2 ≤ mmax
i

sup
x∈M

|fi|(x0)2

≤ l sup{||s||2∞; s ∈ F, ||s||L2 = 1} = l sup{ ||s||
2
∞

||s||2L2

; s ∈ F, s ̸≡ 0}.

On the other hand, we have:

dim(F ) =

∫
M

fdµM ≤ vol(M)f(x0).

This concludes the proof.

6. Proof of the main theorem.

We apply the main lemma to the space H = Ker(∆H) of smooth sections
of E, known to be finite-dimensional. By Lemma 3 (Kato inequalities) and the

7



hypothesized lower bound on Rmin, if s ∈ H , |s| is, in the sense of distributions,
a nonnegative solution of the inequality:

−∆|s| ≤ λ2|s|, λ2 =
Λ2

diam(M)2

Thus Theorem 4 (Moser iteration) implies that if s ∈ H is non-zero,

||s||2∞
||s||2L2

≤ Bn(x)

vol(M)
, x = γvol(M)1/nλ, λ =

Λ

diam(M)
.

Here γ is the constant in the Sobolev embedding W 1,2 ↪→ L
2n

n−2 . By Theorem
1(iv) (Sobolev constant),

γ = vol(M)−1/nRσn,

R given by Theorem 2 (Ricci control of isoperimetric profile): R = diam(M)
a(n,α) . It

follows that:

x = vol(M)−1/n diam(M)

a(n, α)
σnvol(M)1/n

Λ

diam(M)
=

σnΛ

a(n, α)

and, from the main lemma:

dim(H)

l
≤ Bn(

σnΛ

a(n, α)
) := b(n, α,Λ)

Since Bn(x) → 1 as x → 0+, we may find A = A(n, α) so that if Λ ≤ A,
dim(H)

l < l+1
l , and hence dimH ≤ l, as we wished to show.
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