PART 1: BOCHNER METHOD WITH BOUNDARY AND TWISTED OPERATORS

1. Hodge Theory on manifolds with boundary. Let (M^n, g) be a compact Riemannian manifold with nonempty boundary ∂M . At boundary points, the space of smooth k-forms on M admits the direct sum decomposition:

$$\Omega^k(M)_{|\partial M} = \Omega^k(\partial M) \oplus (\nu^\# \wedge \Omega^{k-1}(\partial M)), \quad k \geq 1,$$

where ν is the outward unit normal and $\nu^{\#}$ the dual 1-form. Accordingly, any $\omega \in \Omega^k(M)$ admits a decomposition:

$$\omega = t(\omega) + n(\omega),$$

where, at points $p \in \partial M$, $t(\omega) \in \Omega^k(\partial M)$ (or more precisely, its image $i^*(t(\omega))$ under the pullback by the inclusion $i : \partial M \to M$ is), and $n(\omega) = \nu^\# \wedge \eta, i^*\eta \in \Omega^{k-1}(\partial M)$.

Remark. Note this decomposition of $\Omega^k(M)_{|\partial M}$ is orthogonal (with respect to the pointwise metric in $\Omega^k(M)$).

The usual 'Dirichlet' (or 'relative' boundary condition), $t(\omega) = 0$ and 'Neumann' (or 'absolute' boundary condition), $n(\omega) = 0$, define subspaces of $\Omega^k(M)$:

$$\Omega^k_D(M) = \{\omega \in \Omega^k(M); t(\omega) = 0 \text{ on } \partial M\}; \quad \Omega^k_N(M) = \{\omega \in \Omega^k(M); n(\omega) = 0 \text{ on } \partial M\}.$$

It is easy to check that the space $\Omega_D(M)$ is d-invariant, while Ω_N is δ -invariant:

$$d: \Omega_D^k \to \Omega_D^{k+1}, \quad \delta: \Omega_N^k \to \Omega_N^{k-1}.$$

To see this, note $\nu^{\#}$ extends to a collar neighborhood of ∂M as the exact 1-form $-d\rho$, where $\rho: M \to R_{+}$ is distance to ∂M , so that:

$$d(\nu^{\#} \wedge \eta) = -\nu^{\#} \wedge d\eta$$
 and $\delta(i_{\nu}\omega) = -i_{\nu}\omega$. $(\omega \in \Omega_N^k \Leftrightarrow i_{\nu}\omega = 0 \text{ on } \partial M)$

Thus we have differential complexes (Ω_D, d) (increasing degree) and (Ω_N, δ) (decreasing degree), with (de Rham) cohomology spaces:

$$H_{rel}^k(M) = \frac{Ker(d_{\mid \Omega_D^k})}{Im(d_{\mid \Omega_D^{k-1}})}, \quad H_{abs}^k(M) = \frac{Ker(\delta_{\mid \Omega_N^k})}{Im(\delta_{\mid \Omega_N^{k+1}})}.$$

('Relative' resp. 'absolute' de Rham cohomology spaces.) The reason for this terminology is the *De Rham Theorem for manifolds with boundary*, which states:

$$H_{rel}^k(M) \approx H^k(M, \partial M), \quad H_{abs}^k(M) \approx H^k(M).$$

(Singular cohomology with \mathbb{R} coefficients on the right.)

Twisted de Rham complex. At this point we introduce 'twisted' de Rham complexes, for an arbitrary smooth twisting function $f: M \to R$. The twisted differential d_f and its L^2 adjoint δ_f are:

$$d_f = e^{-f} de^f, \quad \delta_f = e^f \delta e^{-f}.$$

One checks easily that d_f preserves Ω_D and δ_f preserves Ω_N , so again we have two differential complexes, with cohomology spaces defined in the usual way. For instance, to see this for Ω_D note: $d_f = d + e_{\nabla f}$ (exterior product), and:

$$e_{\nabla f}(\nu^{\#} \wedge \eta) = df \wedge (\nu^{\#} \wedge \eta) = d^T f \wedge (\nu^{\#} \wedge \eta) = -\nu^{\#} \wedge (d^T f \wedge \eta),$$

where we define $d^T f := (df)_t$. And it's just as easy for the formal adjoint δ_f (using $\delta_f = \delta + i_{\nabla f}$).

We claim twisting doesn't change the absolute and relative de Rham cohomology spaces. To see this for the absolute cohomology, consider the isomorphism $\phi_a(\omega) = e^{-f}\omega$ from Ω_N^k to itself. This is in fact a chain isomorphism from the complex (Ω_N, δ) to (Ω_N, δ_f) since:

$$\phi_a(\delta_f \omega) = e^{-f}(e^f \delta e^{-f} \omega) = \delta(\phi_a \omega).$$

(The inverse is the chain map $\omega\mapsto e^f\omega$). Therefore ϕ_a induces isomorphisms in absolute de Rham cohomology: $H^k_{abs,f}\approx H^k_{abs}$, and henceforth we'll use just H^k_{abs} for the cohomology space, also for the twisted complex. And likewise for $H^k_{rel}\approx H^k_{rel,f}$.

Naturally there are also 'twisted' Hodge Laplacians:

$$\Delta_H^f = d_f \delta_f + \delta_f d_f : \Omega^k \to \Omega^k.$$

To look for expressions relating Δ_H^f and Δ_H , it is useful to introduce two Clifford actions on $\Omega(M)$:

$$c_X = e_X - i_X$$
, $\tilde{c}_X = e_X + i_X$, $X \in TM$.

It is easily checked that c_X is skew-adjoint in $\Omega(M)$, while \tilde{c}_X is symmetric.

They satisfy the following commutation relations:

$$c_X \tilde{c}_Y + \tilde{c}_Y c_X = 0$$
, $\tilde{c}_X \tilde{c}_Y + \tilde{c}_Y \tilde{c}_X = 2\langle X, Y \rangle$, $c_X c_Y + c_Y c_X = -2\langle X, Y \rangle$,

for $X, Y \in TM$. Using the definitions, we find these are equivalent to:

$$e_X i_Y + i_Y e_X = \langle X, Y \rangle$$
, in particular $e_X i_X + i_X e_X = |X|^2$.

To compute an expression for Δf , we use (with summation convention, and $f_i = e_i(f)$) in an o.n. frame (e_i) , normal at a given $p \in M$:

$$d_f \delta_f \omega = -e_{e_i} (\nabla_{e_i} + f_i) i_{e_j} (\nabla_{e_j} - f_j) \omega, \quad \delta_f d_f \omega = -i_{e_i} (\nabla_{e_i} - f_i) e_{e_j} (\nabla_{e_j} + f_j) \omega.$$

Expanding, adding the results and using the commutation relations, we find:

$$\Delta_H^f \omega = \Delta_H \omega + |\nabla f|^2 \omega + (\text{Hess} f)(e_i, e_j)(e_{e_i} i_{e_j} - i_{e_i} e_{e_j}) \omega.$$

Now use $i_{e_i}e_{e_i} = -e_{e_i}i_{e_i} + \delta_{ij}$ in the last term to conclude:

$$\Delta_H^f \omega = \Delta_H \omega + |\nabla f|^2 \omega - (\Delta f)\omega + 2(\text{Hess} f)(e_i, e_j)(e_{e_i} i_{e_j})\omega.$$

For the last term, we note that:

$$2\langle (\mathrm{Hess}f)(e_i, e_j)(e_{e_i}i_{e_j})\omega, \omega \rangle = 2(\mathrm{Hess}f)(e_i, e_j)\langle i_{e_i}\omega, i_{e_j}\omega \rangle.$$

It is useful to know that the Dirichlet and Neumann subspaces of Ω^k admit simple descriptions in terms of the Clifford multiplications defined above. Namely, consider the operator:

$$\chi: \Omega^k_{|\partial M} \to \Omega^k_{|\partial M}, \quad \chi \omega := \tilde{c}_{\nu} c_{\nu} \omega = (i_{\nu} e_{\nu} - e_{\nu} i_{\nu}) \omega.$$

It is easy to show this is a self-adjoint, idempotent operator ($\chi^2 = Id$), hence diagonalizable with eigenvalues ± 1 .

Lemma 1. $\Omega_D = \{\omega; \chi\omega = -\omega \text{ on } \partial M\}; \quad \Omega_N = \{\omega; \chi\omega = \omega \text{ on } \partial M\}.$ *Proof.* An easy calculation shows that:

$$\chi(t(\omega)) = t(\omega), \quad \chi(n(\omega)) = -n(\omega),$$

and hence: $\chi(\omega) = \chi(t(\omega) + n(\omega)) = t(\omega) - n(\omega)$. Or we could note that $\Omega_D = \{\omega; e_{\nu}i_{\nu}\omega = \omega\}$ and $\Omega_N = \{\omega; i_{\nu}e_{\nu}\omega = \omega\}$.

Question: Do the operators Δ_H and Δ_H^f preserve Ω_D or Ω_N ?

Consider 1-forms first. Let $\alpha\in\Omega^1_D, t(\alpha)=0, \alpha=g\nu^\#=gd\rho,$ for some function g. Then:

$$d\alpha = dg \wedge d\rho, \quad \delta d\alpha = -(\Delta g)d\rho + (\Delta \rho)dg,$$

$$\delta \alpha = -\langle dg, d\rho \rangle, \quad d(\delta \alpha) = -\nu \langle dg, d\rho \rangle d\rho - [\operatorname{Hess}(g)(e_i, \nabla \rho) - A(e_i, \nabla^T g)]\theta_i,$$

where A is the second fundamental form of $T(\partial M)$, $\langle \mathcal{W}(X), Y \rangle = A(X, Y) = \langle \nabla_X \nu, Y \rangle$, for $X, Y \in T(\partial M)$. Thus the tangential component of $\Delta_H \alpha$ is:

$$t(\Delta_H \alpha) = (\Delta \rho) d^T g + \text{Hess}(g)(e_i, \nu) \theta_i + A(e_i, \nabla^T g) \theta_i,$$

not zero in general. Thus Ω_D is not preserved by Δ_H .

In spite of this, there is a Hodge theory for Δ_H with boundary conditions $t(\omega) = 0$ or $n(\omega) = 0$. Namely, both are elliptic boundary conditions and the general Hodge decomposition theorem for elliptic complexes applies. Define spaces of harmonic k-forms:

$$\mathcal{H}_D^k = \{ \omega \in \Omega_D^k; \Delta_H \omega = 0 \}; \quad \mathcal{H}_N^k = \{ \omega \in \Omega_N^k; \Delta_H \omega = 0 \},$$

with similar definitions for the twisted Hodge Laplacian Δ_H^f . Then we have unique representatives of relative (resp. absolute) de Rham cohomology in these spaces:

$$\mathcal{H}^K_D \approx \mathcal{H}^{k,f}_D \approx H^k_{rel}(M); \quad \mathcal{H}^k_D \approx \mathcal{H}^{k,f}_N \approx H^k_{abs}(M).$$

(Note Δ_H^f and Δ_H have the same principal symbol, as seen above.)

Twisted Dirac operators. In addition to the usual Dirac operator on $\Omega(M)$:

$$\mathcal{D} := d + \delta = \sum_{i} c_{e_i} \nabla_{e_i}, \text{ with } \mathcal{D}^2 = \Delta_H,$$

we have a twisted version:

$$\mathcal{D}_f = d_f + \delta_f = (d + e_{\nabla f}) + (\delta + i_{\nabla f}) = \mathcal{D} + \tilde{c}_{\nabla f}, \quad \text{with } \mathcal{D}_f^2 = \Delta_H^f.$$

The Dirac operator on $\Omega(M)$ satisfies the classical Weitzenböck formula:

$$\mathcal{D}^2\omega = \Delta_H\omega = \nabla^*\nabla\omega + \mathcal{R}\omega,$$

with:

$$\nabla^*\nabla\omega = -\sum_i \nabla^2_{e_i,e_i}\omega, \quad \mathcal{R}\omega = \frac{1}{2}\sum_{i,j=1}^n c_{e_i}c_{e_j}R_{e_i,e_j}\omega.$$

We compute the version of the formula for the twisted Hodge Laplacian, in the pointwise quadratic form:

$$\langle \mathcal{D}_f^2 \omega, \omega \rangle = \langle \Delta_H^f \omega, \omega \rangle$$

$$= \langle \Delta_H \omega, \omega \rangle + (|\nabla f|^2 - \Delta f)|\omega|^2 + 2(\operatorname{Hess} f)(e_i, e_j) \langle i_{e_i} \omega, i_{e_j} \omega \rangle$$

$$= \langle \nabla^* \nabla \omega, \omega \rangle + \langle \mathcal{R} \omega, \omega \rangle + [|\nabla f|^2 - (\Delta f)]|\omega|^2 + 2(\operatorname{Hess} f)(e_i, e_j) \langle i_{e_i} \omega, i_{e_j} \omega \rangle$$

Next we compute the integrated twisted Weitzenböck formula with boundary term. Recall that for the untwisted Dirac operator we have, for $\omega \in \Omega^p$:

$$\int_{M} |\nabla \omega|^{2} - |\mathcal{D}\omega|^{2} + \langle \mathcal{R}\omega, \omega \rangle = \int_{\partial M} \langle \nabla_{\nu}\omega + c_{\nu}\mathcal{D}\omega, \omega \rangle = \int_{\partial M} \langle c_{\nu}\mathcal{D}^{T}\omega, \omega \rangle.$$

(For the last equality, consider a frame with $e_n = \nu$ and $e_i \in T(\partial M)$, $i = 1, \ldots n - 1$, and define $\mathcal{D}^T \omega = \sum_{i=1}^{n-1} c_{e_i} \nabla_{e_i} \omega$.)

The boundary term arises, on the one hand, from the fact that:

$$-\langle \nabla^* \nabla \omega, \omega \rangle + |\nabla \omega|^2 = \sum_j \langle \nabla^2_{e_j, e_j} \omega, \omega \rangle + |\nabla \omega|^2 = \sum_j e_j \langle \nabla_{e_j} \omega, \omega \rangle,$$

a divergence term. To compute the boundary term corresponding to formal self-adjointness of \mathcal{D}_f , consider (in a frame (e_i) normal at a given point):

$$\begin{split} \langle \mathcal{D}_f \omega, \omega \rangle &= \sum_j \langle c_{e_j} \nabla_{e_j} \omega, \omega \rangle + \langle \tilde{c}_{\nabla f} \omega, \omega \rangle \\ \\ &= \sum_j e_j \langle c_{e_j} \omega, \omega \rangle - \sum_j \langle c_{e_j} \omega, \nabla_{e_j} \omega \rangle + \langle \tilde{c}_{\nabla f} \omega, \omega \rangle \end{split}$$

$$= \sum_{j} e_{j} \langle c_{e_{j}} \omega, \omega \rangle + \sum_{j} \langle \omega, c_{e_{j}} \nabla_{e_{j}} \omega \rangle + \langle \omega, \tilde{c}_{\nabla f} \omega \rangle$$
$$= div(X) + \langle \omega, \mathcal{D}_{f} \omega \rangle,$$

for a suitable vector field X. We conclude:

$$\int_{M} \langle \mathcal{D}_{f} \omega, \omega \rangle = \int_{M} \langle \omega, \mathcal{D}_{f} \omega \rangle + \int_{\partial M} \langle c_{\nu} \omega, \omega \rangle,$$

which implies:

$$\int_{M} \langle \mathcal{D}_{f}^{2} \omega, \omega \rangle = \int_{M} |\mathcal{D}_{f} \omega|^{2} + \int_{\partial M} \langle c_{\nu} \mathcal{D}_{f} \omega, \omega \rangle.$$

Thus the boundary term in the integrated Weitzenböck formula for \mathcal{D}_f is:

$$\int_{\partial M} \langle \nabla_{\nu} \omega + c_{\nu} \mathcal{D}_{f} \omega, \omega \rangle.$$

The integrand can be simplified as before:

$$\langle \nabla_{\nu}\omega + c_{\nu}\mathcal{D}_{f}\omega, \omega \rangle = \langle c_{\nu}\mathcal{D}^{T}\omega, \omega \rangle + \langle c_{\nu}\tilde{c}_{\nabla f}\omega, \omega \rangle = \langle c_{\nu}\mathcal{D}_{f}^{T}\omega, \omega \rangle,$$

if we define $\mathcal{D}_f^T \omega := \mathcal{D}^T \omega + \tilde{c}_{\nabla f} \omega$.

The foregoing calculations prove the following lemma.

Lemma 2. Integrated Weitzenböck formula for the twisted Dirac operator, with boundary term.

$$\int_{M} |\nabla \omega|^{2} - |\mathcal{D}_{f}\omega|^{2} + \langle \mathcal{R}\omega, \omega \rangle + [|\nabla f|^{2} - (\Delta f)]|\omega|^{2} + 2\sum_{i,j} (\mathrm{Hess}f)(e_{i}, e_{j}) \langle i_{e_{i}}\omega, i_{e_{j}}\omega \rangle$$

$$= \int_{\partial M} \langle \nabla_{\nu} \omega + c_{\nu} \mathcal{D}_{f} \omega, \omega \rangle = \int_{\partial M} \langle c_{\nu} \mathcal{D}_{f}^{T} \omega, \omega \rangle.$$

To make use of this expression, two things are needed: (i) interpret the boundary term in terms of the geometry of the boundary; (ii) control the Hessian term.

Regarding the first point, we first consider untwisted operators, and p-forms satisfying Neumann boundary conditions. (I.e. $\chi \omega = \omega$.)

Lemma 3. Let $\omega \in \Omega_N^p$, $\chi \omega = \omega$. Then on ∂M :

$$(i)\langle c_{\nu}\mathcal{D}^{T}\omega,\omega\rangle = -\sum_{i,j}A(e_{i},e_{j})\langle i_{e_{i}}\omega,i_{e_{j}}\omega\rangle.$$

$$(ii)\langle c_{\nu}\tilde{c}_{\nabla f}\omega,\omega\rangle = -\nu(f)|\omega|^2.$$

Proof. Step 1: We show that, without assuming the Neumann condition:

$$\chi(c_{\nu}\mathcal{D}^{T}\omega) + c_{\nu}\mathcal{D}^{T}(\chi\omega) = -\sum_{i,j} A(e_{i}, e_{j})c_{e_{i}}(\tilde{c}_{e_{j}} - c_{e_{j}}\chi)\omega.$$

Indeed, computing in a normal frame at $p \in M$ and using the summation convention, the left-hand side equals:

$$\begin{split} &-\tilde{c}_{\nu}c_{e_{i}}\nabla_{e_{i}}\omega+c_{\nu}c_{e_{i}}(\tilde{c}(\nabla_{e_{i}}\nu)c_{\nu}\omega+\tilde{c}_{\nu}c(\nabla_{e_{i}}\nu)\omega+\tilde{c}_{\nu}c_{\nu}\nabla_{e_{i}}\omega)\\ &=-(\tilde{c}_{\nu}c_{e_{i}}+c_{e_{i}}\tilde{c}_{\nu})\nabla_{e_{i}}\omega+A(e_{i},e_{j})c_{\nu}c_{e_{i}}(\tilde{c}_{\nu}c_{e_{j}}+\tilde{c}_{e_{i}}c_{\nu})\omega, \end{split}$$

where the first term vanishes, and using the commutation relations we find:

$$\dots = -A(e_i, e_j)c_{e_i}(\tilde{c}_{e_j} - c_{e_j}\chi)\omega,$$

as claimed.

Step 2. We show that, still without using the boundary condition:

$$\sum_{i,j} A(e_i, e_j) c_{e_i} (\tilde{c}_{e_j} - c_{e_j}) \omega = 2 \sum_{i,j} A(e_i, e_j) \theta_i \wedge i_{e_j} \omega.$$

Indeed, $(\tilde{c}_{e_j} - c_{e_j})\omega = 2i_{e_j}\omega$, while:

$$c_{e_i}i_{e_i}\omega = e_{e_i}i_{e_i}\omega - i_{e_i}i_{e_i}\omega,$$

and the second term will not contribute to the sum, since it is skew-symmetric in i, j. We conclude:

$$\sum_{i,j} A(e_i, e_j) c_{e_i} (\tilde{c}_{e_j} - c_{e_j}) \omega = 2 \sum_{i,j} A(e_i, e_j) e_{e_i} i_{e_j} \omega,$$

as claimed.

Step 3. Combining steps 1 and 2 and using the boundary condition $\chi \omega = \omega$ (and recalling χ is self-adjoint), we find:

$$\begin{split} \langle c_{\nu}\mathcal{D}^T\omega,\omega\rangle &= (1/2)\langle \chi c_{\nu}\mathcal{D}^T\omega + c_{\nu}\mathcal{D}^T(\chi\omega),\omega\rangle \\ &= -(1/2)\langle \sum_{i,j}A(e_i,e_j)c_{e_i}(\tilde{c}_{e_j}-c_{e_j})\omega,\omega\rangle \\ &= -\langle \sum_{i,j}A(e_i,e_j)\theta_i\wedge i_{e_j}\omega,\omega\rangle = -\sum_{i,j}A(e_i,e_j)\langle i_{e_i}\omega,i_{e_j}\omega\rangle, \end{split}$$

concluding the proof of (i).

To see (ii) for p-forms ω satisfying Neumann boundary conditions, recall $\omega = \chi \omega = \tilde{c}_{\nu} c_{\nu} \omega$. Then:

$$c_{\nu}\tilde{c}_{\nabla f}\omega = c_{\nu}\tilde{c}_{\nabla f}\tilde{c}_{\nu}c_{\nu}\omega = -\tilde{c}_{\nabla f}\tilde{c}_{\nu}\omega = -\tilde{c}_{\nabla f}e_{\nu}\omega.$$

Taking inner product with ω , note $\langle e_{\nabla f} e_{\nu} \omega, \omega \rangle = 0$ (different degrees). Thus:

$$\langle c_{\nu}\tilde{c}_{\nabla f}\omega,\omega\rangle = -\langle i_{\nabla f}e_{\nu}\omega,\omega\rangle = -\langle e_{\nu}\omega,e_{\nabla f}\omega\rangle = -\nu(f)\langle e_{\nu}\omega,e_{\nu}\omega\rangle = -\nu(f)|\omega|^{2}.$$

The right-hand side of (i) can be estimated if the boundary is p-convex: the sum of the first p smallest eigenvalues of the second fundamental form A is nonnegative.

Lemma 4. Suppose A has the property that the sum of any p eigenvalues of A is greater than or equal to a constant $(-\lambda) \in R$. Then, if $\omega \in \Omega_N^p$:

$$\sum_{i,j} A(e_i, e_j) \langle i_{e_i} \omega, i_{e_j} \omega \rangle \ge -\lambda |\omega|^2.$$

Proof. Let \mathcal{I}_p be the set of increasing p-multitindices, $I = (i_1, \dots i_p)$ with $i_1 < \dots < i_p$. Then if (e_i) is a local orthonormal frame on $T(\partial M)$ with dual coframe (θ_i) , we have $\omega = \sum_{I \in \mathcal{I}_p} \omega_I \theta_I$. Choose (e_i) to diagonalize A: $A(e_i, e_j) = \lambda_i \delta_{ij}$. Then:

$$\begin{split} \sum_{I,J\in\mathcal{I}_p} A(e_k,e_l) \omega_I \bar{\omega_J} \langle i_{e_k} \theta_I, i_{e_l} \theta_J \rangle \\ = \sum_{I,J} \lambda_k \omega_I \bar{\omega}_J \langle i_{e_k} \theta_I, i_{e_k} \theta_J \rangle, \end{split}$$

where we note $\langle i_{e_k} \theta_I, i_{e_k} \theta_J \rangle$ is nonzero only if I = J and $k \in I$. Thus:

$$\sum_{k,l} \sum_{I,Jl} A(e_k, e_l) \omega_I \bar{\omega_J} \langle i_{e_k} \theta_I, i_{e_l} \theta_J \rangle = \sum_k \sum_{I \in \mathcal{I}_p; k \in I} \lambda_k |\omega_I|^2$$
$$= \sum_I (\lambda_{i_1} + \ldots + \lambda_{i_p}) |\omega_I|^2 \ge -\lambda |\omega|^2,$$

if A has the property given in the statement.

Combining the previous two lemmas, we have a simple inequality for the boundary term in the integrated Weitzenböck formula for $\omega \in \Omega_N^p$, when the boundary is p-convex.

Corollary 1. Assume the second fundamental form of ∂M has the property that the sum of any p eigenvalues is bounded below by a fixed real number λ . Then if $\omega \in \Omega_N^p$:

$$\langle c_{\nu} \mathcal{D}_{f}^{T} \omega, \omega \rangle \leq [\lambda - \nu(f)] |\omega|^{2}.$$

We now turn to the Hessian term in the integrated Weitzenböck formula. Computing in an orthonormal frame (e_i) , normal at some $p \in M$:

$$\sum_{i,j} \operatorname{Hess}(f)(e_i, e_j) \langle i_{e_i} \omega, i_{e_j} \omega \rangle$$

$$= \sum_{i,j} e_i [(\nabla_{e_j} f) \langle i_{e_i} \omega, i_{e_j} \omega \rangle] - \sum_{i,j} (\nabla_{e_j} f) \langle i_{e_i} \nabla_{e_i} \omega, i_{e_j} \omega \rangle - \sum_{i,j} (\nabla_{e_j} f) \langle i_{e_i} \omega, i_{e_j} \nabla_{e_i} \omega \rangle$$

$$= \operatorname{div} Z + \langle \delta \omega, i_{\nabla f} \omega \rangle - \sum_{i,j} (\nabla_{e_j} f) \langle \omega, \theta_i \wedge i_{e_j}) \nabla_{e_i} \omega \rangle,$$

where Z is the vector field dual to the one-form $X \mapsto \langle i_X \omega, i_{\nabla f} \omega \rangle$. Using now $\langle \omega, \theta_i \wedge i_{e_j} \rangle \nabla_{e_i} \omega = (\delta_{ij} - i_{e_j} e_{e_i}) \nabla_{e_i} \omega$, we conclude:

... =
$$\operatorname{div} Z + \langle \delta \omega, i_{\nabla f} \omega \rangle - \langle \omega, \nabla_{\nabla f} \omega \rangle + \langle df \wedge \omega, d\omega \rangle$$
.

This is already interesting: in complete generality, the Hessian term reduces, up to a divergence, to geometric first-order terms.

Now suppose $\Delta_H^f \omega = 0$. Then $\delta_f \omega = 0$ and $d_f \omega - 0$, that is: $\delta \omega = -i \nabla_f \omega$, $d\omega = -df \wedge \omega$. Substituting in the above, we find:

$$\langle \delta\omega, i_{\nabla f}\omega \rangle + \langle df \wedge \omega, d\omega \rangle = -|i_{\nabla f}\omega|^2 - |df \wedge \omega|^2 = -|\nabla f|^2 |\omega|^2.$$

We conclude:

Lemma 5. Suppose $\omega \in \mathcal{H}^p_{N,f}$ or $\omega \in \mathcal{H}^p_{D,f}$. Then:

$$\sum_{i,j} \operatorname{Hess}(f)(e_i, e_j) \langle i_{e_i} \omega, i_{e_j} \omega \rangle = -\int_M |\nabla f|^2 |\omega|^2 - \int_M \langle \omega, \nabla_{\nabla f} \omega \rangle + \int_{\partial M} \langle i_{\nu} \omega, i_{\nabla f} \omega \rangle.$$

Remark 1: Note that the last term vanishes if $\omega \in \Omega_N^p$.

Remark 2: The sum of the first two terms is bounded below by:

$$-\int_{M} \frac{3}{2} |\nabla f|^{2} |\omega|^{2} - \int_{M} \frac{1}{2} |\nabla \omega|^{2}.$$

PART 2: POSITIVE ISOTROPIC CURVATURE.

Definitions. Let (M,g) be a Riemannian manifold, where we also denote the Riemannian metric by $\langle \cdot, \cdot \rangle$. There are two natural ways to extend the metric to the complexified tangent bundle, $TM^c := TM \otimes \mathbb{C}$. We can extend it as a symmetric, \mathbb{C} -bilinear form: if z = x + iy, w = u + iv are in T_pM^c (with $x, y, u, v \in T_pM$), set:

$$(z, w) = (x + iy, u + iv) := \langle x, u \rangle - \langle y, v \rangle + i[\langle y, u \rangle + \langle x, v \rangle].$$

Or we can extend it as a hermitian inner product (conjugate-linear in the second entry), by setting:

$$\langle \langle z, w \rangle \rangle := (z, \bar{w}) = \langle x, u \rangle + \langle y, v \rangle + i[\langle y, u \rangle - \langle x, v \rangle].$$

Similarly, the induced inner product on each exterior bundle $\Lambda^k T^*M$ extends in two ways to its complexification $\Lambda^k_c(M) = \Lambda^k T^*M \otimes \mathbb{C}$.

Recall that the *curvature operator* is the symmetric linear operator \mathbf{R} defined on $\Lambda^2 TM$ in therms of the (3,1) curvature tensor R by:

$$\langle \mathbf{R}(x \wedge y), u \wedge v \rangle := \langle R(x, y)v, u \rangle, \quad x, y, u, v \in T_p M.$$

(Note the order, which corresponds to the convention that sectional curvatures are diagonal components of \mathbf{R} .) This naturally extends to a \mathbb{C} -linear, self-adjoint operator (for the hermitian metric) \mathbf{R} on $\Lambda_c^2(M)$. We use it to define the hermitian sectional curvature K^c of a complex two-dimensional subspace $\sigma \subset T_p^c M$: if $\{z, w\}$ is a basis for σ ,

$$K^{c}(\sigma) := \langle \langle \mathbf{R}(z \wedge w), z \wedge w \rangle \rangle / ||z \wedge w||^{2}.$$

(where in the denominator we also use the hermitian inner product.)

To express this in Riemannian terms, we expand it (with z = x + iy, w = u + iv) to obtain:

$$\langle\langle \mathbf{R}(z\wedge w,z\wedge w)\rangle = \langle \mathbf{R}(x\wedge u - y\wedge v), x\wedge u - y\wedge v\rangle + \langle \mathbf{R}(x\wedge v + y\wedge u), x\wedge v + y\wedge u\rangle,$$

a real number. Expanding further, using the definition of \mathbf{R} , we find in terms of the (4,0) curvature:

$$\dots = \langle R(x,u)u,x\rangle + \langle R(y,v)v,y\rangle + \langle R(x,v)v,x\rangle + \langle R(y,u)u,y\rangle - 2\langle R(x,u)v,y\rangle + 2\langle R(y,u)v,x\rangle,$$

where (if x, y, u, v happen to be orthornormal) the first four terms are (real) sectional curvatures, while the last two equal:

$$-2\langle R(x,u)v,y\rangle + 2\langle R(x,v)u,y\rangle = 2\langle R(u,x)v,y\rangle + 2\langle R(x,v)u,y\rangle = -\langle R(v,u)x,y\rangle = \langle R(x,y)u,v\rangle,$$

by the algebraic Bianchi identity. We conclude that, if $\{x, y, u, v\}$ is real-orthonormal, the hermitian sectional curvature of σ is the real number:

$$K^{c}(\sigma) = K_{x,u} + K_{x,v} + K_{y,u} + K_{y,v} - 2R(x, y, u, v).$$

A condition guaranteeing orthonormality of the real and imaginary parts of a complex basis is the following.

Definition. A vector $z \in T_pM^c$ is isotropic if (z,z)=0 (using the \mathbb{C} -bilinear form.) A subspace $\sigma \subset T_pM^c$ is totally isotropic if every vector in σ is. Note that in terms of the real and imaginary parts this means:

$$|x|^2 = |y|^2$$
, $\langle x, y \rangle = 0$, $z = x + iy$, $x, y \in T_pM$.

Definition. (M,g) has positive sectional curvature on isotropic two-planes (in short: 'positive isotropic curvature', PIC) if $K^c(\sigma) > 0$ whenever $\sigma \subset T_p^c M$ is an isotropic complex-two-dimensional subspace.

To understand what this means in Riemannian terms, let $\sigma \subset T_pM^c$ be a complex two-dimensional subspace. We may choose a *standard basis* $\{z, w\}$ for σ , one satisfying, for the hermitian inner product:

$$||z||^2 = ||w||^2 = 2; \quad \langle \langle z, w \rangle \rangle = 0.$$

Exercise. Show that a standard basis $\{z, w\}$ of a (complex) two-dimensional subspace $\sigma \subset T_pM^c$ has the property that the real and imaginary parts: $z = e_1 + ie_2, w = e_3 + ie_4$ of z, w define a Riemannian-orthonormal basis $\{e_1, e_2, e_3, e_4\}$ for a (real) four-dimensional subspace of T_pM if, and only if, σ is totally isotropic.

Hint: In addition to (z, z) = (w, w) = 0, use also (z + w, z + w) = 0, which implies (z, w) = 0.

Thus, for an isotropic complex two-plane $\sigma \subset T_pM^c$:

$$K^{c}(\sigma) = K_{e_1,e_3} + K_{e_1,e_4} + K_{e_2,e_3} + K_{e_2,e_4} - 2R(e_1,e_2,e_3,e_4),$$

in terms of a 'standard basis' $\{z, w\}$ for σ and its real and imaginary parts $z = e_1 + ie_2, w = e_3 + ie_4$. Equivalently, with the notation $R_{ijkl} := \langle R(e_i, e_j)e_k, e_l \rangle$:

$$K^{c}(\sigma) = R_{1331} + R_{1441} + R_{2332} + R_{2442} - 2R_{1234}.$$

The following proposition relates the hermitian sectional curvature $K^c(\sigma)$ of isotropic 2-planes $\sigma \subset T_p^c M$ to the Weitzenböck curvature operator \mathcal{R} on 2-forms.

Proposition 1. Assume the dimension of M is even, $n=2m\geq 4$. Let $\omega\in\Lambda^2(T^*M)^c$. Then:

$$\langle \mathcal{R}\omega, \omega \rangle \geq (m-1)|\omega|^2 \min\{K^c(\sigma); \sigma \subset T_pM^c \text{ isotropic complex } 2-\text{plane}\},$$

Proof. The proof is based on the following facts:

(a) The Weitzenböck curvature operator \mathcal{R} on exterior forms $\omega \in \Lambda^k(T^*M)$ admits the alternative expression:

$$\mathcal{R}\omega = \sum_{i,j} \theta_i \wedge i_{e_j} R_{e_i e_j} \omega.$$

(b) The curvature tensor acts on 2-forms ω as a derivation, as follows:

$$(R_{X,Y}\omega)(Z,W) = -\omega(R_{X,Y}Z,W) - \omega(Z,R_{X,Y}W).$$

(c) There is a canonical isomorphism $\Lambda^2(T^*M)^c \approx \mathfrak{so}(2m,\mathbb{C})$, defined by $L_{\xi \wedge \eta}(X) = \xi(X)\eta^\# - \eta(X)\xi^\#$. Elements of the Lie algebra $\mathfrak{so}(2m,\mathbb{C})$ admit a standard block-diagonal form. Geometrically this means that given $\omega \in \Lambda^2(T^*M)^c$, we may find a real orthonormal frame $(e_i)_{i=1}^{2m}$, with coframe $(\theta_i)_{i=1}^{2m}$, which puts ω in 'standard form', that is, at any $p \in M$ there exist coefficients $\omega_i(p) \in \mathbb{C}$ so that:

$$\omega(p) = \sum_{i=1}^{m} \omega_i(p)\theta_{2i-1} \wedge \theta_{2i}.$$

(This is where the fact n is even is used crucially.)

To understand this computation, consider first the case n=4, m=2. Let the 2-form ω have the representation (at a given $p \in M$):

$$\omega = \omega_1 \theta_1 \wedge \theta_2 + \omega_2 \theta_3 \wedge \theta_4, \quad \omega_1, \omega_2 \in \mathbb{C}.$$

Then using (a) and (b) one finds:

$$\langle \mathcal{R}(\theta_1 \wedge \theta_2), \theta_1 \wedge \theta_2 \rangle = R_{1331} + R_{1441} + R_{2332} + R_{2442},$$

$$\langle \mathcal{R}(\theta_3 \wedge \theta_4), \theta_3 \wedge \theta_4 \rangle = R_{3113} + R_{3223} + R_{4114} + R_{4224},$$

while

$$\langle \mathcal{R}(\theta_1 \wedge \theta_2), \theta_3 \wedge \theta_4 \rangle = 2R_{1234}, \quad \langle \mathcal{R}(\theta_3 \wedge \theta_4), \theta_1 \wedge \theta_2) \rangle = 2R_{3412}.$$

Using the algebraic symmetries of the Riemann (4,0) curvature R, we easily compute from this:

$$\langle \mathcal{R}\omega, \omega \rangle = (|\omega_1|^2 + |\omega_2|^2)(R_{1331} + R_{1441} + R_{2332} + R_{2442}) - [\omega_1 \bar{\omega}_2 + \omega_2 \bar{\omega}_1]2R_{1234}.$$

$$= (|\omega_1|^2 + |\omega_2|^2)(R_{1331} + R_{1441} + R_{2332} + R_{2442} - 2R_{1234}) + |\omega_1 - \omega_2|^2 2R_{1234},$$

where the second term is nonnegative if $R_{1234} \ge 0$ (which may always be assumed by relabeling). We conclude, in this case (n = 4):

$$\langle \mathcal{R}\omega, \omega \rangle \ge K^c(\sigma)|\omega|^2$$
,

where σ is the totally isotropic complex 2-plane spanned by $\{e_1 + ie_2, e_3 + ie_4\}$.

In the general case $(n=2m \geq 4)$, a similar calculation (see [1]) yields the result:

$$\langle \mathcal{R}\omega, \omega \rangle \ge \sum_{i=1}^{m} (|\omega_i|^2 \sum_{j=1, j \ne i}^{m} K^c(\sigma_{ij})),$$

where σ_{ij} is the isotropic 2-plane spanned (over \mathbb{C}) by $\{e_{2i-1} + \sqrt{-1}e_{2i}, e_{2j-1} + \sqrt{-1}e_{2j}\}$ (a 'standard basis' of σ_{ij} , in the sense defined above). We conclude that, pointwise on M:

$$\langle \mathcal{R}\omega, \omega \rangle \geq (m-1)|\omega|^2 \min\{K^c(\sigma); \sigma \subset T_pM^c \text{ isotropic complex } 2-\text{plane}\},$$

with equality achieved in some cases (i.e. this lower bound is 'sharp'.)

Question: What estimate do we get if $\dim(M)$ is odd?

Combining all the foregoing results, we obtain the following:

Omnibus Lemma 6. Suppose (M^n, g) is a compact manifold with boundary, satisfying:

(i) n=2m is even, and the hermitian sectional curvature $K^c(\Pi) \geq \sigma$ for each isotropic complex 2-plane $\Pi \subset T_pM^c$;

(ii) The second fundamental form of ∂M satisfies $A(X,X) + A(Y,Y) \ge -\delta$, for each $\{X,Y\}$ orthonormal vector fields tangent to ∂M .

Given $f:M\to R$ smooth, let $\omega\in\mathcal{H}^2_{N,f}$ be an f-harmonic 2-form with Neumann boundary conditions. (In particular, $\mathcal{D}_f\omega=0$.)

Then we have:

$$0 = \int_{M} |\nabla \omega|^{2} + \langle \mathcal{R}\omega, \omega \rangle + [|\nabla f|^{2} - (\Delta f)]|\omega|^{2}$$

$$+2 \sum_{i,j} (\operatorname{Hess} f)(e_{i}, e_{j}) \langle i_{e_{i}}\omega, i_{e_{j}}\omega \rangle - \int_{\partial M} \langle c_{\nu} \mathcal{D}_{f}^{T}\omega, \omega \rangle$$

$$\geq \int_{M} |\nabla \omega|^{2} + (m-1)\sigma \int_{M} |\omega|^{2} + \int_{M} [|\nabla f|^{2} - (\Delta f)]|\omega|^{2}$$

$$- \int_{M} 3|\nabla f|^{2}|\omega|^{2} - \int_{M} |\nabla \omega|^{2} + \int_{\partial M} [\nu(f) - \delta]|\omega|^{2}.$$

$$= \int_{M} [(m-1)\sigma - (\Delta f) - 2|\nabla f|^{2}]|\omega|^{2} + \int_{\partial M} (\nu(f) - \delta)|\omega|^{2}$$
(cp. [1], (4.2))