
PART 1: BOCHNER METHODWITH BOUNDARY AND TWISTED OP-
ERATORS

1. Hodge Theory on manifolds with boundary. Let (Mn, g) be a
compact Riemannian manifold with nonempty boundary ∂M . At boundary
points, the space of smooth k-forms on M admits the direct sum decomposition:

Ωk(M)|∂M = Ωk(∂M)⊕ (ν# ∧ Ωk−1(∂M)), k ≥ 1,

where ν is the outward unit normal and ν# the dual 1-form. Accordingly, any
ω ∈ Ωk(M) admits a decomposition:

ω = t(ω) + n(ω),

where, at points p ∈ ∂M , t(ω) ∈ Ωk(∂M) (or more precisely, its image i∗(t(ω))
under the pullback by the inclusion i : ∂M → M is), and n(ω) = ν# ∧ η, i∗η ∈
Ωk−1(∂M).

Remark. Note this decomposition of Ωk(M)|∂M is orthogonal (with respect

to the pointwise metric in Ωk(M)).

The usual ‘Dirichlet’ (or ‘relative’ boundary condition), t(ω) = 0 and ‘Neu-
mann’ (or ‘absolute’ boundary condition), n(ω) = 0, define subspaces of Ωk(M):

Ωk
D(M) = {ω ∈ Ωk(M); t(ω) = 0 on ∂M}; Ωk

N (M) = {ω ∈ Ωk(M);n(ω) = 0 on ∂M}.

It is easy to check that the space ΩD(M) is d-invariant, while ΩN is δ-invariant:

d : Ωk
D → Ωk+1

D , δ : Ωk
N → Ωk−1

N .

To see this, note ν# extends to a collar neighborhood of ∂M as the exact 1-form
−dρ, where ρ : M → R+ is distance to ∂M , so that:

d(ν# ∧ η) = −ν# ∧ dη and δ(iνω) = −iνω. (ω ∈ Ωk
N ⇔ iνω = 0 on ∂M)

Thus we have differential complexes (ΩD, d) (increasing degree) and (ΩN , δ)
(decreasing degree), with (de Rham) cohomology spaces:

Hk
rel(M) =

Ker(d|Ωk
D
)

Im(d|Ωk−1
D

)
, Hk

abs(M) =
Ker(δ|Ωk

N
)

Im(δ|Ωk+1
N

)
.

(‘Relative’ resp. ‘absolute’ de Rham cohomology spaces.) The reason for this
terminology is the De Rham Theorem for manifolds with boundary, which states:

Hk
rel(M) ≈ Hk(M,∂M), Hk

abs(M) ≈ Hk(M).

(Singular cohomology with R coefficients on the right.)

Twisted de Rham complex. At this point we introduce ‘twisted’ de Rham
complexes, for an arbitrary smooth twisting function f : M → R. The twisted
differential df and its L2 adjoint δf are:

df = e−fdef , δf = efδe−f .
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One checks easily that df preserves ΩD and δf preserves ΩN , so again we have
two differential complexes, with cohomology spaces defined in the usual way.
For instance, to see this for ΩD note: df = d+ e∇f (exterior product), and:

e∇f (ν
# ∧ η) = df ∧ (ν# ∧ η) = dT f ∧ (ν# ∧ η) = −ν# ∧ (dT f ∧ η),

where we define dT f := (df)t. And it’s just as easy for the formal adjoint δf
(using δf = δ + i∇f ).

We claim twisting doesn’t change the absolute and relative de Rham coho-
mology spaces. To see this for the absolute cohomology, consider the isomor-
phism ϕa(ω) = e−fω from Ωk

N to itself. This is in fact a chain isomorphism
from the complex (ΩN , δ) to (ΩN , δf ) since:

ϕa(δfω) = e−f (efδe−fω) = δ(ϕaω).

(The inverse is the chain map ω 7→ efω). Therefore ϕa induces isomorphisms
in absolute de Rham cohomology: Hk

abs,f ≈ Hk
abs, and henceforth we’ll use just

Hk
abs for the cohomology space, also for the twisted complex. And likewise for

Hk
rel ≈ Hk

rel,f .

Naturally there are also ‘twisted’ Hodge Laplacians:

∆f
H = dfδf + δfdf : Ωk → Ωk.

To look for expressions relating ∆f
H and ∆H , it is useful to introduce two Clifford

actions on Ω(M):

cX = eX − iX , c̃X = eX + iX , X ∈ TM.

It is easily checked that cX is skew-adjoint in Ω(M), while c̃X is symmetric.

They satisfy the following commutation relations:

cX c̃Y + c̃Y cX = 0, c̃X c̃Y + c̃Y c̃X = 2⟨X,Y ⟩, cXcY + cY cX = −2⟨X,Y ⟩,

for X,Y ∈ TM . Using the definitions, we find these are equivalent to:

eX iY + iY eX = ⟨X,Y ⟩, in particular eX iX + iXeX = |X|2.

To compute an expression for ∆f , we use (with summation convention, and
fi = ei(f)) in an o.n. frame (ei), normal at a given p ∈ M :

dfδfω = −eei(∇ei +fi)iej (∇ej −fj)ω, δfdfω = −iei(∇ei −fi)eej (∇ej +fj)ω.

Expanding, adding the results and using the commutation relations, we find:

∆f
Hω = ∆Hω + |∇f |2ω + (Hessf)(ei, ej)(eeiiej − ieieej )ω.

Now use ieieej = −eej iei + δij in the last term to conclude:

∆f
Hω = ∆Hω + |∇f |2ω − (∆f)ω + 2(Hessf)(ei, ej)(eeiiej )ω.
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For the last term, we note that:

2⟨(Hessf)(ei, ej)(eeiiej )ω, ω⟩ = 2(Hessf)(ei, ej)⟨ieiω, iejω⟩.

It is useful to know that the Dirichlet and Neumann subspaces of Ωk ad-
mit simple descriptions in terms of the Clifford multiplications defined above.
Namely, consider the operator:

χ : Ωk
|∂M → Ωk

|∂M , χω := c̃νcνω = (iνeν − eνiν)ω.

It is easy to show this is a self-adjoint, idempotent operator (χ2 = Id), hence
diagonalizable with eigenvalues ±1.

Lemma 1. ΩD = {ω;χω = −ω on ∂M}; ΩN = {ω;χω = ω on ∂M}.
Proof. An easy calculation shows that:

χ(t(ω)) = t(ω), χ(n(ω)) = −n(ω),

and hence: χ(ω) = χ(t(ω) + n(ω)) = t(ω) − n(ω). Or we could note that
ΩD = {ω; eνiνω = ω} and ΩN = {ω; iνeνω = ω}.

Question: Do the operators ∆H and ∆f
H preserve ΩD or ΩN?

Consider 1-forms first. Let α ∈ Ω1
D, t(α) = 0, α = gν# = gdρ, for some

function g. Then:

dα = dg ∧ dρ, δdα = −(∆g)dρ+ (∆ρ)dg,

δα = −⟨dg, dρ⟩, d(δα) = −ν⟨dg, dρ⟩dρ− [Hess(g)(ei,∇ρ)−A(ei,∇T g)]θi,

where A is the second fundamental form of T (∂M), ⟨W(X), Y ⟩ = A(X,Y ) =
⟨∇Xν, Y ⟩, for X,Y ∈ T (∂M). Thus the tangential component of ∆Hα is:

t(∆Hα) = (∆ρ)dT g +Hess(g)(ei, ν)θi +A(ei,∇T g)θi,

not zero in general. Thus ΩD is not preserved by ∆H .

In spite of this, there is a Hodge theory for ∆H with boundary conditions
t(ω) = 0 or n(ω) = 0. Namely, both are elliptic boundary conditions and the
general Hodge decomposition theorem for elliptic complexes applies. Define
spaces of harmonic k-forms:

Hk
D = {ω ∈ Ωk

D; ∆Hω = 0}; Hk
N = {ω ∈ Ωk

N ; ∆Hω = 0},

with similar definitions for the twisted Hodge Laplacian ∆f
H . Then we have

unique representatives of relative (resp. absolute) de Rham cohomology in these
spaces:

HK
D ≈ Hk,f

D ≈ Hk
rel(M); Hk

D ≈ Hk,f
N ≈ Hk

abs(M).
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(Note ∆f
H and ∆H have the same principal symbol, as seen above.)

Twisted Dirac operators. In addition to the usual Dirac operator on Ω(M):

D := d+ δ =
∑
i

cei∇ei , with D2 = ∆H ,

we have a twisted version:

Df = df + δf = (d+ e∇f ) + (δ + i∇f ) = D + c̃∇f , with D2
f = ∆f

H .

The Dirac operator on Ω(M) satisfies the classical Weitzenböck formula:

D2ω = ∆Hω = ∇∗∇ω +Rω,

with:

∇∗∇ω = −
∑
i

∇2
ei,eiω, Rω =

1

2

n∑
i,j=1

ceicejRei,ejω.

We compute the version of the formula for the twisted Hodge Laplacian, in the
pointwise quadratic form:

⟨D2
fω, ω⟩ = ⟨∆f

Hω, ω⟩

= ⟨∆Hω, ω⟩+ (|∇f |2 −∆f)|ω|2 + 2(Hessf)(ei, ej)⟨ieiω, iejω⟩

= ⟨∇∗∇ω, ω⟩+ ⟨Rω, ω⟩+ [|∇f |2 − (∆f)]|ω|2 + 2(Hessf)(ei, ej)⟨ieiω, iejω⟩

Next we compute the integrated twisted Weitzenböck formula with boundary
term. Recall that for the untwisted Dirac operator we have, for ω ∈ Ωp:∫

M

|∇ω|2 − |Dω|2 + ⟨Rω, ω⟩ =
∫
∂M

⟨∇νω + cνDω, ω⟩ =
∫
∂M

⟨cνDTω, ω⟩.

(For the last equality, consider a frame with en = ν and ei ∈ T (∂M), i =

1, . . . n− 1, and define DTω =
∑n−1

i=1 cei∇eiω.)

The boundary term arises, on the one hand, from the fact that:

−⟨∇∗∇ω, ω⟩+ |∇ω|2 =
∑
j

⟨∇2
ej ,ejω, ω⟩+ |∇ω|2 =

∑
j

ej⟨∇ejω, ω⟩,

a divergence term. To compute the boundary term corresponding to formal
self-adjointness of Df , consider (in a frame (ej) normal at a given point):

⟨Dfω, ω⟩ =
∑
j

⟨cej∇ejω, ω⟩+ ⟨c̃∇fω, ω⟩

=
∑
j

ej⟨cejω, ω⟩ −
∑
j

⟨cejω,∇ejω⟩+ ⟨c̃∇fω, ω⟩
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=
∑
j

ej⟨cejω, ω⟩+
∑
j

⟨ω, cej∇ejω⟩+ ⟨ω, c̃∇fω⟩

= div(X) + ⟨ω,Dfω⟩,
for a suitable vector field X. We conclude:∫

M

⟨Dfω, ω⟩ =
∫
M

⟨ω,Dfω⟩+
∫
∂M

⟨cνω, ω⟩,

which implies: ∫
M

⟨D2
fω, ω⟩ =

∫
M

|Dfω|2 +
∫
∂M

⟨cνDfω, ω⟩.

Thus the boundary term in the integrated Weitzenböck formula for Df is:∫
∂M

⟨∇νω + cνDfω, ω⟩.

The integrand can be simplified as before:

⟨∇νω + cνDfω, ω⟩ = ⟨cνDTω, ω⟩+ ⟨cν c̃∇fω, ω⟩ = ⟨cνDT
f ω, ω⟩,

if we define DT
f ω := DTω + c̃∇fω.

The foregoing calculations prove the following lemma.

Lemma 2. Integrated Weitzenböck formula for the twisted Dirac operator,
with boundary term.

∫
M

|∇ω|2−|Dfω|2+⟨Rω, ω⟩+[|∇f |2−(∆f)]|ω|2+2
∑
i,j

(Hessf)(ei, ej)⟨ieiω, iejω⟩

=

∫
∂M

⟨∇νω + cνDfω, ω⟩ =
∫
∂M

⟨cνDT
f ω, ω⟩.

To make use of this expression, two things are needed: (i) interpret the boundary
term in terms of the geometry of the boundary; (ii) control the Hessian term.

Regarding the first point, we first consider untwisted operators, and p-forms
satisfying Neumann boundary conditions. (I.e. χω = ω.)

Lemma 3. Let ω ∈ Ωp
N , χω = ω. Then on ∂M :

(i)⟨cνDTω, ω⟩ = −
∑
i,j

A(ei, ej)⟨ieiω, iejω⟩.

(ii)⟨cν c̃∇fω, ω⟩ = −ν(f)|ω|2.
Proof. Step 1: We show that, without assuming the Neumann condition:

χ(cνDTω) + cνDT (χω) = −
∑
i,j

A(ei, ej)cei(c̃ej − cejχ)ω.
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Indeed, computing in a normal frame at p ∈ M and using the summation
convention, the left-hand side equals:

−c̃νcei∇eiω + cνcei(c̃(∇eiν)cνω + c̃νc(∇eiν)ω + c̃νcν∇eiω)

= −(c̃νcei + cei c̃ν)∇eiω +A(ei, ej)cνcei(c̃νcej + c̃ejcν)ω,

where the first term vanishes, and using the commutation relations we find:

. . . = −A(ei, ej)cei(c̃ej − cejχ)ω,

as claimed.

Step 2. We show that, still without using the boundary condition:∑
i,j

A(ei, ej)cei(c̃ej − cej )ω = 2
∑
i,j

A(ei, ej)θi ∧ iejω.

Indeed, (c̃ej − cej )ω = 2iejω, while:

ceiiejω = eeiiejω − ieiiejω,

and the second term will not contribute to the sum, since it is skew-symmetric
in i, j. We conclude:∑

i,j

A(ei, ej)cei(c̃ej − cej )ω = 2
∑
i,j

A(ei, ej)eeiiejω,

as claimed.

Step 3. Combining steps 1 and 2 and using the boundary condition χω = ω
(and recalling χ is self-adjoint), we find:

⟨cνDTω, ω⟩ = (1/2)⟨χcνDTω + cνDT (χω), ω⟩

= −(1/2)⟨
∑
i,j

A(ei, ej)cei(c̃ej − cej )ω, ω⟩

= −⟨
∑
i,j

A(ei, ej)θi ∧ iejω, ω⟩ = −
∑
i,j

A(ei, ej)⟨ieiω, iejω⟩,

concluding the proof of (i).

To see (ii) for p-forms ω satisfying Neumann boundary conditions, recall
ω = χω = c̃νcνω. Then:

cν c̃∇fω = cν c̃∇f c̃νcνω = −c̃∇f c̃νω = −c̃∇feνω.

Taking inner product with ω, note ⟨e∇feνω, ω⟩ = 0 (different degrees). Thus:

⟨cν c̃∇fω, ω⟩ = −⟨i∇feνω, ω⟩ = −⟨eνω, e∇fω⟩ = −ν(f)⟨eνω, eνω⟩ = −ν(f)|ω|2.
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The right-hand side of (i) can be estimated if the boundary is p-convex: the
sum of the first p smallest eigenvalues of the second fundamental form A is
nonnegative.

Lemma 4. Suppose A has the property that the sum of any p eigenvalues
of A is greater than or equal to a constant (−λ) ∈ R. Then, if ω ∈ Ωp

N :∑
i,j

A(ei, ej)⟨ieiω, iejω⟩ ≥ −λ|ω|2.

Proof. Let Ip be the set of increasing p-multitindices, I = (i1, . . . ip) with i1 <
. . . < ip. Then if (ei) is a local orthonormal frame on T (∂M) with dual coframe
(θi), we have ω =

∑
I∈Ip

ωIθI . Choose (ei) to diagonalize A: A(ei, ej) = λiδij .
Then: ∑

I,J∈Ip

A(ek, el)ωI ω̄J⟨iekθI , ielθJ⟩

=
∑
I,J

λkωI ω̄J⟨iekθI , iekθJ⟩,

where we note ⟨iekθI , iekθJ⟩ is nonzero only if I = J and k ∈ I. Thus:∑
k,l

∑
I,Jl

A(ek, el)ωI ω̄J⟨iekθI , ielθJ⟩ =
∑
k

∑
I∈Ip;k∈I

λk|ωI |2

=
∑
I

(λi1 + . . .+ λip)|ωI |2 ≥ −λ|ω|2,

if A has the property given in the statement.

Combining the previous two lemmas, we have a simple inequality for the
boundary term in the integrated Weitzenböck formula for ω ∈ Ωp

N , when the
boundary is p-convex.

Corollary 1. Assume the second fundamental form of ∂M has the property
that the sum of any p eigenvalues is bounded below by a fixed real number λ.
Then if ω ∈ Ωp

N :
⟨cνDT

f ω, ω⟩ ≤ [λ− ν(f)]|ω|2.

We now turn to the Hessian term in the integrated Weitzenböck formula.
Computing in an orthonormal frame (ei), normal at some p ∈ M :

∑
i,j

Hess(f)(ei, ej)⟨ieiω, iejω⟩

=
∑
i,j

ei[(∇ejf)⟨ieiω, iejω⟩]−
∑
i,j

(∇ejf)⟨iei∇eiω, iejω⟩−
∑
i,l

(∇ejf)⟨ieiω, iej∇eiω⟩
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= divZ + ⟨δω, i∇fω⟩ −
∑
i,j

(∇ejf)⟨ω, θi ∧ iej )∇eiω⟩,

where Z is the vector field dual to the one-form X 7→ ⟨iXω, i∇fω⟩. Using now
⟨ω, θi ∧ iej )∇eiω = (δij − iejeei)∇eiω, we conclude:

... = divZ + ⟨δω, i∇fω⟩ − ⟨ω,∇∇fω⟩+ ⟨df ∧ ω, dω⟩.

This is already interesting: in complete generality, the Hessian term reduces, up
to a divergence, to geometric first-order terms.

Now suppose ∆f
Hω = 0. Then δfω = 0 and dfω − 0, that is: δω =

−i∇fω, dω = −df ∧ ω. Substituting in the above, we find:

⟨δω, i∇fω⟩+ ⟨df ∧ ω, dω⟩ = −|i∇fω|2 − |df ∧ ω|2 = −|∇f |2|ω|2.

We conclude:

Lemma 5. Suppose ω ∈ Hp
N,f or ω ∈ Hp

D,f . Then:∑
i,j

Hess(f)(ei, ej)⟨ieiω, iejω⟩ = −
∫
M

|∇f |2|ω|2−
∫
M

⟨ω,∇∇fω⟩+
∫
∂M

⟨iνω, i∇fω⟩.

Remark 1: Note that the last term vanishes if ω ∈ Ωp
N .

Remark 2: The sum of the first two terms is bounded below by:

−
∫
M

3

2
|∇f |2|ω|2 −

∫
M

1

2
|∇ω|2.

PART 2: POSITIVE ISOTROPIC CURVATURE.

Definitions. Let (M, g) be a Riemannian manifold, where we also denote
the Riemannian metric by ⟨·, ·⟩. There are two natural ways to extend the
metric to the complexified tangent bundle, TM c := TM ⊗ C. We can extend
it as a symmetric, C-bilinear form: if z = x+ iy, w = u+ iv are in TpM

c (with
x, y, u, v ∈ TpM), set:

(z, w) = (x+ iy, u+ iv) := ⟨x, u⟩ − ⟨y, v⟩+ i[⟨y, u⟩+ ⟨x, v⟩].

Or we can extend it as a hermitian inner product (conjugate-linear in the second
entry), by setting:

⟨⟨z, w⟩⟩ := (z, w̄) = ⟨x, u⟩+ ⟨y, v⟩+ i[⟨y, u⟩ − ⟨x, v⟩].

Similarly, the induced inner product on each exterior bundle ΛkT ∗M extends
in two ways to its complexification Λk

c (M) = ΛkT ∗M ⊗ C.
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Recall that the curvature operator is the symmetric linear operatorR defined
on Λ2TM in therms of the (3, 1) curvature tensor R by:

⟨R(x ∧ y), u ∧ v⟩ := ⟨R(x, y)v, u⟩, x, y, u, v ∈ TpM.

(Note the order, which corresponds to the convention that sectional curvatures
are diagonal components of R.) This naturally extends to a C-linear, self-
adjoint operator (for the hermitian metric) R on Λ2

c(M). We use it to define
the hermitian sectional curvature Kc of a complex two-dimensional subspace
σ ⊂ T c

pM : if {z, w} is a basis for σ,

Kc(σ) := ⟨⟨R(z ∧ w), z ∧ w⟩⟩/||z ∧ w||2.

(where in the denominator we also use the hermitian inner product.)

To express this in Riemannian terms, we expand it (with z = x + iy, w =
u+ iv) to obtain:

⟨⟨R(z∧w, z∧w⟩⟩ = ⟨R(x∧u−y∧v), x∧u−y∧v⟩+⟨R(x∧v+y∧u), x∧v+y∧u⟩,

a real number. Expanding further, using the definition of R, we find in terms
of the (4, 0) curvature:

... = ⟨R(x, u)u, x⟩+⟨R(y, v)v, y⟩+⟨R(x, v)v, x⟩+⟨R(y, u)u, y⟩−2⟨R(x, u)v, y⟩+2⟨R(y, u)v, x⟩,

where (if x, y, u, v happen to be orthornormal) the first four terms are (real)
sectional curvatures, while the last two equal:

−2⟨R(x, u)v, y⟩+2⟨R(x, v)u, y⟩ = 2⟨R(u, x)v, y⟩+2⟨R(x, v)u, y⟩ = −⟨R(v, u)x, y⟩ = ⟨R(x, y)u, v⟩,

by the algebraic Bianchi identity. We conclude that, if {x, y, u, v} is real-
orthonormal, the hermitian sectional curvature of σ is the real number:

Kc(σ) = Kx,u +Kx,v +Ky,u +Ky,v − 2R(x, y, u, v).

A condition guaranteeing orthonormality of the real and imaginary parts of
a complex basis is the following.

Definition. A vector z ∈ TpM
c is isotropic if (z, z) = 0 (using the C-bilinear

form.) A subspace σ ⊂ TpM
c is totally isotropic if every vector in σ is. Note

that in terms of the real and imaginary parts this means:

|x|2 = |y|2, ⟨x, y⟩ = 0, z = x+ iy, x, y ∈ TpM.

Definition. (M, g) has positive sectional curvature on isotropic two-planes (in
short: ‘positive isotropic curvature’, PIC) if Kc(σ) > 0 whenever σ ⊂ T c

pM is
an isotropic complex-two-dimensional subspace.

To understand what this means in Riemannian terms, let σ ⊂ TpM
c be a

complex two-dimensional subspace. We may choose a standard basis {z, w} for
σ, one satisfying, for the hermitian inner product:

||z||2 = ||w||2 = 2; ⟨⟨z, w⟩⟩ = 0.
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Exercise. Show that a standard basis {z, w} of a (complex) two-dimensional
subspace σ ⊂ TpM

c has the property that the real and imaginary parts: z = e1+
ie2, w = e3+ie4 of z, w define a Riemannian-orthonormal basis {e1, e2, e3, e4} for
a (real) four-dimensional subspace of TpM if, and only if, σ is totally isotropic.

Hint: In addition to (z, z) = (w,w) = 0, use also (z + w, z + w) = 0, which
implies (z, w) = 0.

Thus, for an isotropic complex two-plane σ ⊂ TpM
c:

Kc(σ) = Ke1,e3 +Ke1,e4 +Ke2,e3 +Ke2,e4 − 2R(e1, e2, e3, e4),

in terms of a ‘standard basis’ {z, w} for σ and its real and imaginary parts z =
e1 + ie2, w = e3 + ie4. Equivalently, with the notation Rijkl := ⟨R(ei, ej)ek, el⟩:

Kc(σ) = R1331 +R1441 +R2332 +R2442 − 2R1234.

The following proposition relates the hermitian sectional curvature Kc(σ)
of isotropic 2-planes σ ⊂ T c

pM to the Weitzenböck curvature operator R on
2-forms.

Proposition 1. Assume the dimension of M is even, n = 2m ≥ 4. Let
ω ∈ Λ2(T ∗M)c. Then:

⟨Rω, ω⟩ ≥ (m− 1)|ω|2 min{Kc(σ);σ ⊂ TpM
c isotropic complex 2− plane},

Proof. The proof is based on the following facts:
(a) The Weitzenböck curvature operator R on exterior forms ω ∈ Λk(T ∗M)

admits the alternative expression:

Rω =
∑
i,j

θi ∧ iejReiejω.

(b) The curvature tensor acts on 2-forms ω as a derivation, as follows:

(RX,Y ω)(Z,W ) = −ω(RX,Y Z,W )− ω(Z,RX,Y W ).

(c) There is a canonical isomorphism Λ2(T ∗M)c ≈ so(2m,C), defined by
Lξ∧η(X) = ξ(X)η# − η(X)ξ#. Elements of the Lie algebra so(2m,C) ad-
mit a standard block-diagonal form. Geometrically this means that given ω ∈
Λ2(T ∗M)c, we may find a real orthonormal frame (ei)

2m
i=1, with coframe (θi)

2m
i=1,

which puts ω in ‘standard form’, that is, at any p ∈ M there exist coefficients
ωi(p) ∈ C so that:

ω(p) =

m∑
i=1

ωi(p)θ2i−1 ∧ θ2i.

(This is where the fact n is even is used crucially.)
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To understand this computation, consider first the case n = 4,m = 2. Let
the 2-form ω have the representation (at a given p ∈ M):

ω = ω1θ1 ∧ θ2 + ω2θ3 ∧ θ4, ω1, ω2 ∈ C.

Then using (a) and (b) one finds:

⟨R(θ1 ∧ θ2), θ1 ∧ θ2⟩ = R1331 +R1441 +R2332 +R2442,

⟨R(θ3 ∧ θ4), θ3 ∧ θ4⟩ = R3113 +R3223 +R4114 +R4224,

while

⟨R(θ1 ∧ θ2), θ3 ∧ θ4⟩ = 2R1234, ⟨R(θ3 ∧ θ4), θ1 ∧ θ2)⟩ = 2R3412.

Using the algebraic symmetries of the Riemann (4,0) curvature R, we easily
compute from this:

⟨Rω, ω⟩ = (|ω1|2+ |ω2|2)(R1331+R1441+R2332+R2442)− [ω1ω̄2+ω2ω̄1]2R1234.

= (|ω1|2 + |ω2|2)(R1331 +R1441 +R2332 +R2442 − 2R1234) + |ω1 − ω2|22R1234,

where the second term is nonnegative if R1234 ≥ 0 (which may always be as-
sumed by relabeling). We conclude, in this case (n = 4):

⟨Rω, ω⟩ ≥ Kc(σ)|ω|2,

where σ is the totally isotropic complex 2-plane spanned by {e1 + ie2, e3 + ie4}.

In the general case (n = 2m ≥ 4), a similar calculation (see [1]) yields the
result:

⟨Rω, ω⟩ ≥
m∑
i=1

(|ωi|2
m∑

j=1,j ̸=i

Kc(σij)),

where σij is the isotropic 2-plane spanned (over C) by {e2i−1+
√
−1e2i, e2j−1+√

−1e2j} (a ‘standard basis’ of σij , in the sense defined above). We conclude
that, pointwise on M :

⟨Rω, ω⟩ ≥ (m− 1)|ω|2 min{Kc(σ);σ ⊂ TpM
c isotropic complex 2− plane},

with equality achieved in some cases (i.e. this lower bound is ‘sharp’.)

Question: What estimate do we get if dim(M) is odd?

Combining all the foregoing results, we obtain the following:

Omnibus Lemma 6. Suppose (Mn, g) is a compact manifold with bound-
ary, satisfying:

(i) n = 2m is even, and the hermitian sectional curvature Kc(Π) ≥ σ for
each isotropic complex 2-plane Π ⊂ TpM

c;
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(ii) The second fundamental form of ∂M satisfies A(X,X) +A(Y, Y ) ≥ −δ,
for each {X,Y } orthonormal vector fields tangent to ∂M .

Given f : M → R smooth, let ω ∈ H2
N,f be an f -harmonic 2-form with

Neumann boundary conditions. (In particular, Dfω = 0.)
Then we have:

0 =

∫
M

|∇ω|2 + ⟨Rω, ω⟩+ [|∇f |2 − (∆f)]|ω|2

+2
∑
i,j

(Hessf)(ei, ej)⟨ieiω, iejω⟩ −
∫
∂M

⟨cνDT
f ω, ω⟩

≥
∫
M

|∇ω|2 + (m− 1)σ

∫
M

|ω|2 +
∫
M

[|∇f |2 − (∆f)]|ω|2

−
∫
M

3|∇f |2|ω|2 −
∫
M

|∇ω|2 +
∫
∂M

[ν(f)− δ]|ω|2.

=

∫
M

[(m− 1)σ − (∆f)− 2|∇f |2]|ω|2 +
∫
∂M

(ν(f)− δ)|ω|2

(cp. [1], (4.2))

12


