PART 1: BOCHNER METHOD WITH BOUNDARY AND TWISTED OP-
ERATORS

1. Hodge Theory on manifolds with boundary. Let (M™,g) be a
compact Riemannian manifold with nonempty boundary OM. At boundary
points, the space of smooth k-forms on M admits the direct sum decomposition:

Q(M)jon = QF(OM) & (v# AQF 1 (OM)), k>1,

where v is the outward unit normal and v# the dual 1-form. Accordingly, any
w € QF(M) admits a decomposition:

w = t(w) + n(w),

where, at points p € M, t(w) € Q¥(OM) (or more precisely, its image i*(t(w))
under the pullback by the inclusion i : 9M — M is), and n(w) = v#* An,i*n €
QF=1(OM).

Remark. Note this decomposition of QF (M )jonr is orthogonal (with respect
to the pointwise metric in QF(M)).

The usual ‘Dirichlet’ (or ‘relative’ boundary condition), ¢(w) = 0 and ‘Neu-
mann’ (or ‘absolute’ boundary condition), n(w) = 0, define subspaces of Q¥ (M):

(M) = {w e Q*(M);t(w) =0on OM}; QK (M) = {w e Q*(M);n(w) =0 on IM}.

Tt is easy to check that the space Qp(M) is d-invariant, while Q is d-invariant:
d: Q- Qb 50k — o

To see this, note v# extends to a collar neighborhood of 9M as the exact 1-form
—dp, where p : M — R, is distance to M, so that:

d(v# Am) = —v# Adn and §(i,w) = —iw. (W e QY & i,w=0on M)
Thus we have differential complexes (2p,d) (increasing degree) and (Qy, J)
(decreasing degree), with (de Rham) cohomology spaces:

Ker(djgx ) HE (M) = Ker(djox )

HF (M) = ————2_  HF (M) = ——~2,
ITn(d‘Qﬁfl) b [Tn(éﬂiifl)

rel

(‘Relative’ resp. ‘absolute’ de Rham cohomology spaces.) The reason for this
terminology is the De Rham Theorem for manifolds with boundary, which states:

HEF (M) ~ H*(M,0M), HF, (M)~ H"(M).

rel abs

(Singular cohomology with R coefficients on the right.)

Twisted de Rham complex. At this point we introduce ‘twisted’ de Rham
complexes, for an arbitrary smooth twisting function f : M — R. The twisted
differential d¢ and its L? adjoint d are:

dy =eTde!, 5y =elde7.



One checks easily that dy preserves 2p and 0y preserves {1y, so again we have
two differential complexes, with cohomology spaces defined in the usual way.
For instance, to see this for Qp note: dy = d + ey (exterior product), and:

evy (W An) =df N An)=d"fA@F An) =—vF AT f A),

where we define d” f := (df);. And it’s just as easy for the formal adjoint &¢
(using d; =0 +ivy).

We claim twisting doesn’t change the absolute and relative de Rham coho-
mology spaces. To see this for the absolute cohomology, consider the isomor-
phism ¢, (w) = e~ fw from Qﬂ“\, to itself. This is in fact a chain isomorphism
from the complex (Qn,d) to (Qn,d) since:

ba(0jw) = e~ (el de™Tw) = §(paw).

(The inverse is the chain map w + efw). Therefore ¢, induces isomorphisms

in absolute de Rham cohomology: H (’fb& R H k., and henceforth we’ll use just

abs’

HE, for the cohomology space, also for the twisted complex. And likewise for
ko fTk

Hrel ~ Hrel,f‘

Naturally there are also ‘twisted” Hodge Laplacians:
A =dpdp 4+ 6pds - QF = QF

To look for expressions relating Aj; and A g, it is useful to introduce two Clifford
actions on Q(M):

cx =ex —ix, Cx =ex +ix,X €TM.
Tt is easily checked that cx is skew-adjoint in Q(M), while ¢x is symmetric.
They satisfy the following commutation relations:
exCy +eyex =0, éxéy +évex =2(X)Y), cxey +evex = —2(X,Y),
for X, Y € TM. Using the definitions, we find these are equivalent to:
exiy +iyex = (X,Y), in particular exix +ixex = |X|*.

To compute an expression for Af, we use (with summation convention, and
fi =ei(f)) in an o.n. frame (e;), normal at a given p € M:

dfdfw = —e¢,(Ve, +fi)i€j (Vej - fj)wv 5fdfw = —i¢,(Ve, — fi)eej (Vej +fj)w~

Expanding, adding the results and using the commutation relations, we find:
Afw = Agw + |V f|%w + (Hessf)(ei, ;) (€esie; — ie e, )w-

Now use i¢,ee; = —€e;le; + di; in the last term to conclude:

Al w = Agw+ |VfPw — (Af)w + 2(Hessf) (es, ej) (e i, )w.



For the last term, we note that:

2<(Hessf)(eia ej)(eeiiej )wa w> = 2(Hessf)(ei, ej)<ie71w7 iejw>'

It is useful to know that the Dirichlet and Neumann subspaces of QF ad-
mit simple descriptions in terms of the Clifford multiplications defined above.
Namely, consider the operator:

X: Qﬁ?M — Qf“aM, Xw = épepw = (ipe, — eyiy,)w.

It is easy to show this is a self-adjoint, idempotent operator (x? = Id), hence
diagonalizable with eigenvalues +1.

Lemma 1. Qp = {w;xw = —w on OM}; Qn = {w;xw =w on OM}.

Proof. An easy calculation shows that:

X(tw)) =tw), x(n(w))=-nw),

and hence: y(w) = x(t(w) + n(w)) = t(w) — n(w). Or we could note that
Qp ={w;eyiyw =w} and Qn = {w;iLe,w = w}.

Question: Do the operators Ay and A;I preserve Qp or Q7

Consider 1-forms first. Let a € QL t(a) = 0,a = gv# = gdp, for some
function g. Then:

doa=dg Ndp, dda=—(Ag)dp+ (Ap)dy,

Sa = —(dg,dp), d(6c) = —v{dg,dp)dp — [Hess(g)(ei, Vp) — Alei, V7' g)]6;,

where A is the second fundamental form of T(OM), (W(X),Y) = A(X,Y) =
(Vx1,Y), for X, Y € T(OM). Thus the tangential component of Apga« is:

t(Aga) = (Ap)d"g + Hess(g)(es, v)0; + Ales, VT 9)b:,

not zero in general. Thus Qp is not preserved by Ag.

In spite of this, there is a Hodge theory for Ay with boundary conditions
t(w) = 0 or n(w) = 0. Namely, both are elliptic boundary conditions and the
general Hodge decomposition theorem for elliptic complexes applies. Define
spaces of harmonic k-forms:

HY = {w e O Agw=0}; HE ={we 0k Agw =0},

with similar definitions for the twisted Hodge Laplacian AfH. Then we have
unique representatives of relative (resp. absolute) de Rham cohomology in these
spaces:

HE ~ My~ Hig(M); ) ~ Hy! ~ HYy, (M)



(Note AfH and Ay have the same principal symbol, as seen above.)

Twisted Dirac operators. In addition to the usual Dirac operator on Q(M):

Di=d+05=Y c,Ve, withD>=Ay,

we have a twisted version:
Dy =ds+ 0 = (d+evs)+ (0 +ivs) =D +éyy, with D} = AF.
The Dirac operator on (M) satisfies the classical Weitzenbock formula:
D?w = Apyw = V*Vw + Ruw,

with:
* 1 .
VVw = — E Vgi,eiw, Rw = 3 g Ce;Ce; Rey e w.

i,j=1
We compute the version of the formula for the twisted Hodge Laplacian, in the
pointwise quadratic form:

(DIw,w) = (Afw,w)

= (Agw,w) + (IVf = Af)|w]? + 2(Hess ) (e;, ;) (ie;w, ie,w)
= (V'Vw,w) + (Rw,w) + [[Vf|* = (Af)]|wl? + 2(Hess ) (ei, €;) (ie,w, e, w)

Next we compute the integrated twisted Weitzenbock formula with boundary
term. Recall that for the untwisted Dirac operator we have, for w € QF:

/ |Vw|? = |Dw|? + (Rw,w) = / (Vow + ¢, Dw,w) = / (e, DTw,w).
M oM oM

(For the last equality, consider a frame with e, = v and ¢; € T(OM), i =
1,...n—1, and define DTw = Z?;ll Ce; Ve,w.)

The boundary term arises, on the one hand, from the fact that:

—(V*Vw,w) + [Vw]? =D (V2 w,w) + [Vw> =) e;(Ve,w,w),

J J

a divergence term. To compute the boundary term corresponding to formal
self-adjointness of Dy, consider (in a frame (e;) normal at a given point):

<wa7w> = Z<cejvejw7w> + <EVf(JJ,CU>
J

= Z €5 <C€jw7 w> - Z<Cejwa vej'w> + <6Vfw7 (.d>
J

J



= Z ej{ce;w,w) + Z(ug Ce;Ve,w) + (w, Evyw)
J J
— dino(X) + (w, Dyw),

for a suitable vector field X. We conclude:

/M<waaw> = /M<W,wa> T /aM<ch7w>’
/M<DJ2”°"’W> = /M Dyw|? + /9M<C"wa’w>'

Thus the boundary term in the integrated Weitzenbock formula for Dy is:

which implies:

/ (Vow + ¢, Dyw, w).
oM
The integrand can be simplified as before:
(Vow+ e, Dpw,w) = (e, DT w,w) + (cvlypw,w) = (c,,D}Fw,w),
if we define D?w =DTw+ Cy fw.

The foregoing calculations prove the following lemma.

Lemma 2. Integrated Weitzenbock formula for the twisted Dirac operator,
with boundary term.

/ |Vw]?—|Djw|*+(Rw, w)+[|V = (A f)]|w]| —l—QZ Hessf)(ei, €;)(ie,w, ie;w)

0,J

:/ (Vow + ¢, Djw,w) = / (e Dfw,w).
OM oM

To make use of this expression, two things are needed: (i) interpret the boundary
term in terms of the geometry of the boundary; (ii) control the Hessian term.

Regarding the first point, we first consider untwisted operators, and p-forms
satisfying Neumann boundary conditions. (IL.e. xw = w.)

Lemma 3. Let w € QF,, yw = w. Then on 9M:

(i){c, DT w, w) ZA €i,€j) (e, W, lc,w).

(i1){ev Gy jw, w) = —v(f)|w]*.

Proof. Step 1: We show that, without assuming the Neumann condition:

x(c, DTw) + ¢, DT (xw) ZA €i,€5)Ce; (Ce; — Ce; X)W



Indeed, computing in a normal frame at p € M and using the summation
convention, the left-hand side equals:

—CCe; Ve,w + e, (E(Ve,v)eyw + E,¢(Ve,V)w + €0, Ve, w)
= —(CuCe; + Ce;C)Ve,w + Ales, e5)cuce, (Euce; + Ce,Cy)w,
where the first term vanishes, and using the commutation relations we find:
.= —A(ei, e5)ce, (Ce; — Coy X)W,

as claimed.

Step 2. We show that, still without using the boundary condition:
Z A(ei,ej)ce;(Ce; — Coj)w = 2 Z Ales, )05 Nie;w.
i,5 ,J
Indeed, (&, — ce;)w = 2i,w, while:
Ceile;W = €e;le;W — le;le,; W,

and the second term will not contribute to the sum, since it is skew-symmetric
in 7, 5. We conclude:

Z Ales,ej)ce,(Ce; — Cop)w = 2 Z Ales, ej)ec;ic;w,
] ,J
as claimed.

Step 3. Combining steps 1 and 2 and using the boundary condition yw = w
(and recalling x is self-adjoint), we find:

(e, DTw,w) = (1/2)(xc, DTw + ¢, DT (xw),w)

- 7(1/2)<Z A(eiv ej)ceq‘, (66;' — Ce; )w7w>

= —(Z Alei,e5)0; Nig;w,w) = — Z Ales, e5)(le,w, ie,w),
] (2]
concluding the proof of (i).

To see (ii) for p-forms w satisfying Neumann boundary conditions, recall
w = Xw = ¢ycyw. Then:

Cl,évfw = Cyévféucl,w = 76Vf&yw = —Evfel,w.
Taking inner product with w, note (ey e w,w) = 0 (different degrees). Thus:

(cybvjw,w) = —(iv e w,w) = —(e,w, evrw) = —v(f){ew, e,w) = —v(f)|w]?.



The right-hand side of (i) can be estimated if the boundary is p-convez: the
sum of the first p smallest eigenvalues of the second fundamental form A is
nonnegative.

Lemma 4. Suppose A has the property that the sum of any p eigenvalues
of A is greater than or equal to a constant (—\) € R. Then, if w € QX

> Alei, e5)(ie,w, e, w) > —Aw|>.
.

Proof. Let I, be the set of increasing p-multitindices, I = (1,...4p) with i; <
... <ip. Then if (e;) is a local orthonormal frame on T'(0M) with dual coframe
(0:), we have w =}, 7 wrf. Choose (e;) to diagonalize A: A(e;, e;) = Aidi;.
Then:
> Aler, en)wiwy (i, 01, ic,0.5)
1,J€T,
- Z Ak(.&}[(:}] <iek 9[; iek 9J>7
1,7

where we note (i, 01, i, 0) is nonzero only if I = J and k € I. Thus:

ZZA(elﬁel)wIwJ<iek9I77;eleJ> :Z Z Ak|(ﬂ]‘2

ol I,J1 k IeZ, kel
= Z()\“ + ...+ )\ip)\w1|2 > —)\|L«J|27
I

if A has the property given in the statement.

Combining the previous two lemmas, we have a simple inequality for the
boundary term in the integrated Weitzenbock formula for w € QF;, when the
boundary is p-convex.

Corollary 1. Assume the second fundamental form of M has the property
that the sum of any p eigenvalues is bounded below by a fixed real number A.
Then if w € QX

(e Dfw,w) < A= v(f)llwl*.

We now turn to the Hessian term in the integrated Weitzenbock formula.
Computing in an orthonormal frame (e;), normal at some p € M:

Z Hess(f)(es, ;) (ie,w, ic,w)

= Z ei[(vej f) <ieiw7 i€jw>]_Z(Vej f) <i€iV€iw7 iejw>_Z(V5j f) <Z.€riw’ iej veiw>
i\l

2] 4,3 i



= divZ + (dw,ivyw) = > _(Ve, f){w,0; Nie,)Ve,w),
2
where Z is the vector field dual to the one-form X — (ixw,ivsw). Using now
(W, 0; Nie,)Ve,w = (035 — e, €e; ) Ve,w, we conclude:

o =divZ + (0w, ivw) — (w, Vypw) + (df Aw,dw).

This is already interesting: in complete generality, the Hessian term reduces, up
to a divergence, to geometric first-order terms.

Now suppose A};w = 0. Then dfw = 0 and dyw — 0, that is: dw =
—iysw,dw = —df A w. Substituting in the above, we find:

(dw,ivw) + (df Nw,dw) = —\ivfw|2 — |df /\w|2 = —|Vf|2|w|2.

We conclude:

Lemma 5. Suppose w € Hé’v’f orw € H%,f‘ Then:

;Hess(f)(ei,ej)<ieiw,z'ejw> = —/M |Vf|2|w|2—/M<w,vaw>+/aM<i,,w,ivfw).

Remark 1: Note that the last term vanishes if w € QIJ’V.

Remark 2: The sum of the first two terms is bounded below by:
3 1
= [ Giese— [ SvaP
/M 2 M2

PART 2: POSITIVE ISOTROPIC CURVATURE.

Definitions. Let (M, g) be a Riemannian manifold, where we also denote
the Riemannian metric by (-,-). There are two natural ways to extend the
metric to the complexified tangent bundle, TM¢ := TM ® C. We can extend
it as a symmetric, C-bilinear form: if z = z + iy, w = u + iv are in T, M (with
z,y,u,v € T,M), set:

(z,w) = (z + iy, u+iv) := (z,u) = (y,v) +il{y, u) + (z,v)].

Or we can extend it as a hermitian inner product (conjugate-linear in the second
entry), by setting:

<<va>> = (Z,’LD) = (a:,u) + <y7U> +i[<y7u> - <.T,U>].

Similarly, the induced inner product on each exterior bundle A¥T*M extends
in two ways to its complexification A¥(M) = A*T*M ® C.



Recall that the curvature operatoris the symmetric linear operator R defined
on A2TM in therms of the (3,1) curvature tensor R by:

(R(z Ay),uAv) = (R(x,y)v,u), z,y,u,veT,M.

(Note the order, which corresponds to the convention that sectional curvatures
are diagonal components of R.) This naturally extends to a C-linear, self-
adjoint operator (for the hermitian metric) R on A%(M). We use it to define
the hermitian sectional curvature K¢ of a complex two-dimensional subspace
o CTgM: if {z,w} is a basis for o,

K¢(o) := (R(z Aw), z Aw)) /|2 Awl |2
(where in the denominator we also use the hermitian inner product.)

To express this in Riemannian terms, we expand it (with z = z + iy,w =
u + v) to obtain:

((R(zAw, zAw)) = (R(zAu—yAv), zAu—yAv) +(R(zAv+yAu), s Av+yAu),

a real number. Expanding further, using the definition of R, we find in terms
of the (4,0) curvature:

- = (R(z, u)u, ) +(R(y, v)v, y)+(R(z, v)v, ) +(R(y, u)u, y) —2(R(z, u)v, y)+2(R(y, u)v, ),

where (if z,y,u,v happen to be orthornormal) the first four terms are (real)
sectional curvatures, while the last two equal:

—2(R(z,u)v, y)+2(R(x,v)u,y) = 2({R(u, z)v,y)+2(R(z,v)u,y) = —(R(v,u)z,y) = (R(z,y)u,v),

by the algebraic Bianchi identity. We conclude that, if {z,y,u,v} is real-
orthonormal, the hermitian sectional curvature of ¢ is the real number:

K(o)=Kpu+ Kop+ Kyu+ Ky —2R(z,y,u,v).

A condition guaranteeing orthonormality of the real and imaginary parts of
a complex basis is the following.

Definition. A vector z € T, M€ is isotropic if (z, z) = 0 (using the C-bilinear
form.) A subspace o C T,M° is totally isotropic if every vector in o is. Note
that in terms of the real and imaginary parts this means:

lz> = y>, (z,y)=0, z==z+iy,z,yecT,M.

Definition. (M, g) has positive sectional curvature on isotropic two-planes (in
short: ‘positive isotropic curvature’, PIC) if K¢(o) > 0 whenever o C Ty M is
an isotropic complex-two-dimensional subspace.

To understand what this means in Riemannian terms, let ¢ C T,M¢ be a
complex two-dimensional subspace. We may choose a standard basis {z,w} for
o, one satisfying, for the hermitian inner product:

121 = llwll* =25 {(z,w)) =0.



Ezercise. Show that a standard basis {z,w} of a (complex) two-dimensional
subspace 0 C T, M ¢ has the property that the real and imaginary parts: z = e;+
e, w = eg+iey of z, w define a Riemannian-orthonormal basis {e1, e2, €3, €4} for
a (real) four-dimensional subspace of T,,M if, and only if, o is totally isotropic.

Hint: In addition to (z,z) = (w,w) = 0, use also (z +w, z + w) = 0, which
implies (z,w) = 0.

Thus, for an isotropic complex two-plane o C T),M*¢:
Kc(a) = K€17€3 + K€17€4 + K€27€3 + K€27€4 - 2R(€1, €2, €3, 64)7

in terms of a ‘standard basis’ {z, w} for o and its real and imaginary parts z =
e1+ieg, w = ez + ies. Equivalently, with the notation R, := (R(e;, ej)ex, er):

K¢(0) = Ris31 + Riaa1 + Rass2 + Roaa2 — 2R1234.

The following proposition relates the hermitian sectional curvature K¢(o)
of isotropic 2-planes o C T7M to the Weitzenbock curvature operator R on
2-forms.

Proposition 1. Assume the dimension of M is even, n = 2m > 4. Let
w € A2(T*M)¢. Then:
(Rw,w) > (m — 1)|w* min{ K°(c); 0 C T, M€ isotropic complex 2 — plane},

Proof. The proof is based on the following facts:
(a) The Weitzenbdck curvature operator R on exterior forms w € A¥(T* M)
admits the alternative expression:

Rw = 0; Nie,Ree,w.
g
(b) The curvature tensor acts on 2-forms w as a derivation, as follows:
(nyyw)(Z, W) = —W(nyyZ, W) - W(Z7 Rx)yW).

(c) There is a canonical isomorphism A?(T*M)¢ ~ so(2m,C), defined by
Lenn(X) = &(X)n* — n(X)E#. Elements of the Lie algebra so(2m,C) ad-
mit a standard block-diagonal form. Geometrically this means that given w €
A?(T*M)¢, we may find a real orthonormal frame (e;)?™,, with coframe (6;)2™,
which puts w in ‘standard form’, that is, at any p € M there exist coefficients

wi(p) € C so that:
w(p) =D wi(p)fai—1 A ba;.
i—1

(This is where the fact n is even is used crucially.)

10



To understand this computation, consider first the case n = 4,m = 2. Let
the 2-form w have the representation (at a given p € M):

w:w101A02+w293A94, wl,WQG(C.
Then using (a) and (b) one finds:
(R(61 A 02),01 A 03) = Rizz1 + Riaar + Rasso + Roaao,

(R(03 A B4),03 A Bs) = R3113 + Ra203 + Rar1a + Raoou,

while
<R(91 A 92), 03 N 94> = 2R1934, <R(93 A\ 94), 01 A 92)> = 2R3412.

Using the algebraic symmetries of the Riemann (4,0) curvature R, we easily
compute from this:

(Rw,w) = (Jw1|? + |w2|?) (Ri331 + Riaa1 + Razsz + Rogan) — (w12 + wo@1]2R1234.

= (Jw1|* + |w2|?) (Ri331 + Riaa1 + Rozzz + Rogsn — 2R1234) + w1 — wa|*2R1234,

where the second term is nonnegative if Rja34 > 0 (which may always be as-
sumed by relabeling). We conclude, in this case (n = 4):

(Rw,w) > K¢(o)|w|?,

where o is the totally isotropic complex 2-plane spanned by {e; + iez, e3 +ieq}.

In the general case (n = 2m > 4), a similar calculation (see [1]) yields the
result:

(Rw,w) > (lwil® Y K(0i)),
i=1 §=1,ji

where o;; is the isotropic 2-plane spanned (over C) by {e2;—1 ++/—1lea;, e25-1+
v/ —ley;} (a ‘standard basis’ of o;j, in the sense defined above). We conclude
that, pointwise on M:

(Rw,w) > (m — 1)|w|?* min{ K°(0); o C T, M® isotropic complex 2 — plane},
with equality achieved in some cases (i.e. this lower bound is ‘sharp’.)
Question: What estimate do we get if dim(M) is odd?

Combining all the foregoing results, we obtain the following:

Omnibus Lemma 6. Suppose (M™, g) is a compact manifold with bound-
ary, satisfying:

(i) » = 2m is even, and the hermitian sectional curvature K¢(I) > o for
each isotropic complex 2-plane II C T, M,

11



(ii) The second fundamental form of OM satisfies A(X, X))+ A(Y,Y) > —4,
for each {X,Y} orthonormal vector fields tangent to OM.

Given f : M — R smooth, let w € H?V)f be an f-harmonic 2-form with
Neumann boundary conditions. (In particular, Dsw = 0.)
Then we have:

0= / IVeol? + (R, w) + [V = (Af)]w]?
M

—|—2Z(Hessf)(ei,q)(ieiw,iejw)—/ (c,,D?w,w}

oM

> /M IVl + (m - 1o /M wf? + /N VSR = (AP

_/M3|Vf‘2|w‘2—/M|Vw|2+/aM[,,(f)_5]|w|2.

= [ fm=vo—@n =29l + [ )=o)

(cp- [1], (4.2))
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