
Yau’s theorem on positive harmonic functions in nonnegative Ricci
curvature.

Theorem. Let M be a complete, noncompact Riemannian manifold with
the lower Ricci curvature bound Ric(X,X) ≥ −(n − 1)a2|X|2. Let f be a
positive harmonic function on M . Then we have the bound, pointwise on M :

|df |
f

≤
√
2(n− 1)a.

In particular, if Ric ≥ 0 on M , then f is constant.

Proof. 1 Let ef = |df |2, the ‘energy density’ of f . Fix an arbitrary x0 ∈ M
and any R > 0. Denote by r the distance function to x0. In a closed ball
BR = BR(x0) where f is non-constant, consider the continuous function:

Φ(x) = (R2 − r(x)2)2
ef
f2

(x).

Φ is nonnegative, continuous on BR and zero on ∂BR, and hence attains an
interior, positive global max at some point z ∈ int(BR) (or else is identically
zero, and hence ef ≡ 0, a contradiction.)

If r were smooth in a neighborhood of z, we would now consider the condi-
tions d log Φ(z) = 0, ∆ logΦ(z) ≤ 0. But r may fail to be smooth near z, for
instance if z is in the cut locus of x0. We’re interested in these conditions at z
only, and a key idea is to replace r by a smooth function ρ, locally near z.

Lemma 1. There exists a neighborhood W ⊂ int(BR) of z (an open
geodesic ball with center z) and a positive smooth function ρ : W → R so
that: (i) ρ(x) ≥ r(x) in W and ρ(z) = r(z); (ii) |dρ|(z) = 1; (iii) ρ∆ρ(z) ≤
(n− 1)aρ(z) coth aρ(z).

Using ρ, we consider the smooth function of x ∈ W :

Φ0(x) = (R2 − ρ(x)2)2
ef
f2

(x).

Note that, from condition (i) in the lemma, we may assume (taking a smaller
W if needed) ρ(x) ≤ R for x ∈ W ; so 0 < R2 − ρ(x)2 ≤ R2 − r(x)2 for x ∈ W ,
and thus Φ0(x) ≤ Φ(x) ≤ Φ(z) = Φ0(z) for x ∈ W ; so z is an interior maximum
point for Φ0 in W , and the argument may proceed.

The critical point condition d log Φ0(z) = 0 yields:

− 4ρdρ

R2 − ρ2
+

def
ef

− 2
df

f
= 0, so (

def
ef

− 2
df

r
)(z) =

4ρdρ

R2 − ρ2
(z).

1Essentially the proof given in [Wu, pp. 71-75], except for minor changes of notation and
rearrangement.
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The Laplacian condition at z is:

∆ log(R2 − ρ2)2 + {∆ef
ef

− |def |2

e2f
+ 2

ef
f2

} ≤ 0 at z,

where the assumption ∆f = 0 has been used in computing the last term. To
estimate the second term (in curly brackets) we recall the Bochner formula for
the harmonic 1-form df :

∆ef = ∆|df |2 = 2|D2f |2 + 2Ric(∇f,∇f) ≥ 2|D2f |2 − 2(n− 1)a2ef ,

where D2f = ∇df is the Hessian of f , and appeal to the following ‘calculus
lemma’:

Lemma 2. Let f be a non-constant harmonic function on a Riemannian
manifold M . Then the norm squared of the Hessian of f may be estimated (at
each non-critical point of f) in terms of the norm squared of the differential of
its energy density ef = |df |2:

|D2f |2 ≥ (
1

4
+

1

8(n− 1)
)
|def |2

ef
.

(Note that at a critical point of f , the statement of the theorem is trivial.)
Combining Lemma 2 and the Bochner formula, we find:

∆ef
ef

− |def |2

e2f
≥ −(

1

2
− 1

4(n− 1)
)
|def |2

e2f
− 2(n− 1)a2.

Next we need to bound (at the critical point z)
|def |2
e2f

from above, in terms of

|df |2
f2 =

ef
f2 .To do this we use the critical point condition at z, combined with

the elementary inequality (a+ b)2 ≤ (1 + 1
t )a

2 + (1 + t)b2 (for any t > 0):

|def |2

e2f
= |2df

f
+

4ρdρ

R2 − ρ2
|2 ≤ 4

ef
f2

(1 +
1

t
) +

16R2

(R2 − ρ2)2
(1 + t) at z,

where we also used the facts ρ(z) = r(z) ≤ R and |dρ|(z) = 1 (lemma 1.)

Putting all of this together and rearranging we find, for the term in curly
brackets in the Laplacian condition at z, the estimate:

∆ef
ef

− |def |2

e2f
+2

ef
f2

≥ A(t)
ef
f2

− (
1

2
− 1

4(n− 1)
)

16R2

(R2 − ρ2)2
(1+ t)− 2(n− 1)a2,

where:

A(t) = −2

t
+

1

n− 1
(1 +

1

t
).

Note that one easily finds T > 0 depending only on n, so that A(t) > 0 if t > T ;
and also that A(t) → 1

n−1 as t → ∞.
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To estimate (from below, at z) the first term in the Laplacian condition at
z, we appeal to the following:

Corollary of Lemma 1. At the local max z of Φ (or of Φ0), we have:

∆ log(R2 − ρ2)2 ≥ −4nR2(2 +Ra)

(R2 − ρ2)2
.

Thus, at z we have:

A(t)
ef
f2

≤ 4R2

(R2 − ρ2)2
[n(2 +Ra) + (2− 1

n− 1
)(1 + t)] + 2(n− 1)a2.

Now use the easy upper bound:

4R2[n(2 +Ra) + (2− 1

n− 1
)(1 + t)] ≤ 4R2[n(2 +Ra) + 2(1 + t)] := γ(R, t).

So at z: A(t)
ef
f2 ≤ 2(n−1)a2+γ(R2−ρ2)−2. We conclude that, at z (assuming

t > T ):

Φ0(z) = (R2 − ρ2)2
ef
f2

(z) ≤ 1

A(t)
[2(n− 1)a2(R2 − ρ2)2 + γ(R, t)].

Since z is a global maximum point for Φ in BR = BR(x0) and ρ(z) = r(z), we
have:

R4 ef
f2

(x0) = Φ(x0) ≤ Φ(z) = Φ0(z) ≤
1

A(t)
[2(n− 1)a2(R2 − r(z)2)2 + γ(R, t)].

Dividing both sides by R4 and noting (R2 − r(z)2)2R−4 ≤ 1, we have:

ef
f2

(x0) ≤
1

A(t)
[2(n− 1)a2 +

γ(R, t)

R4
].

Now fix t > T and take limits as R → ∞. Since the dependence of γ(R, t) on R
is cubic, the term γ(R, t)R−4 vanishes in the limit, and we have:

ef
f2

(x0) ≤
2(n− 1)a2

A(t)
, ∀t > T.

Taking limits now as t → ∞, we conclude:

ef
f2

(x0) ≤ 2(n− 1)2a2,

as we wished to show.

Proof of Lemma 2. Fix x0 ∈ M , a non-critical point of f , and pick a normal
orthonormal frame at x0, ν = e1, e2, . . . , en, where ν = ∇f/|∇f | is normal to
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the level set of f at x0, and ei(f) = 0 at x0 for i ≥ 2. (Recall ‘normal frame at
x0’ means ∇Xei(x0) = 0, for all X ∈ Tx0M.) In particular we have at x0:

ef = ν(f)2, D2
eiejf|x0

= ei(ejf)|x0
,

and with (θi, i = 1, . . . n the co-frame):

def = 2

n∑
i,j=1

(ejf)ei(ejf)θ
i = 2ν(f)

n∑
i=1

D2
ei,νfθ

i,

so at x0:

|def |2 = 4ef

n∑
i=1

(D2
ei,νf)

2.

We estimate the norm squared of the Hessian at x0 from below by leaving out
the sum of terms (D2

ei,ejf)
2 with i ̸= j and both greater than 1:

|D2f |2 ≥
n∑

j=1

(D2
ν,ejf)

2 +

n∑
j=2

(D2
ej ,ejf)

2 +

n∑
j=2

(Dej ,νf)
2 = (a) + (b) + (c),

where for the first term: (a) =
|def |2
4ef

at x0. We estimate (b) using Cauchy-

Schwarz and the assumption ∆f = 0:

n∑
j=2

(D2
ej ,ejf)

2 ≥ 1

n− 1
(∆f−D2

ν,νf)
2 ≥ 1

n− 1
(
1

2
(D2

ν,νf)
2−(∆f)2) =

1

2(n− 1)
(D2

ν,νf)
2.

We combine these two estimates for (a) and (b) and multiply (c) by a factor
smaller than one to conclude:

(a) + (b) + (c) ≥ |def |2

4ef
+

1

2(n− 1)
[(D2

ν,νf)
2 +

n∑
j=2

(D2
ej ,νf)

2],

and then notice the term in square brackets is again equal to (a), and therefore
at x0:

|D2f |2 ≥ (
1

4
+

1

8(n− 1)
)
|def |2

ef
,

as we wished to show.

Proof of the Corollary to Lemma 1. From Calculus we have, at the critical
point z of Φ0:

∆ log(R2 − ρ2)2 = − 4ρ∆ρ

R2 − ρ2
− 4|dρ|2

R2 − ρ2
− 8ρ2|dρ|2

(R2 − ρ2)2

= − 4

R2 − ρ2
(ρ∆ρ+

R2 + ρ2

R2 − ρ2
)
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(Note ρ(z) = r(z) < R.) From lemma 1, we have |dρ|(z) = 1 (already used
above), and the estimate:

ρ∆ρ ≤ (n− 1)aρ coth(aρ) ≤ (n− 1)(1 + aρ),

where we also used the Calculus estimate 1 ≤ t coth t ≤ (1+t), ∀t > 0 (exercise.)
Thus:

ρ∆ρ+
R2 + ρ2

R2 − ρ2
≤ 1

R2 − ρ2
[(n− 1)(R2 − ρ2)(1 + aρ) +R2 + ρ2],

and we estimate the expression in square brackets as follows:

[. . .] ≤ nR2(1+aR)+2R2 = R2[n(1+aR)+2] ≤ R2[n(1+aR)+n] = nR2(2+aR),

and we conclude, as desired:

∆ log(R2 − ρ2)2 ≥ −4nR2(2 + aR)

R2 − ρ2
.
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