Yau’s theorem on positive harmonic functions in nonnegative Ricci
curvature.

Theorem. Let M be a complete, noncompact Riemannian manifold with
the lower Ricci curvature bound Ric(X,X) > —(n — 1)a?|X|?>. Let f be a
positive harmonic function on M. Then we have the bound, pointwise on M:

i{ <V2(n—1)a.

In particular, if Ric > 0 on M, then f is constant.

Proof. ' Let e; = |df|?, the ‘energy density’ of f. Fix an arbitrary zop € M
and any R > 0. Denote by r the distance function to xy. In a closed ball
Bpr = Bgr(xg) where f is non-constant, consider the continuous function:
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®(x) = (R” —r(z)) ﬁ(ﬂf)-
® is nonnegative, continuous on Br and zero on dBpg, and hence attains an
interior, positive global max at some point z € int(Bg) (or else is identically
zero, and hence ey = 0, a contradiction.)

If r were smooth in a neighborhood of z, we would now consider the condi-
tions dlog ®(z) = 0, Alog ®(z) < 0. But r may fail to be smooth near z, for
instance if z is in the cut locus of zg. We’re interested in these conditions at z
only, and a key idea is to replace r by a smooth function p, locally near z.

Lemma 1. There exists a neighborhood W C int(Bg) of z (an open
geodesic ball with center z) and a positive smooth function p : W — R so
that: (i) p(x) > r(z) in W and p(z) = r(z); (i) |dp|(z) = 1; (iii) pAp(z) <
(n — 1)ap(z) cothap(z).

Using p, we consider the smooth function of x € W:

e
Po(w) = (1 = ple)*)* 5 (2).

Note that, from condition (i) in the lemma, we may assume (taking a smaller

W if needed) p(z) < R for 2 € W; s0 0 < R? — p(x)? < R*> — r(x)? for z € W,

and thus ®p(x) < (z) < &(2) = Py(z) for x € W; so z is an interior maximum

point for @y in W, and the argument may proceed.

The critical point condition dlog ®¢(z) = 0 yields:
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I Essentially the proof given in [Wu, pp. 71-75], except for minor changes of notation and
rearrangement.



The Laplacian condition at z is:

Aey  |deg|?
- 2

Alog(R? — p*)? +{
er

€f
+ QF} <0 at z,
where the assumption Af = 0 has been used in computing the last term. To
estimate the second term (in curly brackets) we recall the Bochner formula for
the harmonic 1-form df:

Aey = Aldf|> = 2|D*f|* + 2Ric(V f, V) > 2|D*f|* — 2(n — 1)a’ey,

where D?f = Vdf is the Hessian of f, and appeal to the following ‘calculus
lemma’:

Lemma 2. Let f be a non-constant harmonic function on a Riemannian
manifold M. Then the norm squared of the Hessian of f may be estimated (at
each non-critical point of f) in terms of the norm squared of the differential of
its energy density ey = |df|?:
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(Note that at a critical point of f, the statement of the theorem is trivial.)
Combining Lemma 2 and the Bochner formula, we find:
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Next we need to bound (at the critical point z) Id:%‘ from above, in terms of
G
2
|icf2‘ = ;—é .To do this we use the critical point condition at z, combined with

the elementary inequality (a +b)% < (14 1)a® + (14 t)b? (for any ¢ > 0):
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where we also used the facts p(z) = r(z) < R and |dp|(z) = 1 (lemma 1.)

Putting all of this together and rearranging we find, for the term in curly
brackets in the Laplacian condition at z, the estimate:
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Note that one easily finds T' > 0 depending only on n, so that A(t) > 0if ¢ > T;
and also that A(t) — —; as t — oo.



To estimate (from below, at z) the first term in the Laplacian condition at
z, we appeal to the following:

Corollary of Lemma 1. At the local max z of ® (or of @), we have:
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Thus, at z we have:
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Now use the easy upper bound:

A(t) 02+ Ra) + (2~ —)(1+ ] +2(n — 1)a?

AR?[n(2 + Ra) + (2 ﬁ)(l +1)] < AR2[n(2 + Ra) + 2(1 + )] i= 7 (R, ).

So at z: A(t)# < 2(n—1)a® +y(R? - p®)~2. We conclude that, at z (assuming
t>T):

W) = (7 =0 () < 4

Since z is a global maximum point for ® in Br = Br(zo) and p(z) = r(z), we
have:

[2(n = 1)a*(R? - p*)* + 7(R,1)].

R ;’;( 0) = ®(z0) < B(2) = Ro(2) < ﬁ@(n —1)a*(R? = r(2)?)? + (R, 1)).
Dividing both sides by R* and noting (R? — r(2)?)2R~* < 1, we have:
R
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Now fix t > T and take limits as R — oo. Since the dependence of v(R,t) on R
is cubic, the term v(R,t)R~* vanishes in the limit, and we have:
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Taking limits now as t — oo, we conclude:

vt >T.

(o) < 2(n — 1)%a?,

as we wished to show. O

Proof of Lemma 2. Fix xq € M, a non-critical point of f, and pick a normal
orthonormal frame at xo, v = ej,eq,...,e,, where v = Vf/|V f] is normal to



the level set of f at xg, and e;(f) = 0 at g for i > 2. (Recall ‘normal frame at
xo’ means Vxe;(zg) =0, for all X € T, M.) In particular we have at xg:

ef:V(f)27 Dgiejf\xo :ei(ejf)lwo’
and with (0%,i = 1,...n the co-frame):
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so at xg:
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We estimate the norm squared of the Hessian at xg from below by leaving out
the sum of terms (Dghejf)2 with ¢ # j and both greater than 1:
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where for the first term: (a) = “ieeff at zo. We estimate (b) using Cauchy-

Schwarz and the assumption Af = 0:
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We combine these two estimates for (a) and (b) and multiply (c¢) by a factor
smaller than one to conclude:
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and then notice the term in square brackets is again equal to (a), and therefore
at zop:
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as we wished to show. O

Proof of the Corollary to Lemma 1. From Calculus we have, at the critical
point z of ®g:
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(Note p(z) = r(z) < R.) From lemma 1, we have |dp|(z) = 1 (already used
above), and the estimate:

plp < (n — Dapcoth(ap) < (n— 1)(1+ ap),

where we also used the Calculus estimate 1 < tcotht < (1+t), Vt > 0 (exercise.)
Thus:

R% + p? 1
R _p2 = Rz,pz[(n

pAp + —D(R? = p*)(1 +ap) + R* + p?,

and we estimate the expression in square brackets as follows:
[...] <nR?*(14+aR)+2R?* = R* [n(1+aR)+2] < R*[n(1+aR)+n] = nR*(2+aR),
and we conclude, as desired:
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