PROBLEMS ON DE RHAM COHOMOLOGY¹

- 1. Let N be a submanifold of the manifold M (with positive codimension.). Let $\alpha \in \Omega^r(M)$ and $\beta = \alpha_{|N}$.
- (a) α is closed if, and only if, $d\beta(x) = 0$ for all $x \in N$. (Prove or give a counterexample.)
- (b) α is exact if, and only if, for all submanifolds $N\subset M$ of codimension 1, the restriction $\beta=\alpha_{|N}$ is exact.
- **2.** Denote by P_n the set of upper-triangular $n \times n$ matrices with positive diagonal entries. Prove that GL(n) is diffeomorphic to the product of manifolds $P_n \times SO(n)$. Explain why this implies the de Rham cohomology spaces $H^r(GL(n))$ are finite-dimensional.
- **3.** Let M be a contractible n-dimensional-manifold (that is, properly homotopy equivalent to a point.) Prove that $H_c^r(M) = 0$, for al $r \neq n$.
- **4.** Let $T \subset \mathbb{R}^3$ be the torus of revolution, let M be the unbounded connected component of $\mathbb{R}^3 \setminus T$. Prove that $H^r(M) \approx \mathbb{R}$ for r = 1, 2, 3.
- **5.** Let M be a compact, connected, oriented n-dimensional manifold. Prove that for any $m \in \mathbb{Z}$ there exists a continuous map $f: M \to S^n$ of degree m.
- **6.** Let M be a compact, connected, oriented n-dimensional manifold. If there exists an r with 0 < r < n and $H^r(M) \neq 0$, prove that any smooth map $f: S^n \to M$ has degree 0.
- **7.** Relative de Rham cohomology. Let $N \subset M$ be a compact submanifold of positive codimension. Denote by $\Omega^r(M;N)$ the vector space of r-forms ω on M with compact support, such that $\omega_{|N}=0$ (that is, $\omega(x)(v_1,\ldots,v_r)=0$ if $x\in N,v_1,\ldots,v_r\in T_xN$.).

Denote by $H_c^r(M; N)$ the r-dimensional cohomology space of the complex:

$$\ldots \to \Omega_c^r(M;N) \to \Omega_c^{r+1}(M;N) \to \ldots$$

Prove that $H_c^r(M; N)$ is isomorphic to $H_c^r(M \setminus N)$.

 $^{^1 {\}rm Source:}\ Basic\ Homology,\ 2{\rm nd.}\ {\rm ed.,}\ {\rm by\ Elon\ L.}\ {\rm Lima,\ IMPA\ 2012.}$