
MORSE THEORY NOTES

1. Local normal form of a function at a non-degenerate critical
point and the Morse Lemma.

1.1. Linear algebra step. Any B ∈ Symn non-degenerate (zero is not an
eigenvalue) can be diagonalized by an orthogonal matrix:

QTBQ = diag(λ1, . . . , λn), λi ̸= 0, Q ∈ On.

Without requiringQ to be orthogonal, it is easy to see we can assume all diagonal
entries are ±1:

QTBQ = A = diag(a1, . . . an), ai = ±1, Q ∈ GLn.

Claim. Fixing a standard form A = diag(a1, . . . , an) with ai = ±1, the di-
agonalizing matrix depends smoothly on B, for B ∈ Symn close to A in the
natural topology of Symn. More precisely, there exists a neighborhood NA of
A in Symn and a smooth map P : NA → GLn so that:

P (B)TBP (B) = A, ∀B ∈ NA, P (A) = In.

We present the proof in the case n = 2 (for the inductive argument for all n, see
[Hirsch, p.145], but beware the typo: the factor |b|−1/2 multiplies all entries of
Q). To avoid LateX coding, write 2×2 matrices in the form T = [t11, t12, t21, t22].

Given A = [a1, 0, 0, a2] with ai = ±1 and B = [b, c, c, d] ∈ Sym2 close to A
(so b ∼ a1, c ∼ 0, d ∼ a2), let Q = |b|−1/2[1, 0,−cb−1, 1]. By direct computation,
and using b

|b| = a1, we find:

QTBQ = [a1, 0, 0, d− c2b−1].

Note d − c2b−1 ∼ a2 ̸= 0, so define α > 0 by α2(d − c2b−1) = a2. Setting
P = Q[1, 0, 0, α] = |b|−1/2[1, 0,−cb−1, α], we find PTBP = [a1, 0, 0, a2] = A.
Clearly the function with values in GL2:

B = [b, c, c, d] 7→ P (B) = |b|−1/2[1, 0,−cb−1, |d− c2b−1|−1/2] ∈ GL2

is smooth in a neighborhood N ⊂ Sym2 of A, and satisfies P (A) = I2.

1.2. Calculus step. Let g : V → R be a smooth function, where V ⊂ Rn is a
convex neighborhood of the origin. Suppose g(0) = 0 and dg(0) = 0 (thus, 0 is
a critical point of g.) There exists a smooth function from V to Symn, x 7→ Bx,
so that:

g(x) =

n∑
i,j=1

bij(x)xixj , bij(0) = ∂2x1xj
g(0).

Proof. By the FTC, using g(0) = 0 and integrating along the ray in V from the
origin to x ∈ V :

g(x) =

∫ 1

0

dg

dt
(tx)dt = (

∫ 1

0

n∑
i=1

∂xig(tx)dt)xi.
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Applying the same integration argument to the partial derivatives (using the
fact they all vanish at the origin):

(∂xi
g)(tx) =

∫ 1

0

dgxi

ds
(stx)ds =

∑
j

(

∫ 1

0

(∂2xjxi
g)(stx)ds)xj .

We conclude:

g(x) =

n∑
i,j=1

bij(x)xixj , bij(x) =

∫ 1

0

∫ 1

0

(∂2xixj
g)(stx)dsdt.

Remark: Note that by taking V small enough, we obtain that the image Bx of
this map is contained in an arbitrarily small neighborhood of the Hessian matrix
of g at 0, Hg(0) = [∂2xixj

g(0)]. From the expression for Bx we have B0 = Hg(0).

1.3 Normal form lemma. Let g : U → R be a smooth function in a neigh-
borhood of 0 ∈ Rn. Suppose g(0) = 0 and 0 is a non-degenerate critical point
of g. Let A = diag(a1, . . . , an), ai = ±1, be the standard diagonal form of the
Hessian Hg(0). Then there exist small neighborhoods V, V1 ⊂ U of the origin
and a diffeomorphism φ : V → V1, y = φ(x), so that g ◦ φ−1 has the form:

(g ◦ φ−1)(y) =
∑
i

aiy
2
i .

Proof. By (1.2), we have g(x) =
∑

i,j bij(x)xixj , where Bx = (bij(x)) ∈ Symn

is defined and smooth in a neighborhood V of 0, B0 = Hg(0). Taking V small
enough, we find Bx ∈ N for all x ∈ V , where N is the neighborhhood of A in
Symn found in (1.1), on which the smooth map P : N → GLn is defined. Let
Qx = P (Bx) ∈ GLn (defined by QT

xBxQx = A) and define φ on V by:

φ(x) = Q−1
x [x].

Then φ(0) = 0 and the differential at 0 Dφ(0) = In. By the inverse function
theorem, φ is a diffeomorphism in a neighborhhood of the origin (which we still
denote by V ), with image equal to V1, a second neighborhood of the origin.

Let y = φ(x) Then y = Q−1
x x, or x = Qxy. Thus:

g(x) = xTBxx = yTQT
xBxQxy = yTAy =

∑
i

aiy
2
i ,

or (g ◦ φ−1)(y) =
∑

i aiy
2
i .

1.4 Morse Lemma. If 0 ∈ Rn is a nondegenerate critical point of g : V → R
of index k, we may assume the first k entries ai in the standard form A of
Hg(0) equal -1 and the last n − k equal 1. Thus there exists a decomposition
Rn = Rk ⊕ Rn−k, y = (u, v), with respect to which we have:

g ◦ φ−1(y) = −|u|2 + |v|2.

2



Thus, if f : M → R is a smooth function on a smooth manifold M and p ∈ M
is a nondegenerate critical point of f , with index k, there exists a local chart
ψ : U → V ⊂ Rn at p so that, in this chart:

f ◦ ψ−1(y) = f(p)− |u|2 + |v|2, y = (u, v) ∈ V ⊂ Rk ⊕ Rn−k.

4. Morse inequalities.
Let M be a compact n-dimensional manifold, f :M :→ R a Morse function.

For p = 0, . . . , n, let:

βp = rank Hp(M) (Betti numbers), νp = #{critical points of index p} (‘type numbers’).

Theorem. We have:

(a)

n∑
p=0

(−1)pνp =

n∑
p=0

(−1)pβp := χ(M) (euler characteristic).

(b)for each 0 ≤ m ≤ n :

m∑
p=0

(−1)m+pνp ≥
m∑

p=0

(−1)m+pβp.

Note that adding the statements of (b) for m− 1 and m, we find:

(c)νm ≥ βm, 0 ≤ m ≤ n.

Statement (c) is striking: the number of critical points of a given index for any
Morse function on M (a generic kind of function) is bounded below by the rank
of homology in that dimension: topology gives a lower bound on critical points!

Also, comparing the statements (b) for m = n and m = n − 1 yields (a).
For this reason, sometimes (a),(c) are referred to as “weak Morse inequalities”,
while (b) are the “Morse inequalities”.

Preparation for proof. First, by perturbing f slightly (without changing the
critical points zi or their index), we may assume the f(zi) are all distinct. For in-
stance, let Ui be a small open neighborhood of zi, and consider a smooth function
λi :M → [0, 1], supported in Ui and identically 1 in a smaller neighborhood of zi.
Then, for judiciously chosen small ϵi > 0, the function g(x) = f(x)+

∑
i ϵiλi(x)

achieves what we want.

Thus each critical value ci has only one critical point zi (of index ki between 0
and n) in its preimage. Pick the indices so the critical values ci are an increasing
sequence, then choose regular values ai, i = 0, . . . , N separating the critical
values, with a0 smaller than the minimum value c0 of f and aN larger than the
maximum value cN (so f(z0) = c0 with index 0 and f(zN ) = cN of index n):

a0 < c0 < a1 < c1 < . . . < aN−1 < cN < aN .
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For j = 0, . . . N , consider the sublevel setMj = f−1[a0, aj ] = {x ∈M ; f(x) ≤
aj}, a manifold with boundary ∂Mj equal to the (regular) level set at aj . Clearly
M =MN is the increasing union of the Mj , with M0 = ∅. Adopt the notation:

β(p, j) = rk Hp(Mj), j = 0, . . . , n, so β(p, 0) = 0, β(p,N) = βp.

α(p, j) = rk Hp(Mj ,Mj−1), j = 1, . . . N.

In part (3) we proved that Mj differs from Mj−1 (up to homotopy type) by
attaching a cell of dimension kj . More precisely, there exists a closed kj-cell e

kj

contained in the interior ofMj , with boundary ∂ekj ⊂Mj−1, so thatMj−1∪ekj

is a deformation retract of Mj . So we have inclusions:

Aj := (Mj−1 \ ∂ekj ) ⊂Mj−1 ⊂Mj−1 ∪ ekj , Aj ⊂Mj−1,

(Mj−1 ∪ ekj ) \Aj = ekj , Mj−1 \Aj = ∂ekj .

Thus, by the excision theorem (excising Aj) and the fact Mj−1 ∪ ekj is a defor-
mation retract of Mj , we have, for each p = 0, . . . , n:

Hp(Mj ,Mj−1) ≈ Hp(Mj−1 ∪ ekj ,Mj−1) ≈ Hp(e
kj , ∂ekj ),

which has rank equal to 1 if p = kj and 0 otherwise.

Thus the terms in the sum
∑N

j=0 α(p, j) (for fixed p) are equal to 1 if kj = p
and zero otherwise. In other words, the value of the sum is the number of j for
which kj = p, that is, the number of critical points of f of index p, which we
have denoted by νp.

Proof of statement (a) in the theorem. Recall the fact (exercise 5.5 in [Rot-
man, p. 87] ) that in any long exact sequence of finitely generated abelian
groups:

0 → An → An−1 → . . .→ A1 → A0 → 0

the alternating sum of ranks vanishes:
∑n

j=0(−1)jrk(Aj) = 0. Apply this to the
long exact sequence in homology of the pair (Mj ,Mj−1), for fixed j = 1, . . . , N :

0 → Hn(Mj−1) → Hn(Mj) → Hn(Mj ,Mj−1) → Hn−1(Mj−1) → . . .

. . .→ H0(Mj−1) → H0(Mj) → H0(Mj ,Mj−1) → 0.

Grouping the terms in the alternating sum of ranks by threes, we find:

n∑
p=0

(−1)p[β(p, j − 1)− β(p, j) + α(p, j)] = 0.

Adding this expression over j = 1, . . . , N , we find (noting the telescoping sum,
and using β(p,N) = βp, β(p, 0) = 0):

n∑
p=0

N∑
j=1

(−1)pα(p, j) =

n∑
p=0

(−1)p
N∑
j=1

[β(p, j)− β(p, j − 1)] =

n∑
p=0

(−1)pβp,
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and recalling that the sum on the left equals
∑n

p=0(−1)pνp, this proves state-
ment (a).

Proof of statement (b) in the theorem. This is similar, considering instead the
long exact sequence for the pair (Mj ,Mj−1) starting at homology in dimension
m:

0 → Km,j → Hm(Mj−1) → Hm(Mj) → Hm(Mj ,Mj−1) → Hm−1(Mj−1) → . . .

. . .→ H0(Mj−1) → H0(Mj) → H0(Mj ,Mj−1) → 0.

Here Km,j is the kernel of the inclusion homomorphism Hm(Mj−1) → Hm(Mj);
denote its dimension by κm,j . Again grouping the alternating sum of ranks by
threes (and including the additional term), we find for fixed j:

m∑
p=0

(−1)p[β(p, j − 1)− β(p, j) + α(p, j)] + (−1)m+1κm,j = 0,

or

0 ≤ κm,j =

m∑
p=0

(−1)p+m[β(p, j − 1)− β(p, j) + α(p, j)].

Adding over j = 1, . . . , N as before, we find:

m∑
p=0

(−1)p+m[νp − βp] ≥ 0,

which is statement (b).
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Problems. (Source: [Hirsch, Differential Topology])

1. Let M ⊂ Rq be a compact smooth submanifold. For each v ∈ Sq, let
fv :M → R be the function fv(x) = ⟨v, x⟩. Then the set of v ∈ Sq such that fv
is a Morse function is open and dense.

2. Define the function g : RPn → R on real projective space by the formula:

f [x0, x1, . . . , xn] =

∑
λj |xj |2∑
|xj |2

,

where the λj are distinct real numbers. Show f is a Morse function of type
(1, 1, 1, 1, . . . 1, 1, 1). Describe the CW structure on RPn that follows from this.

3. Let f : Sn → R be a Morse function invariant under the antipodal
map x 7→ −x. Then f has at least two critical points of each index 0, 1, . . . , n.
[Consider the function induced on RPn. The Z2 Betti numbers of RPn are
1, 1, . . . , 1.]

4. Let S be a compact orientable surface of genus p. (a) Every Morse
function on S has at least 2p+ 2 critical points. (b) Some Morse function on S
has exactly this number of critical points.
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