
ELEMENTS OF SIMPLICIAL HOMOLOGY

1. Definitions.
(Open) p-simplex in Rm: (open) convex hull of (p+ 1) affinely independent

points {a0, . . . , ap} ⊂ Rm:

s = {
p∑

i=0

tiai, 0 < ti < 1,
∑
i

ti = 1} ⊂ Rm.

(The ti are ‘barycentric coordinates’.)

If s, t are simplices, s < t (s is a face of t) if it is the (open) convex hull of a
subset of the ai (defining t).

Finite simplicial complex K in Rm: a finite collection of simplices (of various
dimensions between 0 and n = dim(K)) satisfying:

(1) Every face of a simplex of K is a simplex of K.
(2) The (open) simplices ofK are disjoint. Equivalently, two closed simplices

in K are either disjoint, or intersect along a common face.

K0 ⊂ K is a subcomplex if it also satisfies (1) and (2).

The polyhedron |K| of K is the compact subset of Rm: |K| =
⋃

s∈K s.

It follows from the definition of simplicial complex that each subset of
V ert(X) that is the set of vertices of a simplex of K is the set of vertices
of a unique simplex in K: each simplex in K is uniquely defined by its set of
vertices.

A vertex mapping ϕ : V ert(K) → V ert(L) defines a simplicial map ϕ from
K to L if, whenever a0, . . . , ap are vertices of a p-simplex in K, the points
ϕ(a0), . . . , ϕ(ap) are vertices of a simplex in L (which may be of lower dimension,
if the vertex mapping is not injective.) We denote the corresponding mapping
of simplices also by ϕ : K → L For the corresponding polyhedra we have the
continuous map:

|ϕ| : |K| → |L|,
∑
i

tiai 7→
∑
i

tiϕ(ai),
∑
i

ti = 1.

The r-dimensional chain group of K is the free abelian group Cr(K) with
basis given by the r-dimensional simplices of K.

Consider now an ordered simplicial complex K: there exists a partial order-
ing of vertices inducing a total ordering of vertices in each simplex of K. We
adopt the symbol sp = [a0a1 . . . ap] to denote an ordered p-simplex sp ∈ K (in
particular the ai are all distinct and affinely independent). We also set, for a
permutation π of the vertices:

sgn(π)[a0 . . . ap] = [aπ(0) . . . aπ(p)].

1



Denote by ti = (−1)i[ao . . . âi . . . ap], i = 0, . . . , p the ith codimension 1 face of
sp, opposite the vertex ai. This leads to the boundary operator:

∂r : Cp(K) → Cp−1(K), ∂sp =

p∑
i=0

(−1)i[a0 . . . âi . . . ap], r > 0,

extended by linearity to an operator on Cp(K). Set ∂s0 = 0 if s0 ∈ C0(K).

One shows easily that the composition ∂∂ = 0, thus (Cr(K), ∂)r≥0 is a
chain complex, and we have the subgroups Zr(K) = ker(∂r) of r-cycles and
Br(K) = im(∂r+1) ⊂ Zr(K) of r-boundaries, and the quotient group Hr(K) =
Zr(K)/Br(K), the r-th homology of K.

Next we want to associate a homomorphism of chain groups to a given
simplicial map (suitable vertex map) ϕ : K → L (say L is a simplicial complex
in RN .). This has the problem that for sp = [a0 . . . ap] ∈ Cp(K) (a simplex in
K), the points ϕ(a0) . . . ϕ(ap), although vertices of the same simplex in L, are
not necessarily affinely independent in RN , hence do not define an element of
Cp(L).

To get around this, we consider the f.g. abelian group with generators all
symbols ⟨a0 . . . ap⟩ with a0, . . . , ap vertices of a p-simplex in K (listed in any
order), but allowing equalities among the ai, and relations of two types:

⟨a0...ap⟩ = 0 if ai = aj for some i ̸= j;

⟨aπ(0) . . . aπ(p)⟩ = sgn(π)⟨a0 . . . ap⟩,

for any permutation π of {0, . . . , p}. The abelian group with these generators
and relations is a free group, with basis:

{⟨a0 . . . ap⟩; [a0 . . . ap] a p-simplex of K, a0 < a1 < . . . < ap}

(in the order of K), and is clearly isomorphic to Cp(K) (hence we keep the same
notation.)

It is easy to check that, defining ∂ by an analogous expression to the earlier
one:

∂⟨a0 . . . ap⟩ =
∑
i

(−1)i⟨a0 . . . âi . . . ap⟩,

we have ∂s = 0 if s is degenerate (that is, includes repeated vertices). Thus
∂ : Cr(K) → Cr−1(K) is well-defined by this formula (extended linearly to
Cr(K)).

Now given ϕ : K → L simplicial map, define ϕ# : Cr(K) → Cr(L) (homo-
moprhism) via:

ϕ#(⟨a0 . . . ap⟩) = ⟨ϕ(a0) . . . ϕ(ap)⟩,

extended linearly to an operator ϕ# : Cp(K) → Cp(L).
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It is easy to check that ϕ# is zero on symbols including repetitions and that
∂ϕ# = ϕ#∂ (ϕ is a chain map), and thus ϕ# on chains induces a homomorphism
ϕ∗ : Hp(K) → Hp(L) in homology. We also have

(ϕψ)∗ = ϕ∗ψ∗, (idK)∗ = idHp(K).

This is still a long way from being able to define an induced homomorphism
associated to an arbitrary continuous map f : |K| → |L|.

The following theorem is an easy observation.

Theorem. Let K be a finite ordered simplicial complex, dim(K) = n.
Then:

(i) Hq(K) = 0 for q > n (since Cq(K) = 0).

(ii) Hr(K) is finitely generated, for 0 ≤ r ≤ n.
(Since it is a quotient of the f.g. subgroup Zr(K) of the f.g. group Cr(K),

by the f.g. subgroup Br(K).)

(iii) Hn(K) is a free group (possibly zero).
(Since it is the quotient of the free group Zn(K) by the trivial subgroup {0};

there are no n-boundaries.)

A subset K0 ⊂ K is a subcomplex of K if it is a simplicial complex. In
particular, V ert(K0) ⊂ V ert(K).

Example. For 0 ≤ r ≤ dim(K), let Kr be the set of all simplices in K of
dimension less than or equal to r, the ‘r-skeleton’ of K. This is a subcomplex,
and K is a finite increasing union of its skeleta of increasing dimension.

Note the boundary operator restricts from the chain complex C∗(K) to
C∗(K0). Thus, defining the relative chain group as the quotient:

Cr(K,K0) = Cr(K)/Cr(K0),

the boundary operator ∂ : Cr(K,K0) → Cr−1(K,K0) is well defined, and we
have a relative chain complex (Cr(K,K0), ∂)r≥0. The homology of this chain
complex is the relative homology of the pair (K,K0):

Hr(K,K0) = Zr(K,K0)/Br(K,K0).

Simplicial maps of pairs ϕ : (K,K0) → (L − L0) are defined as before, leading
to induced homomorphisms of chain groups and homology groups:

ϕ# : Cr(K,K0) → Cr(L,L0), ϕ∗ : Hr(K,K0) → Hr(L,L0).

Stars. Let K be a (finite, ordered) simplicial complex, s ∈ K a simplex.
The star of s is the set of all (open) simplices in K of which s is a face:

st(s) = {t ∈ K; s < t.}.
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Clearly st(s) is not a subcomplex of K. However, K \st(s) is a (finite) subcom-
plex. In particular its space |K \ st(s)| is a compact subset of Rm, hence closed
in |K|. Since |K| is the disjoint union of the simplices of K, we have:

|K| =
⋃
s∈K

s = (
⋃

s∈K\st(s)

s) ⊔ (
⋃

s∈st(s)

s) = |K \ st(s)| ⊔ |st(s)|.

We conclude |st(s)| is open in |K|. In particular:

{|st(a)|; a ∈ V ert(K)} is an open cover of |K|.

Remark. If s = [a0 . . . ap] is a simplex (open) in K, we have:

s ⊂ |st(a0)| ∩ . . . ∩ |st(ap)|.

(We don’t distinguish bwtween s and |s| ⊂ Rm in the notation). Conversely, if
{b0, . . . , br} is any set of vertices in K whose stars intersect:

(∃x ∈ |K|)x ∈ |st(b0)| ∩ . . . ∩ |st(br)|,

then each bi is a vertex of s, the unique (open) simplex in K containing x (the
‘carrier’ of x.) We conclude:

A set of vertices of K spans a simplex of K iff their stars in K have a point
in common.

Cones. Let K be a (finite, oriented) polyhedron, a a vertex of K. The set
Ka of simplices of K not containing a is a subcomplex of K For s ∈ Ka, s =
⟨a0 . . . ar⟩, define a ∗ s = ⟨aa0 . . . ar⟩, a simplex of dimension r+1. (This works
for s ∈ K too, but the result is zero if a is a vertex of s.) We say K is a cone
of vertex a if for all s ∈ Ka, a ∗ s is a simplex in K.

Then if K is a cone with vertex a, we have:

K =
⋃

s∈Ka

a ∗ s.

(We call Ka the ‘base’ of the cone, of course.)

Let K be a cone with vertex a. By linear extension, we obtain a map
a∗ : Cr(K) → Cr+1(K). Using the definition of ∂, we check directly that:

∂(a ∗ s) = s− a ∗ ∂s ∀s ∈ K, and thus ∂(a ∗ x) = x− a ∗ ∂x, x ∈ Cr(K).

Thus if z ∈ Zr(K) for r ≥ 1 we have z is a boundary, and we see that Hr(K) =
0, r ≥ 1 (if K is a cone).

2. Barycentric subdivision and simplicial approximation.

Given a continuous map of polyhedra f : |K| → |L|, ideally it should be
possible to define an induced homomorphism in homology. We know how to do
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this for simplicial maps, so as a first step we need to approximate a general map
by a simplicial one. This involves the important idea of ‘barycentric subdivision’.
From K we obtain a new simplicial complex K ′ with |K| = |K ′|–the polyhedron
is the same, but triangulated into smaller pieces.

Let K be a finite oriented simplicial complex in Rm.For any simplex =
⟨a0 . . . ap⟩ in K, let bs =

1
p+1

∑p
i=0 ai ∈ Rm be the barycenter of s. K ′ is defined

inductively, as follows. For the 0-skeleton K0 = V ert(K), we set (K0)′ = K0,
no change. Assume the barycentric subdivision of the r-skeleton Kr is defined.
Now let s be a simplex in K, of dimension r + 1. Denote by bd(s) the set of
its proper faces (a subcomplex of Kr, hence (bd(s))′ is defined, but is not a
subcomplex of Kr). Then set:

s′ = bs ∗ (bd(s))′,

the cone over the boundary subcomplex, with vertex the barycenter of s. (This
is a simplicial complex, but is not a subcomplex of s.) Then define:

(Kr+1)′ =
⋃

s∈Kr+1

s′,

a new simplicial complex. Finally, set K ′ = (Kn)′, where n = dim(K). We
have:

V ert(K ′) = {bs; s ∈ K} and K ′ = {⟨bs0 . . . bsp⟩, si ∈ K, s0 < s1 < . . . < sp, 0 ≤ p ≤ dim(K)}

(The chain of inequalities denotes ‘successive proper faces’.)

Note |K ′| = |K|, since |s′| = |s| for any simplex s ∈ K.

Next we wish to define a ‘subdivision chain map’ Sd : Cr(K) → Cr(K
′),

and we do so by induction on dimension, setting Sd to be the identity on
C0(K) ⊂ C0(K

′). Assume Sd : Cr−1(K) → Cr−1(K
′) has been defined (and is

a chain map), and let s ∈ K be an r-simplex. Set:

Sd(s) = bs ∗ Sd(∂s),

noting ∂s ∈ Cr−1(K), Sd(∂s) ∈ Cr−1(K
′), and using the map bs∗ from Cr−1(K

′)
to Cr(K

′) defined in the previous section. By induction, we assume

∂(Sd(x)) = Sd(∂x), x ∈ Cp(K), 1 ≤ p ≤ r − 1.

Now recall from Section 1: ∂(a ∗ x) = x− a ∗ ∂x, and let x =
∑
nisi ∈ Cr(K)

(finite sum, the si are r-simplices in K and ni ∈ Z.) We compute:

∂(Sd(x)) =
∑
i

ni∂(Sd(si)) =
∑
i

ni∂(bsi ∗ Sd(∂si))

=
∑
i

ni(Sd(∂si)− bsi ∗ ∂(Sd(∂si))
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= Sd(∂x)−
∑
i

nibsi ∗ Sd(∂∂si) (using the induction hypothesis),

which clearly equals Sd(∂x). Thus Sd is a chain map.

Reduction of diameter. The diameter of a simplex is the max distance be-
tween its vertices. We claim that if dim(s) = n, the diameter of each simplex
in s′ (the subdivision of s) is less than or equal to n

n+1diam(s).

Proof. We use induction on the dimension n of s. Consider |wj − wk|, the
distance between two vertices of [w0 . . . wn], simplex of s′. If both wj , wk are in
a proper face of s, we’re done by induction (note n−1

n < n
n+1 .) Thus we may

assume wj = b, , wk = vi, the barycenter and a vertex of s. We have:

bi =
1

n

∑
j ̸=i

vj , b =
1

n+ 1
vi +

n

n+ 1
bi,

where bi is the barycenter of the face [v0 . . . v̂i . . . vn] of s, opposite to vi. So:

|b− vi| = | n

n+ 1
b− n

n+ 1
vi| =

n

n+ 1
|bi − vi| ≤

n

n+ 1
diam(s),

as claimed.

For a (finite) simplicial complex K, define the mesh µ(K) as the max diam-
eter of a simplex in K. Then µ(K ′) ≤ n

n+1µ(K) if dim(K) = n. Denote by

K(j) the j-fold iterated subdivision of K. Clearly µ(K(j)) → 0 as j → ∞.

Simplicial approximation. K,L finite simplicial complexes, f : |K| → |L|.
ϕ : K → L (simplicial map) is a simplicial approximatiom of f if:

∀x ∈ |K|, a vertex of carrier(x) ⇒ ϕ(a) vertex of carrier (f(x)).

(Recall the ‘carrier’ of a point in |K| is the unique open simplex of K containing
x.)

Equivalently: for any vertex a of K, f(|st(a)|) ⊂ |st(ϕ(a))|.

Simplicial Approximation Theorem. Given f : |K| → |L| continuous, there
exists an n and ϕ : K(n) → L simplicial approximation of f .

Proof. Let δ > 0 be a Lebesgue number of the open cover of |L| given
by the stars of its vertices, By uniform continuity of f , there exists ϵ > 0 so
that any subset of |K| with diameter less than ϵ has image with diameter less
than δ, hence contained in the star of some vertex of L. Choose n so that all
simplices of K(n) have diameter less than ϵ/2. Then for any a, vertex of K(n),
diam(|st(a)|) < ϵ, so there is a vertex ϕ(a) of L so that f(|st(a)|) ⊂ |st(ϕ(a))|.
ϕ is a simplicial approximation of f .

One consequence is that we can define a homomorphism in homology asso-
ciated to a continuous map f : |K| → |L|. Let ϕ : K(n) → L bas a simplicial
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approximation, and consider Sdn# : C(K) → C(K(n)) the homomorphism of
chain groups defined by iterated subdivision. Then set:

f∗ = ϕ∗ ◦ (Sdn)∗ = (ϕ ◦ Sdn)∗ : Hr(K) → Hr(L).

Problem: We need to show this map is independent of n, and independent
of the approximation ϕ, for given n. This can be done, but is quite technical .
It involves the following combinatorial analog of homotopy:

Definition. Two simplicial maps ϕ, ψ : K → L are contiguous if for any
simplex s ∈ K there exists a simplex t ∈ L so that both ϕ(s) and ψ(s) are faces
of t.

Remark: Contiguity is not a transitive relation. (Can you think of an exam-
ple?)

For continuous maps to a polyhedron, we have the definition: f, g : X → |L|
are approximate if for any x ∈ X, there exists t(x) ∈ L so that f(x), g(x) are
both in the closure of t(x).

(i) Two approximate maps are homotopic. Say |L| ⊂ Rm, and define F :
X × I → Rm by F (t, s) = (1− s)f(x) + sg(x). Note F (x, s) ∈ t(x), so F maps
into |L|.

(ii) If ϕ is a simplicial approximation of f , for x ∈ |K| we have |ϕ|(x) is in the
closure of the carrier of f(x), so |ϕ| and f are approximate, hence homotopic.

(iii) If ϕ, ψ are contiguous simplicial maps from K to L, |ϕ|, |ψ| are approx-
imate, hence homotopic.

One may show that any two simplicial approximations ϕ (defined on K(r))
and ψ (defined on K(s)) to the same f : |K| → |L| are contiguous, hence
homotopic. [HW 1.7.11].

Example 1. Let K be the simplicial complex defined by the (oriented) faces
of an (n + 1) simplex s, Kn its n-skeleton. One sees easily that |Kn| is home-
omorphic to Sn, hence gives a triangulation of Sn. We compute the homology
of this triangulation.

Since K is a cone, its homology is trivial in dimensions greater than 0.
This easily implies Hr(K

n) = 0 for 0 < r < n. Let w ∈ Cn(K
n) be the

sum of all oriented n-dimensional faces of s. Then w = ∂s (in K), so in fact
w ∈ Zn(K

n); since there are no (n + 1)-simplices in Kn, [w] ̸= 0 in Hn(K
n).

In fact Hn(K
n) ≈ Z, and [w] is a generator: if z ∈ Zn(K

n) is a cycle, we have
z = ∂x for some x ∈ Cn+1(K); and s is the only (n+1)-simplex in K, so x = Ns
for some N ∈ Z. Thus z = ∂x = N∂s = Nw in Zn(K

n), and [z] = N [w] in
Hn(K

n).

Example 2. Euler characteristic of polyhedra. (See [Rotman] p. 145-146.)
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