ELEMENTS OF SIMPLICIAL HOMOLOGY

1. Definitions.
(Open) p-simplex in R™: (open) convex hull of (p + 1) affinely independent
points {ag, ...,ap} C R™:

p
s = {Ztiai,o <t < I,Zti = 1} Cc R™.
=0 7

(The t; are ‘barycentric coordinates’.)

If s,t are simplices, s < ¢ (s is a face of t) if it is the (open) convex hull of a
subset of the a; (defining ¢).

Finite simplicial complex K in R™: a finite collection of simplices (of various
dimensions between 0 and n = dim(K)) satisfying:

(1) Every face of a simplex of K is a simplex of K.
(2) The (open) simplices of K are disjoint. Equivalently, two closed simplices
in K are either disjoint, or intersect along a common face.

Ky C K is a subcomplex if it also satisfies (1) and (2).
The polyhedron |K| of K is the compact subset of R™: |K| = J,cf 5

It follows from the definition of simplicial complex that each subset of
Vert(X) that is the set of vertices of a simplex of K is the set of vertices
of a unique simplex in K: each simplex in K is uniquely defined by its set of
vertices.

A vertex mapping ¢ : Vert(K) — Vert(L) defines a simplicial map ¢ from
K to L if, whenever ao,...,a, are vertices of a p-simplex in K, the points
¢(ao), - .., d(ap) are vertices of a simplex in L (which may be of lower dimension,
if the vertex mapping is not injective.) We denote the corresponding mapping
of simplices also by ¢ : K — L For the corresponding polyhedra we have the
continuous map:

ol + [K| — |L], Ztiai — thfb(ai), th‘ =1.

The r-dimensional chain group of K is the free abelian group C,(K) with
basis given by the r-dimensional simplices of K.

Consider now an ordered simplicial complex K: there exists a partial order-
ing of vertices inducing a total ordering of vertices in each simplex of K. We
adopt the symbol s, = [apa; .. .a,] to denote an ordered p-simplex s, € K (in
particular the a; are all distinct and affinely independent). We also set, for a
permutation 7 of the vertices:

sgn(m)ao .. ap] = [ar(0) - - - An(p)]-



Denote by t; = (=1)%[a,...d;i...ap], i = 0,...,p the ith codimension 1 face of
sp, opposite the vertex a;. This leads to the boundary operator:

P
Op : Cp(K) = Cp1(K), 0Osp= Z(—l)i[ao cedy..iap], >0,
i=0

extended by linearity to an operator on C,(K). Set 0sg = 0 if 59 € Co(K).

One shows easily that the composition 00 = 0, thus (C,(K),0),>0 is a
chain complex, and we have the subgroups Z,(K) = ker(d,) of r-cycles and
B,.(K) =im(0,+1) C Z,(K) of r-boundaries, and the quotient group H,(K) =
Z.(K)/B,.(K), the r-th homology of K.

Next we want to associate a homomorphism of chain groups to a given
simplicial map (suitable vertex map) ¢ : K — L (say L is a simplicial complex
in RM.). This has the problem that for s, = [ag...a,] € C,(K) (a simplex in
K), the points ¢(ao) ... ¢(ap), although vertices of the same simplex in L, are
not necessarily affinely independent in RY, hence do not define an element of

Cp(L).

To get around this, we consider the f.g. abelian group with generators all
symbols (ag...ap) with ag,...,a, vertices of a p-simplex in K (listed in any
order), but allowing equalities among the a;, and relations of two types:

(ag...ap) =0 if a; = a; for some i # j;

(Ar(0) - - Arpy) = sgn(T)(ao . .. ap),
for any permutation 7 of {0,...,p}. The abelian group with these generators
and relations is a free group, with basis:
{{ap...ap);lag...ap] a p-simplex of K, a9 < a1 <...<ap}
(in the order of K'), and is clearly isomorphic to Cj,(K') (hence we keep the same
notation.)

It is easy to check that, defining 0 by an analogous expression to the earlier
one: '
dag...ap) =Y (=1)(ag...di...ap),

we have 0s = 0 if s is degenerate (that is, includes repeated vertices). Thus
0 : C.(K) — C,_1(K) is well-defined by this formula (extended linearly to
Cr(K)).

Now given ¢ : K — L simplicial map, define ¢4 : C.(K) — C,(L) (homo-
moprhism) via:

¢4 ((ao - ap)) = (dao) - .- lap)),
extended linearly to an operator ¢4 : Cp(K) — Cp(L).



It is easy to check that ¢4 is zero on symbols including repetitions and that
Ody = 40 (¢ is a chain map), and thus ¢ on chains induces a homomorphism
¢« : Hy(K) — H,(L) in homology. We also have

(wa)* = Gsthu, (idK)* = Zde(K)-
This is still a long way from being able to define an induced homomorphism
associated to an arbitrary continuous map f : |K| — |L|.
The following theorem is an easy observation.

Theorem. Let K be a finite ordered simplicial complex, dim(K) = n.
Then:

(1) Hy(K) =0 for ¢ > n (since Cy(K) = 0).

(ii) H,(K) is finitely generated, for 0 <r < n.

(Since it is a quotient of the f.g. subgroup Z,.(K) of the f.g. group C,(K),
by the f.g. subgroup B,(K).)

(iii) H,(K) is a free group (possibly zero).

(Since it is the quotient of the free group Z,(K) by the trivial subgroup {0};
there are no n-boundaries.)

A subset Ky C K is a subcomplex of K if it is a simplicial complex. In
particular, Vert(Ky) C Vert(K).

Ezample. For 0 < r < dim(K), let K" be the set of all simplices in K of
dimension less than or equal to r, the ‘r-skeleton’ of K. This is a subcomplex,
and K is a finite increasing union of its skeleta of increasing dimension.

Note the boundary operator restricts from the chain complex C,(K) to
C.(Kyp). Thus, defining the relative chain group as the quotient:

CT(K7 KO) = CT(K)/OT(KO)v

the boundary operator 9 : C,.(K, Ky) — C._1(K, Ky) is well defined, and we
have a relative chain complex (C,(K, Ky),0),>0. The homology of this chain
complex is the relative homology of the pair (K, Kp):

H, (K, Ky) = Z,(K,Ko) /B (K, Ko).

Simplicial maps of pairs ¢ : (K, Ky) — (L — Lg) are defined as before, leading
to induced homomorphisms of chain groups and homology groups:

bu : Co(K, Ko) = Cr(L, Ly), ¢ : Ho(K, Ko) — Hy(L, Ly).

Stars. Let K be a (finite, ordered) simplicial complex, s € K a simplex.
The star of s is the set of all (open) simplices in K of which s is a face:

st(s) ={t e K;s <t.}.



Clearly st(s) is not a subcomplex of K. However, K \ st(s) is a (finite) subcom-
plex. In particular its space |K \ st(s)| is a compact subset of R™, hence closed
in |K|. Since |K| is the disjoint union of the simplices of K, we have:

Kl=Us=( U 90U s =IK\sts)|U]sts)].

seK seK\st(s) s€st(s)

We conclude |st(s)| is open in |K|. In particular:

{Ist(a)];a € Vert(K)} is an open cover of |K|.

Remark. If s = [ag...ap) is a simplex (open) in K, we have:
s CIst(ag)| N ...N|st(ap)].

(We don’t distinguish bwtween s and |s| C R™ in the notation). Conversely, if
{bo,...,b.} is any set of vertices in K whose stars intersect:

3z € |K|)z € |st(bo)| N ... |st(b,)],

then each b; is a vertex of s, the unique (open) simplex in K containing z (the
‘carrier’ of x.) We conclude:

A set of vertices of K spans a simplex of K iff their stars in K have a point
m common.

Cones. Let K be a (finite, oriented) polyhedron, a a vertex of K. The set
K, of simplices of K not containing a is a subcomplex of K For s € K,,s =
(ag ...a,), define a x s = (aag . ..a,), a simplex of dimension r + 1. (This works
for s € K too, but the result is zero if a is a vertex of s.) We say K is a cone
of vertex a if for all s € K,, a* s is a simplex in K.

Then if K is a cone with vertex a, we have:
K = U a * S.
seK,
(We call K, the ‘base’ of the cone, of course.)

Let K be a cone with vertex a. By linear extension, we obtain a map
ax : Cp.(K) — Cry1(K). Using the definition of 0, we check directly that:

Olaxs)=s—ax0s Vse K, and thus d(a*xz) =x — ax 0z, z € C.(K).

Thus if z € Z,(K) for r > 1 we have z is a boundary, and we see that H,(K) =
0,7 > 1 (if K is a cone).
2. Barycentric subdivision and simplicial approximation.

Given a continuous map of polyhedra f : |K| — |L|, ideally it should be
possible to define an induced homomorphism in homology. We know how to do



this for simplicial maps, so as a first step we need to approximate a general map
by a simplicial one. This involves the important idea of ‘barycentric subdivision’.
From K we obtain a new simplicial complex K’ with |K| = |K’|-the polyhedron
is the same, but triangulated into smaller pieces.

Let K be a finite oriented simplicial complex in R™.For any simplex =
(ag...ap)in K, let by = +1 >, ai € R™ be the barycenter of s. K’ is defined

inductively, as follows. For the O-skeleton K° = Vert(K), we set (K°) = K°,
no change. Assume the barycentric subdivision of the r-skeleton K" is defined.
Now let s be a simplex in K, of dimension r + 1. Denote by bd(s) the set of
its proper faces (a subcomplex of K", hence (bd(s))’ is defined, but is not a
subcomplex of K"). Then set:

s = b, * (bd(s)),

the cone over the boundary subcomplex, with vertex the barycenter of s. (This
is a simplicial complex, but is not a subcomplex of s.) Then define:

(Kr+1)/: U S/
)
se Krt+1

a new simplicial complex. Finally, set K’ = (K™)’, where n = dim(K). We
have:

Vert(K') ={bs;s € K} and K' = {(bs,...bs,),si € K,50 <1 <...<5p,0<p<dim(K)}
(The chain of inequalities denotes ‘successive proper faces’.)
Note |K'| = | K], since |s'| = |s| for any simplex s € K.

Next we wish to define a ‘subdivision chain map’ Sd : C,.(K) — C,(K'),
and we do so by induction on dimension, setting Sd to be the identity on
Co(K) C Co(K'). Assume Sd : C,_1(K) — Cr_1(K’) has been defined (and is
a chain map), and let s € K be an r-simplex. Set:

Sd(s) = bs * Sd(0s),

noting ds € C,_1(K), Sd(9s) € Cr_1(K’), and using the map by* from C;._1 (K”)
to C,.(K’) defined in the previous section. By induction, we assume

0(Sd(z)) = Sd(0x), zeCp(K),1<p<r-—1

Now recall from Section 1: 9(a *x ) = x — a * dz, and let x = > n;s; € C.(K)
(finite sum, the s; are r-simplices in K and n; € Z.) We compute:

an (Sd(s an bs, * Sd(Ds;))

= ni(Sd(Ds;) — by, * A(Sd(Ds;))



= Sd(0zx) — Z nibs, * Sd(00s;)  (using the induction hypothesis),

which clearly equals Sd(9x). Thus Sd is a chain map.

Reduction of diameter. The diameter of a simplex is the max distance be-
tween its vertices. We claim that if dim(s) = n, the diameter of each simplex

in " (the subdivision of s) is less than or equal to 25 diam(s).

Proof. We use induction on the dimension n of s. Consider |w; — wg|, the
distance between two vertices of [wg ... w,], simplex of s’. If both w;, wy are in
a proper face of s, we’re done by induction (note ”T’l < nil.) Thus we may
assume w; = b, , wy = v;, the barycenter and a vertex of s. We have:

1 1 n
bi = — b= ——vi + ——=b;,
n;% n+1v+n+1

where b; is the barycenter of the face [vg...7;...v,] of s, opposite to v;. So:

bowl =] mgb - ] = b ] <
n+1 n+1 n +

] diam(s),

as claimed.

For a (finite) simplicial complex K, define the mesh u(K) as the max diam-

eter of a simplex in K. Then u(K') < Z5u(K) if dim(K) = n. Denote by

KU the j-fold iterated subdivision of K. Clearly j(K)) — 0 as j — oo.

Simplicial approximation. K, L finite simplicial complexes, f : |K| — |L]|.
¢ : K — L (simplicial map) is a simplicial approximatiom of f if:

Vx € | K|, a vertex of carrier(x) = ¢(a) vertex of carrier (f(z)).

(Recall the ‘carrier’ of a point in | K| is the unique open simplex of K containing

Equivalently: for any vertex a of K, f(|st(a)]) C |st(¢(a))l.

Simplicial Approzimation Theorem. Given f : |K| — |L| continuous, there
exists an n and ¢ : K(") — L simplicial approximation of f.

Proof. Let § > 0 be a Lebesgue number of the open cover of |L| given
by the stars of its vertices, By uniform continuity of f, there exists ¢ > 0 so
that any subset of |K| with diameter less than € has image with diameter less
than §, hence contained in the star of some vertex of L. Choose n so that all
simplices of K(™) have diameter less than ¢/2. Then for any a, vertex of K™,
diam(|st(a)]) < €, so there is a vertex ¢(a) of L so that f(|st(a)]) C |st(¢(a))].
¢ is a simplicial approximation of f.

One consequence is that we can define a homomorphism in homology asso-
ciated to a continuous map f : |K| — |L|. Let ¢ : K™ — L bas a simplicial



approximation, and consider Sdj : C(K) — C(K (")) the homomorphism of
chain groups defined by iterated subdivision. Then set:

fo =0 (Sd"), = (¢p0Sd"), : Ho(K) — H,(L).

Problem: We need to show this map is independent of n, and independent
of the approximation ¢, for given n. This can be done, but is quite technical .
It involves the following combinatorial analog of homotopy:

Definition. Two simplicial maps ¢,v : K — L are contiguous if for any
simplex s € K there exists a simplex ¢ € L so that both ¢(s) and (s) are faces
of t.

Remark: Contiguity is not a transitive relation. (Can you think of an exam-
ple?)

For continuous maps to a polyhedron, we have the definition: f,g: X — |L|
are approzimate if for any z € X, there exists t(x) € L so that f(x),g(x) are
both in the closure of ¢(z).

(i) Two approximate maps are homotopic. Say |L| C R™, and define F :
X xI—R™by F(t,s) =(1—s)f(x) + sg(x). Note F(z,s) € t(x), so F' maps
into |L|.

(ii) If ¢ is a simplicial approximation of f, for x € | K| we have |¢|(z) is in the
closure of the carrier of f(x), so |¢| and f are approximate, hence homotopic.

(iii) If ¢, are contiguous simplicial maps from K to L, |¢|, |1| are approx-
imate, hence homotopic.

One may show that any two simplicial approximations ¢ (defined on K (”))
and v (defined on K()) to the same f : |K| — |L| are contiguous, hence
homotopic. [HW 1.7.11].

Ezample 1. Let K be the simplicial complex defined by the (oriented) faces
of an (n + 1) simplex s, K™ its n-skeleton. One sees easily that |K™| is home-
omorphic to S™, hence gives a triangulation of S™. We compute the homology
of this triangulation.

Since K is a cone, its homology is trivial in dimensions greater than 0.
This easily implies H,.(K™) = 0 for 0 < r < n. Let w € C,(K"™) be the
sum of all oriented n-dimensional faces of s. Then w = ds (in K), so in fact
w € Z,(K™); since there are no (n + 1)-simplices in K", [w] # 0 in H,(K™).
In fact H,(K™) ~ Z, and [w] is a generator: if z € Z,,(K™) is a cycle, we have
z = Oz for some x € Cp,4+1(K); and s is the only (n+1)-simplex in K, so x = Ns
for some N € Z. Thus z = 9z = N0s = Nw in Z,(K"), and [z] = N[w] in
H,(K").

Ezample 2. Euler characteristic of polyhedra. (See [Rotman] p. 145-146.)



