NOTES ON THE EXCISION THEOREM

1. From sufficiency of ‘split chains’ to excision.

We consider the excision theorem in homology in one of two settings:

(1) simplicial homology: X7, X5 are subcomplexes of a simplicial complex
X, with X = X1 UXQ;

(2) singular homology: Xi, X5 are subspaces of a space X, with X =
int(Xl) U int(Xg)

In both cases the excision theorem is the statement that the inclusion of
pairs i : (X7, X1 NX2) — (X, X2) induces an isomorphism of the corresponding
relative homology groups of any dimension n > 0.

A key step in the proof is the claim that ‘split chains suffice’ to compute
the homology of the combined space X. Namely, consider the inclusion of chain
groups (singular or simplicial, depending on the case):

The complex on the left denotes ‘split chains’ v = 77 + 72, sums of n-chains
with values in X; and n-chains with values in X5. In the simplicial case, this
is an equality, since any simplex in the simplicial complex X is either in the
subcomplex X1, or in X5 (or both), unlike a general singular simplex in a space
X = X1 U X; (in the singular homology setting.) By ‘split chains suffice’ we
mean either of the two equivalent statements:

(i) The inclusion of chain groups induces an isomorphism j, : H,(X1+X3) —
H,(X). (The group on the left is the homology of the complex C, (X1 + X32) of
‘split chains’);

(ii) The relative homology groups H, (X, X; + X3) vanish. These are the
homology groups of the relative complex

Co(X, X1 + Xo) 1= Cp(X)/C (X1 + X2).

Problem 1. Show that (i) and (ii) are equivalent. That (ii)= (i) follows from
considering the long exact sequence corresponding to:

0= Cr(X1+X2) = Cn(X) = Cr(X, X1 + X3) = 0.

Now prove (i)= (ii).
We interpret ‘split chains suffice’ geometrically as the following two state-

ments, where in (1) we use condition (ii) and in (2) we use condition (i).

(1) (surjectivity in homology): For any z € C,,(X) with 0z € Cy,—1(X1+X5),
we have: z ~ 21 + 29 for some z; € C,,(X;) (meaning z = 21 + 29 + w,w €
Cn+1(X))'

(2) (injectivity in homology): z1 + z2 ~ 0 in X (where z; € C,,(X;) and
6(2’1 + 22) = O) =21+ 22 = B(wl + wg),wi € On+1(X¢)



We then have the following:

Lemma. If (1) and (2) hold, then excision holds for (X, X1, X5), as above:
the inclusion (X7, X1 N X3) — (X, X3) induces isomorphisms:

Hn(Xl,leXQ)%Hn(X,XQ), TLZO

Remark: In particular, the lemma implies excision holds in the simplicial
case, where ‘split chains suffice’ is trivial.

Proof. (a) The homomorphism induced in homology by inclusion is surjec-
tive: let a € C,(X) be a relative cycle in (X, Xs): da € C,,—1(X2). By (1)
above, @ = a3 + as + dw, where a; € C,(X;). Thus da = day + Oag, which
shows day € Cp,—1(X1NX3). Hence a ~ a1 in (X, X5) (that is, a is homologous
in X mod X5 to the image under inclusion of a, a relative (X1, X1 NX5) cycle.)

(b) The homomorphism induced in homology by inclusion is injective: let
z1 € Cr(X7) be a relative cycle: 9z; € C,_1(X1 N X3). Suppose z; ~ 0 in
(X, X5): 21 = Ow + 29, for some w € Cpy1(X), 22 € Cp,(X2). Then 2 — 290 ~ 0
in X. By (2), in fact 21 — 22 = 9(w;1 + wa), where w; € Cy,11(X;). But then
z1 = 0wy + (22 + Ows), showing, first, that zo +dws € C,, (X1 N X3); and second,
that z; ~ 0 in (Xl,Xl N XQ)

Remark. Cp. the algebraic arguments in [Rotman, Lemma 6.11] and Hatcher,
p. 124]. The converse of the statement in the lemma is not true.

2. From excision to the Mayer-Vietoris sequence.

Still in the situation X = int(X;) Uint(Xs) (or X, a simplicial complex, is
the union of two subcomplexes X7 and X5), consider the short exact sequence
of chain groups:

0= Co(X1 N Xa) 255 Co(X1) @ Cn(Xa) 25 Cu(X1 + Xa2) — 0,
where i(w) = (w,w) and j(wi,ws) = w1 — wa.

From ‘split chains suffice’, we have H,(X; + X3) ~ H,(X). This leads to
the following long exact sequence:
S Ho (XN X)) S H (X))@ Ha(X2) 25 H, (X) 2% Ho 1 (X00Xs) = .
Here the meanings of iy, j. are clear. The definition of the ‘connecting op-
erator’ O, is the following: given [z] € H,(X), by ‘split chains suffice’ (state-
ment (1)) we may assume z = z; — 29, where z; € C,(X;) with 921 = 929 €
Cn—l(Xl N XQ) Then let 8*[2} = [82’1] € Hn—l(Xl N X2)

Problem 2: (i) Show this is well-defined (that is, independent from the

choices of z, 21, 23.)

(ii) Prove directly this sequence is exact, at each of the three steps. That is,
supply proofs of each of the three equalities (ker(j.) = im(i.), etc.) in question,
using only the definition of the maps in homology.



Observation/problem 3: As a consequence, if X; N X, is contractible (in
particular, path-connected) we have H,(X) = H,(X1) ® H,(Xs2), if n > 2.
What happens when n = 17 Is this still true? (Proof or counterexample.)

3. Main steps in the proof of ‘split chains suffice’.

(Outline, based on [Rotman, ch.6] and [Hatcher, p. 119-124].) We now use
Sy, for the chain complexes (since the proof is in singular homology.)

Step 1. Define a ‘subdivision operator’ S;X : S,,(X) — S, (X), and show it
is a chain map.
As a notational matter, let &, : A, — [eg...ep] be the identity (we need to

parametrize A, itself as a ‘singular simplex’ in R™.)

This is done in two parts. First, assuming X = F is a ‘convex space’ (convex
subset of some euclidean space; say, an affine subspace of euclidean space, or
a simplex.) Then for an affine ‘singular simplex’ 7 : A,, — E, we define its
subdivision, inductively on n, via the ‘cone construction’ from 7(b,,), the image
under 7 of the barycenter b, of A, (n > 1):

SEr = 1(b,) -SE (0.7).
Extend linearly to obtain SZ : S, (E) — S, (E).

Now establish the chain map property for the S by induction on n. Using
the fact the coning map b- : S, (E) — Sp41(E) is a chain homotopy from the
zero map to the identity (meaning 9(b-~y) + b (97y) = 7), one easily finds:

ASyT) =87 1(07) = 7(bn) - NSy 107) = S, (97),

using the induction hypothesis at the second step.

Now let X be a general space. Given a singular simplex o : A, — X,
regarding A, as the ‘singular simplex’ 6, € S,(E), 6, : A, — E (where
E =A,), we define, using the chain map oy : S, (E) = S, (X):

SX(0) := 04SE(5,).

Extend linearly to obtain S : S,(X) — S,(X). It is then an easy formal
matter to derive the chain map property for S:X from that of S¥ (using also the
fact o (d,) = 0 € S, (X)).

Step 2. Construction of a map T, : S, (X) — Sp+1(X), chain homotopy
from S, to the identity on S, (X):
oT, +T,_10 = IdSn(X) - S,.

As in Step 1, first we do this in the case X = FE, a ‘convex space”. One easily
shows (assuming, inductively, the chain homotopy property holds for T,,_;) that
if v € S,(E), the chain v — S,y — TF ;07 is a cycle. As recalled in step 1, on



cycles ¢ in E the cone operation is a ‘one-sided inverse’ to 9, in the sense
A(b- ) = ¢. Fix b € E arbitrarily, and define, inductively, for v € S, (F):

TnE’Y =b- (7 - Sn’)/ - Tf_la’}/) S Sn+1(E)
The chain homotopy property for T'Z follows directly from this definition:
NTEr) =7 = Spy — T, 0.

As in Step 1, we transfer this construction to a general space X by first defining
TX for a singular simplex o : A,, = X. For E = A,, and 04 : S,,(E) = S,(X):

T;((J) = O—#TTLE(STL € Sn+1(X)7

where §,, € S,,(F) is the identity. Then extend by linearity to T.X : S,(X) —
Spe1(X). Tt is then easy to show T:X is a chain homotopy from S, to the
identity in S, (X) (using also that the subdivision operator S,, is natural with
respect to maps f: X —»Y.)

As an important corollary of Steps 1 and 2, we have that if z € Z,,(X) is a
cycle, then so is S, z, and z ~ S,z in H,(X). In other words, S,, induces the
identity map on H,(X).

Step 3. Suppose X = int(X7) Uint(Xz), let v € S,(X) be a chain. Then
there exists an integer ¢ = g(7) > 1 so that, for the iterated subdivision S+,
we have:

Siy € S,(X1 + Xa).

Idea of proof. For chains in a convex space E, we know mesh(Siy) — 0 as
q — oo. Then the claim follows from a Lebesgue number argument, for the
open cover {int(X7),int(Xz)} of the compact set defined by the image of v in
X.

Step 4. Theorem. (‘split chains suffice’). The operator

induced by the inclusions S, (X1 + X3) < S,(X) is an isomorphism.

Proof. Surjectivity is easy. Let [z] € H,(X), 0z = 0. Then for some
q = q(z), we may write Sz = z; + 29, for some z; € S, (X;), Since S§? is a chain
map, we have 9(z; + z2) = 0. Then:

Onlz1 + 2], (x,+x2) = [21 + 22) 1, (x) = [SE2]m,(x) = [2]H, (x)-

The proof of injectivity includes a subtle point. (See [Rotman, p. 117-118],
corrected below.) Suppose [v1 + Y2lg, (x) = 0: 36 € Sp11(X), 08 = 711 + 2.
Then for some ¢ = q(3),S; 18 = B1 + B2, Bi € Sny1(X;). Since S?is a chain
map, we have 9(81 + f2) = S{(v1+72). This shows [SZ(v1+72)]m, (x,+x5) = 0-

Issue: Although we know S? acts as the identity in H,(X), we have not
established this for H,(X; + X3).



To resolve this, note that the subdivision operator S, maps S,(X;) to
Sy (X;), and thus maps S, (X;4X2) to itself (i.e., subdivision preserves the space
of ‘split chains’.) Likewise, the chain homotopy T, restricts to T}, : S,,(X1) —
Sp+1(X1), T/ 2 Sp(X2) = Sp+1(X2). Now consider iterated subdivision (drop-
ping dimension subscripts from the notation from now on). Define for g > 0:

Dy: Su(X) = Spi1(X), Dg= > TS
0<i<q

A standard calculation gives (cf. [Hatcher, p.123]):
0Dy + D40 = 1d — 8% on S, (X);

D, is a chain homotopy operator from S to the identity. We also have restric-
tions of D, to the chain complexes of X; and Xj:

Dy= Y T8, Dj= > TS

0<i<m 0<i<m
Getting back to the proof of injectivity, we may write:
1 = 8% = (D 0+ 0Dy)v1, 72— 8%y = (D;0+ 0D;)vs.
Adding the two, we find:
M+ 2 = 8 +2) = (Dg07 + Dydye) + 0(Dym + D),
where the first term on the right equals D,0(v1 + v2) = 0. This shows:
1+ Y2lm, (xi4+x2) = [SY (7 +72)]H, (x4 x2) = 0,

establishing the injectivity claim.



