
NOTES ON THE EXCISION THEOREM

1. From sufficiency of ‘split chains’ to excision.

We consider the excision theorem in homology in one of two settings:
(1) simplicial homology: X1, X2 are subcomplexes of a simplicial complex

X, with X = X1 ∪X2;
(2) singular homology: X1, X2 are subspaces of a space X, with X =

int(X1) ∪ int(X2)

In both cases the excision theorem is the statement that the inclusion of
pairs i : (X1, X1∩X2) ↪→ (X,X2) induces an isomorphism of the corresponding
relative homology groups of any dimension n ≥ 0.

A key step in the proof is the claim that ‘split chains suffice’ to compute
the homology of the combined space X. Namely, consider the inclusion of chain
groups (singular or simplicial, depending on the case):

j : Cn(X1 +X2) ↪→ Cn(X)

The complex on the left denotes ‘split chains’ γ = γ1 + γ2, sums of n-chains
with values in X1 and n-chains with values in X2. In the simplicial case, this
is an equality, since any simplex in the simplicial complex X is either in the
subcomplex X1, or in X2 (or both), unlike a general singular simplex in a space
X = X1 ∪ X2 (in the singular homology setting.) By ‘split chains suffice’ we
mean either of the two equivalent statements:

(i) The inclusion of chain groups induces an isomorphism j∗ : Hn(X1+X2) →
Hn(X). (The group on the left is the homology of the complex C∗(X1 +X2) of
‘split chains’);

(ii) The relative homology groups Hn(X,X1 + X2) vanish. These are the
homology groups of the relative complex

Cn(X,X1 +X2) := Cn(X)/Cn(X1 +X2).

Problem 1. Show that (i) and (ii) are equivalent. That (ii)⇒ (i) follows from
considering the long exact sequence corresponding to:

0 → Cn(X1 +X2) → Cn(X) → Cn(X,X1 +X2) → 0.

Now prove (i)⇒ (ii).

We interpret ‘split chains suffice’ geometrically as the following two state-
ments, where in (1) we use condition (ii) and in (2) we use condition (i).

(1) (surjectivity in homology): For any z ∈ Cn(X) with ∂z ∈ Cn−1(X1+X2),
we have: z ∼ z1 + z2 for some zi ∈ Cn(Xi) (meaning z = z1 + z2 + ∂w,w ∈
Cn+1(X)).

(2) (injectivity in homology): z1 + z2 ∼ 0 in X (where zi ∈ Cn(Xi) and
∂(z1 + z2) = 0) ⇒ z1 + z2 = ∂(w1 + w2), wi ∈ Cn+1(Xi).
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We then have the following:

Lemma. If (1) and (2) hold, then excision holds for (X,X1, X2), as above:
the inclusion (X1, X1 ∩X2) ↪→ (X,X2) induces isomorphisms:

Hn(X1, X1 ∩X2) ≈ Hn(X,X2), n ≥ 0.

Remark: In particular, the lemma implies excision holds in the simplicial
case, where ‘split chains suffice’ is trivial.

Proof. (a) The homomorphism induced in homology by inclusion is surjec-
tive: let α ∈ Cn(X) be a relative cycle in (X,X2): ∂α ∈ Cn−1(X2). By (1)
above, α = α1 + α2 + ∂w, where αi ∈ Cn(Xi). Thus ∂α = ∂α1 + ∂α2, which
shows ∂α1 ∈ Cn−1(X1∩X2). Hence α ∼ α1 in (X,X2) (that is, α is homologous
in X mod X2 to the image under inclusion of α1, a relative (X1, X1∩X2) cycle.)

(b) The homomorphism induced in homology by inclusion is injective: let
z1 ∈ Cn(X1) be a relative cycle: ∂z1 ∈ Cn−1(X1 ∩ X2). Suppose z1 ∼ 0 in
(X,X2): z1 = ∂w + z2, for some w ∈ Cn+1(X), z2 ∈ Cn(X2). Then z1 − z2 ∼ 0
in X. By (2), in fact z1 − z2 = ∂(w1 + w2), where wi ∈ Cn+1(Xi). But then
z1 = ∂w1+(z2+∂w2), showing, first, that z2+∂w2 ∈ Cn(X1∩X2); and second,
that z1 ∼ 0 in (X1, X1 ∩X2).

Remark. Cp. the algebraic arguments in [Rotman, Lemma 6.11] and Hatcher,
p. 124]. The converse of the statement in the lemma is not true.

2. From excision to the Mayer-Vietoris sequence.

Still in the situation X = int(X1) ∪ int(X2) (or X, a simplicial complex, is
the union of two subcomplexes X1 and X2), consider the short exact sequence
of chain groups:

0 → Cn(X1 ∩X2)
i∗−→ Cn(X1)⊕ Cn(X2)

j∗−→ Cn(X1 +X2) → 0,

where i(w) = (w,w) and j(w1, w2) = w1 − w2.

From ‘split chains suffice’, we have Hn(X1 + X2) ≈ Hn(X). This leads to
the following long exact sequence:

· · · → Hn(X1∩X2)
i∗−→ Hn(X1)⊕Hn(X2)

j∗−→ Hn(X)
∂∗−−→ Hn−1(X1∩X2) → . . .

Here the meanings of i∗, j∗ are clear. The definition of the ‘connecting op-
erator’ ∂∗ is the following: given [z] ∈ Hn(X), by ‘split chains suffice’ (state-
ment (1)) we may assume z = z1 − z2, where zi ∈ Cn(Xi) with ∂z1 = ∂z2 ∈
Cn−1(X1 ∩X2). Then let ∂∗[z] = [∂z1] ∈ Hn−1(X1 ∩X2).

Problem 2: (i) Show this is well-defined (that is, independent from the
choices of z, z1, z2.)

(ii) Prove directly this sequence is exact, at each of the three steps. That is,
supply proofs of each of the three equalities (ker(j∗) = im(i∗), etc.) in question,
using only the definition of the maps in homology.
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Observation/problem 3: As a consequence, if X1 ∩ X2 is contractible (in
particular, path-connected) we have Hn(X) ≈ Hn(X1) ⊕ Hn(X2), if n ≥ 2.
What happens when n = 1? Is this still true? (Proof or counterexample.)

3. Main steps in the proof of ‘split chains suffice’.

(Outline, based on [Rotman, ch.6] and [Hatcher, p. 119-124].) We now use
Sn for the chain complexes (since the proof is in singular homology.)

Step 1. Define a ‘subdivision operator’ SX
n : Sn(X) → Sn(X), and show it

is a chain map.

As a notational matter, let δn : ∆n → [e0 . . . en] be the identity (we need to
parametrize ∆n itself as a ‘singular simplex’ in Rn.)

This is done in two parts. First, assuming X = E is a ‘convex space’ (convex
subset of some euclidean space; say, an affine subspace of euclidean space, or
a simplex.) Then for an affine ‘singular simplex’ τ : ∆n → E, we define its
subdivision, inductively on n, via the ‘cone construction’ from τ(bn), the image
under τ of the barycenter bn of ∆n (n ≥ 1):

SE
n τ := τ(bn) · SE

n−1(∂nτ).

Extend linearly to obtain SE
n : Sn(E) → Sn(E).

Now establish the chain map property for the SE
n by induction on n. Using

the fact the coning map b· : Sn(E) → Sn+1(E) is a chain homotopy from the
zero map to the identity (meaning ∂(b · γ) + b · (∂γ) = γ), one easily finds:

∂(SE
n τ) = SE

n−1(∂τ)− τ(bn) · ∂(SE
n−1∂τ) = SE

n−1(∂τ),

using the induction hypothesis at the second step.

Now let X be a general space. Given a singular simplex σ : ∆n → X,
regarding ∆n as the ‘singular simplex’ δn ∈ Sn(E), δn : ∆n → E (where
E = ∆n), we define, using the chain map σ# : Sn(E) → Sn(X):

SX
n (σ) := σ#SE

n (δn).

Extend linearly to obtain SX
n : Sn(X) → Sn(X). It is then an easy formal

matter to derive the chain map property for SX
n from that of SE

n (using also the
fact σ#(δn) = σ ∈ Sn(X)).

Step 2. Construction of a map Tn : Sn(X) → Sn+1(X), chain homotopy
from Sn to the identity on Sn(X):

∂Tn + Tn−1∂ = IdSn(X) − Sn.

As in Step 1, first we do this in the case X = E, a ‘convex space”. One easily
shows (assuming, inductively, the chain homotopy property holds for Tn−1) that
if γ ∈ Sn(E), the chain γ − Snγ − TE

n−1∂γ is a cycle. As recalled in step 1, on
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cycles φ in E the cone operation is a ‘one-sided inverse’ to ∂, in the sense
∂(b · φ) = φ. Fix b ∈ E arbitrarily, and define, inductively, for γ ∈ Sn(E):

TE
n γ = b · (γ − Snγ − TE

n−1∂γ) ∈ Sn+1(E).

The chain homotopy property for TE
n follows directly from this definition:

∂(TE
n γ) = γ − Snγ − TE

n−1∂γ.

As in Step 1, we transfer this construction to a general space X by first defining
TX
n for a singular simplex σ : ∆n → X. For E = ∆n and σ# : Sn(E) → Sn(X):

TX
n (σ) = σ#T

E
n δn ∈ Sn+1(X),

where δn ∈ Sn(E) is the identity. Then extend by linearity to TX
n : Sn(X) →

Sn+1(X). It is then easy to show TX
n is a chain homotopy from Sn to the

identity in Sn(X) (using also that the subdivision operator Sn is natural with
respect to maps f : X → Y .)

As an important corollary of Steps 1 and 2, we have that if z ∈ Zn(X) is a
cycle, then so is Snz, and z ∼ Snz in Hn(X). In other words, Sn induces the
identity map on Hn(X).

Step 3. Suppose X = int(X1) ∪ int(X2), let γ ∈ Sn(X) be a chain. Then
there exists an integer q = q(γ) ≥ 1 so that, for the iterated subdivision Sq

nγ,
we have:

Sq
nγ ∈ Sn(X1 +X2).

Idea of proof. For chains in a convex space E, we know mesh(Sq
nγ) → 0 as

q → ∞. Then the claim follows from a Lebesgue number argument, for the
open cover {int(X1), int(X2)} of the compact set defined by the image of γ in
X.

Step 4. Theorem. (‘split chains suffice’). The operator

Θn : Hn(X1 +X2) → Hn(X)

induced by the inclusions Sn(X1 +X2) ↪→ Sn(X) is an isomorphism.

Proof. Surjectivity is easy. Let [z] ∈ Hn(X), ∂z = 0. Then for some
q = q(z), we may write Sq

nz = z1+ z2, for some zi ∈ Sn(Xi), Since Sq is a chain
map, we have ∂(z1 + z2) = 0. Then:

Θn[z1 + z2]Hn(X1+X2) = [z1 + z2]Hn(X) = [Sq
nz]Hn(X) = [z]Hn(X).

The proof of injectivity includes a subtle point. (See [Rotman, p. 117-118],
corrected below.) Suppose [γ1 + γ2]Hn(X) = 0: ∃β ∈ Sn+1(X), ∂β = γ1 + γ2.
Then for some q = q(β),Sq

n+1β = β1 + β2, βi ∈ Sn+1(Xi). Since Sq is a chain
map, we have ∂(β1+β2) = Sq

n(γ1+γ2). This shows [Sq
n(γ1+γ2)]Hn(X1+X2) = 0.

Issue: Although we know Sq
n acts as the identity in Hn(X), we have not

established this for Hn(X1 +X2).
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To resolve this, note that the subdivision operator Sn maps Sn(Xi) to
Sn(Xi), and thus maps Sn(X1+X2) to itself (i.e., subdivision preserves the space
of ‘split chains’.) Likewise, the chain homotopy Tn restricts to T ′

n : Sn(X1) →
Sn+1(X1), T

′′
n : Sn(X2) → Sn+1(X2). Now consider iterated subdivision (drop-

ping dimension subscripts from the notation from now on). Define for q ≥ 0:

Dq : Sn(X) → Sn+1(X), Dq =
∑

0≤i<q

TSi.

A standard calculation gives (cf. [Hatcher, p.123]):

∂Dq +Dq∂ = Id− Sq on Sn(X);

Dq is a chain homotopy operator from Sq to the identity. We also have restric-
tions of Dq to the chain complexes of X1 and X2:

D′
q =

∑
0≤i<m

T ′Si, D′′
q =

∑
0≤i<m

T ′′Si.

Getting back to the proof of injectivity, we may write:

γ1 − Sqγ1 = (D′′
q ∂ + ∂D′

q)γ1, γ2 − Sqγ2 = (D′′
q ∂ + ∂D′

q)γ2.

Adding the two, we find:

γ1 + γ2 − Sq(γ1 + γ2) = (D′
q∂γ1 +D′′

q ∂γ2) + ∂(D′
qγ1 +D′′

q γ2),

where the first term on the right equals Dq∂(γ1 + γ2) = 0. This shows:

[γ1 + γ2]Hn(X1+X2) = [Sq(γ1 + γ2)]Hn(X1+X2) = 0,

establishing the injectivity claim.

5


